R S NN

THE ADDIBON-WESLEY MICROSOFT TECHNOLOOY SERIES

= .lllli.ﬂl\‘.d.‘m-..._..u

a EEEENEEEEERRGS
B Nl (HEEEEmBRL
e EEEEEERRREBRW

ESSENTIAL POWERSHELL

This page intentionally left blank

ESSENTIAL POWERSHELL

Holger Schwichtenberg

vvAddison-Wesley

Upper Saddle River, N] ¢ Boston ® Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich ® Paris ® Madrid
Cape Town ¢ Sydney e Tokyo e Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content partic-
ular to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson‘com

Visit us on the Web: www.informit.com/aw
Library of Congress Cataloging-in-Publication Data

Schwichtenberg, Holger.

Essential PowerShell / Holger Schwichtenberg.

p. cm.

ISBN 978-0-672-32966-1

1. Windows PowerShell (Computer programming language) 2. Command languages
(Computer science) 3. Scripting languages (Computer science) 4. Systems programming
(Computer science) 5. Microsoft Windows (Computer file) I. Title.

QAT76.73.W56539 2008

005.4'2—dc22

2008020010

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-672-32966-1
ISBN-10: 0-672-2966-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing June 2008

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development
Editor

Mark Renfrow
Managing Editor
Kristy Hart
Project Editor
Betsy Harris

Copy Editor
Keith Cline

Indexer
Publishing Works,
Inc.

Proofreader
Paula Lowell

Technical Editor
Tony Bradley
Publishing

Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Compositor
Nonie Ratcliff

www.informit.com/aw
http://www.informit.com/onlineedition

To Heidi, the woman I love.

This page intentionally left blank

CONTENTS

Prefaceocvivieeneesecscssssssssssassosse XV
Acknowledgmentsccc0ieteeececncncncns Xix

Aboutthe Authorcciiiiietieeeeeeeeeeee Xxi

PART I: GETTING STARTED WITH POWERSHELL + v o v v v v e eveeveocconcscesacsanses |

Chapter 1:

Chapter 2:

First Steps with Windows PowerShell3

What Is Windows PowerShelle oo L 3
Downloading and Installing PowerShell Community Extensions 16
Testing the PowerShell Extensions 18
Downloading and Installing the PowerShellPlus 19
Testing the PowerShell Editor 20
SUMMArY .« .o 22

Commandletscccceeeeeccccccccccccccccces25

Intfroducing Commandlets 25
Aligses ... 29
Expressions 32
External Commands 33
GettingHelp 35
SUMMOTY .« . 41

LIX]
Vil CONTENTS

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Pipelil‘ling oooc.onooooo.noooo0000000000000000043

Pipelining Basics 43
Pipeline Processor 47
Complex Pipelines 48
OUIPUL o 49
Getting User Input 56
SUMMArY .« . 58
Advanced Pipeliningcciiiiiiiiiiiiiinn 59
Analyzing Pipeline Content 59
Filtering Objects 70
Castrating Objects 73
Sorting Objects 74
Grouping Objects 74
Caleulationso 76
Intermediate Steps in the Pipeline 76
Comparing Objects 78
Ramifications 78
SUMMArY .« .o 79
The PowerShell Navigation Model 81
Navigation through the Registry 81
Providersand Drives 83
Navigation Commandlets 84
Paths . . .o 85
Defining Drivesot 87
SUMMArY .« . 88

The PowerShell Script Language 89

Getting Help 90
Command Separation 90
Comments 90
Variables 91
Available Types 92
Numbers 96

Random Numbers 98

Chapter 7:

Chapter 8:

Chapter 9:

CONTENTS I1X
SITINGS « 99
Date and Time 102
AITAYS oo 105
Associative Arrays (Hash Tables) 106
Operators 108
Control Structures 110
SUMMArY .« . 113

PowerShell Scriptscc0evveeeees.. 115

A First PowerShell Script Example 115
Start a PowerShell Script 117
Including Seripts 118
Scripting Security . .. 118
Signing of Scripts 120
lefting a Script Sleep 122
Errors and Error Treatment 122
SUMMArY . .o 128

Using Class Librariescccveieeeeeccseseses 129

Using .NET Classest 129
Using COM Classest 133
Using WMIClasses 135
Date and Timettt 145
SUMMArY .« . 150

PowerShellTools . .« c e ettt ettt eeeeeeeeeeaeeaeaes 151

PowerShell Console 151
PowerTab 156
PowerShell IDE 156
Windows PowerShellPlus 158
PowerShell Analyzer 164
PrimalScript 165
PowerShell Help 169

SUMMArY . .o 170

X CONTENTS

Chapter 10:

Tips, Tricks, and Troubleshooting 171

Debuggingand Tracing 171
Command Hisfory 186
System and Host Information 187
PowerShell Profiles 189
Graphical User Inferfaces 196
SUMMArY . . 201
PART Il: WINDOWS POWERSHELL INACTION .. evvvvininvinnninnennncnnnennns 203

Chapter 11:

Chapter 12:

Chapter 13:

File Systemscc0iitteecccccsccsessas 205

Available Commandlets for File System Administration 205
Drives 206
Directory Confent 210
Reading and Writing File Properties 213
Properties of Executables L. 214
File System Links 216
Compression 220
File Shares 221
SUMMArY . . 234
ManagingDocumentscccceeeecetccncenns 235
TextFiles o 235
Binary Files 238
CSVFiles . ..o 239
XMLFiles . ..o 241
HTMLFiles . .. oo 251
SUMMArY .« .o 252

Registry and Softwarecc000eeeees.. 253

Registry . . .o 253
Software Administration 259
SUMMArY .« . 266

CONTENTS X1

Chapter 14:

Chapter 15:

Chapter 16:

Chapter 17:

Chapter 18:

Processes and Servicescceceeeeeececcceesss 267

Processes 267
Windows Serviceso 271
SUMMATY . . 280

Computersand Hardwareccc000000s...281

Computer Seftingso 281
Hardware 284
Eventlogs 290
Performance Counters 292
SUMMArY . .o 293

Networkingccceeeeeeeeccscscscscscscssss 295

Pinging Computers 295
Network Configuration 296
Name Resolution 299
Retrieving Files from an HTTP Server 300
EMail .. 302
Microsoft Exchange Server 2007 302
Internet Information Services 305
SUMMArY .« . 311

Directory Servicesceceeeeeesescscsesss3l3

Overview of Directory Services Access 313
Managing Users and Groups Using WMI 314
System.DirectoryServices and the ADSI Adapter 315
Deficiencies in the ADSI Adapter 321
Obiject Identification in Directory Services (Directory Services Paths) . 323
Overview of the Common Programming Tasks 325
SUMMArY . .o 333

User and Group Management in the
ActiveDirectory335

Directory Class User 335
Creating a User Account 339

L]
X1 CONTENTS

Chapter 19:

Chapter 20:

Chapter 21:

Chapter 22:

Authentication 341
Deleting Users oo 342
Renaming User Accounts 342
Moving User Accounts 343
Group Management 343
Organizational Units 346
SUMMArY . . 347

Searching in the Active Directory 349

LDAP Query Synfax 349
LDAP Queries in PowerShell oL 351
Search Tipsand Tricks 354
LDAP Query Examples 358
Using the Commandlet Get-ADObject 358
SUMMArY . .o 359

Additional Libraries for Active Directory
Administrationcciiiiiitiittcnnsess. 361

Navigating the Active Directory Using the PowerShell Community

Extensions 361
Using the www.IT-Visions.de Active Directory Extensions 362
Using the Quest Active Directory Extensions 365
Getting Information about the Active Directory Structure 365
Group Policies 367
SUMMArY .« . 372
Databasesccoiiiiiieiiiettncctnncnnns 373
Infroducing ADO.NET i 373
Example Database 379
Data Access with PowerShell 380
SUMMArY .« . 388
Advanced Database Operations 389
Data Access Using a DataSet 389
Data Access with the www.IT-Visions.de PowerShell Extensions 396

SUMMATY .« . 400

www.IT-Visions.de
www.IT-Visions.de

LX)
CONTENTS X1

Chapter 23 Security Settingsccccvcieteeeeeenensesse. 401

Windows Security Basics 402
Classes . .. v 406
Reading ACLs 408
Reading ACEs e 410
SUMMATY © . 412

Chapter 24: Advanced Security Administration413

Account Identifier Translation 413
Readingthe Owner i 417
Addinga New ACEtoan ACL 418
Removing an ACE froman ACL 421
Transferring ACLs 424
Setting ACLs Using SDDL 425
SUMMArY .« . 426
PART IIl: APPENDICES . ..vvuvvnneenneeineeineenneenneenncenncannnns 427

Appendix A: PowerShell Commandlet Reference 429

Appendix B: PowerShell 2.0 Previewccc00v.....445

Appendix C: Bibliographycciititeeeeeeecncscncns 449

INdeX ..vveeeeeeeeeeeeecococcccoconcnoccessd53

This page intentionally left blank

PREFACE

Windows PowerShell is one of the most amazing products Microsoft has
released in recent years, because it brings console-based system adminis-
tration and scripting to the next level of abstraction. PowerShell is an excel-
lent replacement for classic Windows shell commands and for Windows
Script Host (WSH). PowerShell copies a lot of good features from UNIX
shells and combines them with the power of the .NET Framework. In
contrast to WSH, PowerShell enables consistent, straightforward,
command-line system administration that does not require much software
development knowledge.

Unfortunately, in the first version of PowerShell, the number of high-
level commands is limited. For many tasks, lower-level concepts are
required, especially the NET Framework and Windows Management
Instrumentation (WMI).

What Does This Book Cover?

This book covers the standard PowerShell commandlets, additional free
commandlets (for example, PowerShell Community Extensions), and the
direct use of classes from the .NET Framework, the Component Object
Model (COM), WMI, and the Active Directory Service Interface (ADSI).

Because PowerShell is an extensive topic, this book cannot provide an
exhaustive reference of all PowerShell commands and solutions for all pos-
sible administrative tasks. However, you will find a concise introduction to
the most common command and scenarios. For more detailed information
about PowerShell, refer to the Microsoft documentation for PowerShell,
WMI, ADSI, and the .NET Framework (approximately 100,000 pages) as
an additional source.

Xv

xvi

PREFACE

Who Should Read This Book?

The primary target audience comprises Windows administrators seeking a
method of automated system administration that is more powerful than the
classic Windows Shell but less complex than WSH and the associated
COM components. After reading this book, administrators will be able to
use PowerShell as their day-to-day command-line interface for all admin-
istrative tasks.

As a prerequisite, aside a good knowledge of the Windows operation
system, you should have a basic understanding of object-oriented pro-
gramming languages. Basic concepts of object orientation such as classes,
objects, attributes, and methods are not explained in this book.

How This Book Is Structured

This book is organized into 24 chapters, some of which, based on your pre-
vious experience and knowledge of certain concepts, you might find easier
to understand than others. The 24 chapters are split into two parts:

m Part I: Getting Started with PowerShell. Part I introduces the
PowerShell architecture, all basic concepts (such as pipelining and
navigation), the PowerShell Script Language, and the tools you
should know.

m Part II: Windows PowerShell in Action. Part II covers
PowerShell script solutions for day-to-day administrative tasks
related to Windows services and Windows application, such as file
system, processes, event logs, registry, networking, printers, docu-
ments, databases, Active Directory, and software installation. Each
chapter contains dozens of self-contained examples.

The appendixes contain a list of all commandlets from PowerShell 1.0,
the PowerShell Community Extensions 1.1.1, and the www.IT-Visions.de
PowerShell Extensions 2.0. You will also find a short preview of the next
version of Windows PowerShell (Version 2.0).

Throughout the text, you will find codes that match up to codes in
Appendix C, “Bibliography.” These codes are encased in brackets (for
example, [MSO1]). The appendix lists the code, the correlating subject, and

www.IT-Visions.de

PREFACE XVii

a link that will provide you with more information.

Occasionally, when a line of code is too long to fit on one line in the
printed text, a code-continuation character has been used to show that the
line continues. For example

"{0} can be reached at {1}.
wThis information is dated: {2:D}." -f Sa, Sb, Sc

This Book’s Website

Many of the scripts are available for download from its website,
www.Windows-Scripting.com. This website also contains errata for this
book and the option to offer feedback to the author.

www.Windows-Scripting.com

This page intentionally left blank

ACKNOWLEDGMENTS

Thanks to Dr. Regina Schymiczek who helped me to translate parts of this
book from my previously published German book. Thanks to the entire
editorial team at Addison-Wesley who gave me the opportunity to publish
this book. Many thanks to Heidi, who gives me great support at work and
in my private life.

Xix

This page intentionally left blank

ABOUT THE AUTHOR

Dr. Holger Schwichtenberg holds a Master’s
degree and a Ph.D. in business informatics,
both from the University Duisburg-Essen in
Germany. He has had more than ten years
experience as a lead developer and trainer.
With his company IT-Visions.de, based in
Germany, he works as a software architect,
technology consultant, and trainer for leading
companies throughout Europe.

Holger is one of Europes well-known
experts for NET and Windows Scripting
technologies, recognized by Microsoft as a
Most Valuable Professional (MVP), a .NET
Code Wise Member, a board member of codezone.de, an MSDN Online
Expert, and a speaker for the International .NET Association (INETA).
Based on his expertise in software development and the Windows operat-
ing system, Holger is one of the experts in the European Union versus
Microsoft antitrust case.

He has published more than 30 books for Addison-Wesley and
Microsoft Press in Germany, in addition to more than 400 journal articles,
notably for the IT journals iX, DOTNET Pro, and Windows IT Pro. His
community websites www.dotnetframework.de and www.windows-script-
ing.com are members of the Codezone Premier Website program.

Holger regularly speaks at professional conferences (for example,
Microsoft TechEd, Microsoft IT Forum, Advanced Developers
Conference, OOP, Net.Object Days, Online, BASTA, and DOTNET
Conference).

Holger can be reached at hs@windows-scripting.com.

www.dotnetframework.de
www.windows-scripting.com
www.windows-scripting.com

This page intentionally left blank

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9

Chapter 10

PART |1

GETTING STARTED WITH
POWERSHELL

First Steps with Windows PowerShell 3
Commandlets 25
Pipelining 43
Advanced Pipelining 59
The PowerShell Navigation Model 81
The PowerShell Script Language 89
PowerShell Scripts 115
Using Class Libraries 129
PowerShell Tools 151
Tips, Tricks, and Troubleshooting 171

This page intentionally left blank

CHAPTER 1

FIRsT STEPS WITH WINDOWS
POWERSHELL

In this chapter:

What Is Windows PowerShell2 o o o 3
Downloading and Installing PowerShell Community Extensions 16
Testing the PowerShell Extensions 18
Downloading and Installing the PowerShellPlus 19
Testing the PowerShell Editor 20

This chapter introduces Windows PowerShell and helps you set up your
environment. In addition, the chapter provides a few easy examples that
demonstrate how to use PowerShell.

What Is Windows PowerShell?

Windows PowerShell (WPS) is a new .NET-based environment for
console-based system administration and scripting on Windows platforms.
It includes the following key features:

m A set of commands called commandlets

m Access to all system and application objects provided by Component
Object Model (COM) libraries, the .NET Framework, and
Windows Management Instrumentation (WMI)

m Robust interaction between commandlets through pipelining based

on typed objects

CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

m A common navigation paradigm for different hierarchical or flat
information stores (for example, file system, registry, certificates,
Active Directory, and environment variables)

m An easy-to-learn, but powerful scripting language with weak and
strong variable typing

m A security model that prevents the execution of unwanted scripts

m Tracing and debugging capabilities

m The ability to host WPS in any application

This book includes syntax and examples for these features, except the
last one, which is an advanced topic that requires in-depth knowledge of a
.NET language such as C#, C++/CLI, or Visual Basic .NET.

A Little Bit of History

The DOS-like command-line window survived many Windows versions in
almost unchanged form. With WPS, Microsoft now provides a successor
that does not just compete with UNIX shells, it surpasses them in robust-
ness and elegance. WPS could be called an adaptation of the concept of
UNIX shells on Windows using the NET Framework, with connections
to WMI.

Active Scripting with Windows Script Host (WSH, pronounced
“wish”) is much too complex for many administrators because it presup-
poses much knowledge about object-oriented programming and COM.
The many exceptions and inconsistencies in COM make WSH and the
associated component libraries hard to learn.

Even during the development of Windows Server 2003, Microsoft
admitted that it had asked UNIX administrators how they administer their
operating system. The short-term result was a large number of additional
command-line tools included in Windows Server 2003. However, the long-
term goal was to replace the DOS-like command-line window of Windows
with a new, much more powerful shell.

Upon the release of the Microsoft .NET Framework in 2002, many
people were expecting a “WSH.NET.” However, Microsoft stopped the
development of a new WSH for the NET Framework because it foresaw
that using .NET-based programming languages such as C# and Visual
Basic .NET would require administrators to know even more about object-
oriented software development.

WHAT Is WINDOWS POWERSHELL? 5

Microsoft recognized the popularity of and satisfaction with UNIX
shells and decided to merge the pipelining concept of UNIX shells with
the NET Framework. The goal was to develop a new shell that was sim-
ple to use but nearly as robust as a NET program. The result: WPS.

In the first beta version, the new shell was presented under the code
name Monad at the Professional Developer Conference (PDC) in October
2003 in Los Angeles. After the intermediate names Microsoft Shell (MSH)
and Microsoft Command Shell, the shell received its final name,
PowerShell, in May 2006. The final version of WPS 1.0 was released on
November 11, 2006 at TechEd Europe 2006.

—
e
=
wv
-
wv
-
m
-
v
=
=
x
=
o
(=)
=
“
5
(=]
=
m
=
wv
=
m
fe]
=

NOTE The main architect of WPS 1.0 was Jeffrey Snover. He is always willing
to discuss his “baby” and answer questions. At large international Microsoft
technical conferences, such as the Professional Developer Conference (PDC) and
TechEd, you can easily find him; he is the only person at the Microsoft booths

wearing a tie.

Why Use WPS?

If you need a reason to use WPS, here it comes. Just consider the follow-
ing solution for one common administrative task in both the old WSH and
the new WPS.

An inventory script for software is to be provided that will read the
installed MSI packages using WMI. The script will get the information
from several computers and summarize the results in a CSV file
(softwareinventory.csv). The names (or IP addresses) of the computers to
be queried are read from a TXT file (computers.txt).

The solution with WSH (Listing 1.1) requires 90 lines of code (includ-
ing comments and parameterizing). In WPS, you can do the same thing in
just 13 lines (Listing 1.2). If you do not want to include comments and
parameterizing, you need just one line (Listing 1.3).

Listing 1.1 Software Inventory Solution 1: WSH

Option Explicit

' --- Settings
Const InputFileName = "computers.txt"
Const OutputFileName = "softwareinventory.csv"

(continues)

6 CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

Listing 1.1 Software Inventory Solution 1: WSH (continued)

Const Query = "SELECT * FROM Win32_Product where not
wyendor like '%Microsoft%’"

Dim objFSO ' Filesystem Object
Dim objTX ' Textfile object
Dim i ' Counter

Dim Computer ' Current Computer Name
Dim InputFilePath ' Path for InputFile
Dim OutputFilePath ' Path of OutputFile

' --- Create objects
Set objFSO = CreateObject ("Scripting.FileSystemObject")

' --- Get paths
InputFilePath = GetCurrentPath & "\" & InputFileName

OutputFilePath = GetCurrentPath & "\" & OutputFileName

' --- Create headlines

Print "Computer" & ";" & _
"Name" & ";" & _

"Description" & ";" & _
"Identifying Number" & ";" & _
"Install Date" & ";" & _
"Install Directory" & ";" & _
"State" & ";" & _
"SKU Number" & ";" & _
"Vendor" & ";" & _
"Version"

' --- Read computer list
Set objTX = objFSO.OpenTextFile (InputFilePath)

' --- Loop over all computers
Do While Not objTX.AtEndOfStream
Computer = objTX.ReadLine
i=1i+1
WScript.Echo "=== Computer #" & 1 & ": " & Computer
GetInventory Computer
Loop

' -—- Close Input File

WHAT Is WINDOWS POWERSHELL? 7

objTX.Close

' === Get Software inventory for one computer
Sub GetInventory (Computer)

Dim objProducts
Dim objProduct
Dim objWMIService

' --- Access WMI

Set objWMIService = GetObject ("winmgmts:" &_
"{impersonationLevel=impersonate} !'\\" & Computer &_
"\root\cimv2")

—
==
=
7]
-
v
—
m
-4
v
=
=
=
H
=4
(=)
=
v
)
o
=
m
=
wv
=
m
=
=

' —--- Execeute WQL query
Set objProducts = objWMIService.ExecQuery (Query)

' --- Loop

For Each objProduct In objProducts
Print _
Computer & ";" & _
objProduct.Name & ";" &
objProduct.Description & ";" &
objProduct.IdentifyingNumber & ";" &
objProduct.InstallDate & ";" &
objProduct.InstallLocation & ";" &
objProduct.InstallState & ";" &
objProduct.SKUNumber & ";" &
objProduct.Vendor & ";" &
objProduct.Version

Next

End Sub

' === Print

Sub Print(s)

Dim objTextFile

Set objTextFile = objFSO.OpenTextFile (OutputFilePath, 8, True)
objTextFile.WriteLine s

objTextFile.Close

End Sub

' === Get Path to this script

Function GetCurrentPath

GetCurrentPath = objFSO.GetFile (WScript.ScriptFullName) .ParentFolder
End Function

8 CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

Listing 1.2 Software Inventory Solution 2: WPS Script

Settings

SInputFileName = "computers.txt"
SOutputFileName = "softwareinventory.csv"
SQuery = "SELECT * FROM Win32_Product where not

wyendor like '%Microsoft%’"

Read computer list
SComputers = Get-Content $InputFileName

Loop over all computers and read WMI information
$Software = S$Computers | foreach { get-wmiobject -query S$Query -
computername $_ }

Export to CSV

SSoftware | select Name, Description, IdentifyingNumber, InstallDate,
wInstallLocation, InstallState, SKUNumber, Vendor, Version |
weoxport-csv $OutputFileName -notypeinformation

Listing 1.3 Software Inventory Solution 3: WPS Pipeline Command

Get-Content "computers.txt" | Foreach {Get-WmiObject -computername
wS$ -—query "SELECT * FROM Win32_Product where not
wiendor like '$Microsoft%’" } | Export-Csv "Softwareinventory.csv"

w-_notypeinformation

Downloading and Installing WPS

Windows Server 2008 is the first operating system that includes WPS on
the DVD. However, it is an additional feature that can be installed through
Add Feature in the Windows Server 2008 Server Manager.

WPS can be downloaded (see Figure 1.1) and installed as an add-on to
the following operating systems:

m Windows XP for x86 with Service Pack 2
m Windows XP for x64 with Service Pack 2
m Windows Server 2003 for x86 with Service Pack 1

WHAT Is WINDOWS POWERSHELL? 9

Windows Server 2003 for x64 with Service Pack 1
Windows Server 2003 for Itanium with Service Pack 1
Windows Vista for x86

Windows Vista for x64

Note that WPS is not included in Windows Vista, although Vista und
WPS were released on the same day. Microsoft decided not to ship any
NET-based applications with Vista. Only the .NET Framework itself is
part of Vista.

POWERSHELL DOWNLOAD PAGE www.microsoft.com/

windowsserver2003/technologies/management/powershell /download.mspx

—
==
=
wv
4
w
4
=
=
wv
=
=
x
=
S
(=)
H
wv
)
o
=
=
=
7.3
x
m
=
=

lows Internet Explarer o =] 3
G@ + [T http:/wwns microsoft. comjwindowsserver2003jtechnolog {powersheljdownload. mspx =] [#2][% | [windows powershell downioad £l

| Fle Edt vew Favortes Tooks Help
5% ¢ [T How to Download Windows PowerShell 1.0 | | J v B - d v 2heage v (G Toos - @ kY & B

Quick Links + | Homa | Worldwide -
Windows Server 2003 R2
Windows Server 2003 R2 Home | Worldwide | Free Newsletters
Product Information b iolony Conters
How to Buy »
Upgrading +| How to Download Windows PowerShell 1.0
cchicallResourzes Y| published: October 15, 2006 | Updated: February 14, 2007
Downloads
Support z
ey Canters) | Windows PowerShell 1.0 RTW currently supports Windows XP Service Pack 2 and Windows Server 2003. For Related Links
s Windows Vista and Windows Server code-name "Langhorn” we have Windows PowerShell RC2 available only . windovs Powershell
far Vista Build 5600 and "Longharn” build 5600. The .NET Framewark 2.0 is required in order to install vy spmpeam—
Windows Server Windows PawerShell. Remember ta download the Windows PowerShell Documentation Pack that includes a TeaTiBlGoum—
Community Getting Started Guide, Quick Reference chart and a 100+ page Windows PowerShell primer. R e
= Microsoit Jechivet Script
Center
Windows Family, * | Windows PawerShell is supparted on multiple platfarms (x86, x64 & Itanium) and by multiple language e
Microsoft Servers » 1 i * Windows PowerShell SDK ‘]
technologies (English language, Localized and Multilingual User Interface). Edinnatial
Windows Small Business
Server 2003 R2 Windows PawerShell RTM for Windows Vista RTM released in January 2007. See the links below. Our team
Windows Server Catalog needs same time for testing to make sure Windows PowerShell 1.0 warks correctly on Windows Server code-
name "Longhorn.” Far an interim solution, we have made our Windows Server "Longhorn” RC2 package for instzll on Windows Server code-
Windows Server 2003 . "
Worldwide. name "Longhorn” build S600. Please check the PowerShell Team blog for mare informatian.

Windows Vista RTM
s xB6: Windows Vista RTM

= x64; Windows Vista RTM

Windows Server code-name "Longhorn” IDS (5600)
» xB6: Windows PowerShell RC2 English-Language Package

» x64: Windows PowerShell RC2 English Language Package

= iab4: Windows PowerShell RC2 English Language Package for Windows Server code-name "Longhorn” onl!

Windows XP Service Pack 2 — Windows PowerShell 1.0 RTW
Platform

= xB6

 Enalish-Language Package for Windows XP

* Localized Packaqe for Windows XP
* Multilingual User Interface (MUI) Package for Windows XP

= x64

pene N O O O = [Rioow -7

Figure 1.1 WPS download website

www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx

10

CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

WPS requires that NET Framework 2.0 or later be installed before
running WPS setup. Because Vista ships with .NET Framework 3.0 (which
is a true superset of 2.0), no .NET installation is required for it. However,
on Windows XP and Windows Server, you must install .NET Framework
2.0, 3.0, or 3.5 first (if they are not already installed by another application).

MICROSOFT .NET FRAMEWORK 3.0 REDISTRIBUTABLE PACKAGE
www.microsoft.com/downloads/details.aspx@Familyld=10CC340B-F857-
4A14-83F5-25634C3BF043&displaylang=en

The setup routine installs WPS to the directory %systemroot%\
system32\WindowsPowerShell\V1.0 (on 32-bit systems) or %systemroot%\
SyswowbA\WindowsPowerShel\V1.0 (for 64-bit systems). You cannot
change this folder during setup.

TIP If for any reason you want to uninstall WPS, note that WPS is considered a
software update to the Windows operating system (that is, not a normal applica-
tion). Therefore, in the Add or Remove Programs control panel applet, it is not
listed as a program; instead, it is listed as an update called Hoffix for Windows
(KB x). The Knowledge Base (KB) number varies on different operating systems.
However, you can identify WPS installation in the list by its icon (see Figure
1.2). On Windows XP and Windows Server 2003, you must check the Show
Updates check box to see the WPS installation.

Taking WPS for a Test Run

This section includes some commands to enable you to try out a few WPS
features. WPS has two modes, interactive mode and script mode, which
are covered separately.

www.microsoft.com/downloads/details.aspx?FamilyId=10CC340B-F857-4A14-83F5-25634C3BF043&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=10CC340B-F857-4A14-83F5-25634C3BF043&displaylang=en

WHAT Is WINDOWS POWERSHELL? .III

® add or Remove Programs g o =] 5|

Currently installed programs and updates: ¥ show updates Sork by: Im .

[BF Update for Windows Server 2003 (KB911897) Installed On 15,12, 2006 |« o
Q' Security Update For Windows Server 2003 (KB923689) Installed On 15,12,2006 z’
B Security Update For Windows Server 2003 (KB918118) Installed On 16,02,2007 E
& Update for Windows Server 2003 (KB931836) Installed On 16.02,2007 a
ﬂ_-' Security Update For Windows Server 2003 (KB924667) Installed On 16,02,2007 é
&¥' Update for Windows Server 2003 (KB925720) Installed On 16.02,2007 =
ﬂ-' Security Update For Windows Server 2003 (KBE928255) Installed On 16.02,2007 §
&% Security Update For Windows Server 2003 (KB926436) Installed On 16,02,2007 g

Companents ﬂ- Security Update For Windows Server 2003 (KB928843) Installed On 16,02,2007 5
Q' Security Update For Windows Server 2003 (KB925902) Installed On 04.04,2007 g
& Security Update For Windows Server 2003 (KB931784) Installed On 11,04,2007 E
&% Security Update For Windows Server 2003 (KB930178) Installed On 11,04,2007 g
ﬂ-' Security Update For Windows Server 2003 (KBE932168) Installed On 11,04,2007 =
¥ Update for Windows Server 2003 (KB927891) Installed On 26.05,2007
& Hotfix for Windows Server 2003 (KB926139) Installed On 12
Click here for support information.
r computer, click Remove,
ﬂ ‘Windows Server 2003 Hotfix - KB 833407 Installed On 30,06,2006 J
ﬂ Windows Server 2003 Service Pack 1 Administration Tools Pack Size 29,70MB

Figure 1.2 The uninstall option for WPS is difficult to find. (This screenshot is
from Windows Server 2003.)

WPS in Interactive Mode

First, you'll use WPS in interactive mode.

Start WPS. An empty WPS console window will display (see Figure
1.3). At first glance, you might not see much difference between it and the
traditional Windows console. However, there is much more power in WPS,
as you will soon see.

At the command prompt, type get-process and then press the
Return key. A list of all running processes on your local computer will dis-
play (see Figure 1.4). This was your first use of a simple WPS commandlet.

NOTE Note that the letter case does not matter. WPS does not distinguish
between uppercase and lowercase letters in commandlet names.

12 CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

Windows PowerShell

Windows PowerShell
Copyright (C) 2886 Microsoft Corporation. All rights reserved.

PS C:\Documents\hs> _

Figure 1.3 Empty WPS console window

B Windnws FowerShell

2w Ducunent BL-proces
Handle= HPMCKY YU CPUdaY

a.a3 i i usenreninde:
b 1

s
svihost
a

ue!
svchost
suchost
svchost
svchost
auchast

PE C:vDocunentasha

Figure 1.4 The Get-Process commandlet output

At the command prompt, type get-service i*. A list of all installed
services with a name that begins with the letter I on your computer will

WHAT Is WINDOWS POWERSHELL? 13

display (see Figure 1.5). This was your first use of a commandlet with
parameters.

& vindows PowerShell I

PS C:\Documents\hs> get-service ix

LELT

idsvc

LISADMIN

ImapiService IMAPI CD-Burning COM Service
IsmServ Intersite Hessaging
I8RService FirstDefense-ISR Service

PS C:\Documents\hs>

Figure 1.5 A filtered list of Windows services

Type get- and then press the Tab key several times. You will see WPS
cycling through all commandlets that start with the verb get. Microsoft
calls this feature tab completion. Stop at Get-Eventlog. When you press
Enter, WPS prompts for a parameter called LogName (see Figure 1.6).
LogName is a required parameter. After typing Application and press-
ing Return, you will see a long list of the current entries in your Application
event log.

B windows PowerShell
PS C:\Documents\hs> Get—EventLog

cmdlet Get—EventLog at command pipeline position 1

Supply values for the Following parameters:
LogNane: _

Figure 1.6 WPS prompts for a required parameter.

The last example in this section introduces you to the pipeline features
of WPS. Again, we want to list entries from a Windows event log, but this
time we want to get only some entries. The task is to get the most recent
ten events that apply to printing. Enter the following command, which
consists of three commandlets connected via pipes (see Figure 1.7):

Get-EventLog system | Where-Object { $_.source -eqg "print" }
w | Select-Object -first 10

Note that WPS seems to get stuck for a few seconds after printing the
first ten entries. This is the correct behavior because the first commandlet

—
.
e
=
wv
-
wv
-
m
-
v
=
=
x
=
=3
(=)
=
“
o
(=]
=
m
=
wv
=
m
fe]
=

l ‘I CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

(Get-EventLog) will receive all entries. The filtering is done by the sub-
sequent commandlets (Where-Object and Select-Object). Unfortu-
nately, Get-EventLog has no included filter mechanism.

dows PowerShell

PS G:~Document >
PS C:\Documents\hs> Get-Eventlog system ! vhere—object { 4_.source —eq "print" } | select—object —first 18

Index Time g EventID

Dncument » Microsoft Word — T'l25 _1.doc nuned by hs was 1)1 i
Document b

Document

Document

Document

Document | ce Outlook — Memoformat owned by
Document . nft Office Qutlook — Memoformat owned by h.
Document b t Word — 2422 Fachlektorat.doc ouned b
Document o t Office Qutlook — Hemoformat ouned by
Document - t Office Outlook — Hemoformat ouwned by

Figure 1.7 Filtering event log entries

WPS in Script Mode

Now it’s time to try out PowerShell in script mode and incorporate a WPS
script. A WPS script is a text file that includes commandlets/elements of
PowerShell Script Language (PSL). The script in this example creates a
new user account on your local computer.

Open Windows Notepad (or any other text editor) and enter the fol-
lowing lines of script code (which consists of comments, variable declara-
tions, COM library calls, and shell output):

Listing 1.4 Create a User Account

PowerShell Script
Create local User Acount

Variables

$Name = "Dr. Holger Schwichtenberg"

SAccountname = "HolgerSchwichtenberg"

SDescription = "Author of this book / Website: www.windows-scripting.com"
SPassword = "secret+123"

SComputer = "localhost"

"Creating User on Computer S$Computer"

WHAT Is WINDOWS POWERSHELL? 15

Access to Container using the COM library
w"Active Directory Service Interface (ADSI)"
$Container = [ADSI] "WinNT://$Computer"

Create User

SobjUser = S$Container.Create("user", S$SAccountname)
SobjUser.Put ("Fullname", $Name)
SobjUser.Put ("Description", $Description)

Set Password
SobjUser.SetPassword ($Password)
Save Changes
SobjUser.SetInfo ()

—
e
=
wv
-
wv
-
m
-
v
=
=
x
=
o
(=)
=
“
o
(=]
=
m
=
wv
=
m
fe]
=

"User created: S$Name"

Save the text file with the name createuser.ps1 into the directory
c:\temp. Note that the file extension must be .ps1.

Now start WPS. Try to start the script by typing ec:\temp\
createuser.psl. (You can use tab completion for the directory and file-
names.) This attempt will fail because script execution is, by default, not
allowed in WPS (see Figure 1.8). This is not a bug; it is a security feature.
(Remember the Love Letter worm for WSH?)

B windows Powershell -

PS C:\Documents\hs>
P8 C:“\Documents~hs?> C:\temp“Createlser.psi

PS G:sDocumentsi\hs?

Figure 1.8 Script execution is prohibited by default.

For our first test, we will weaken the security a little bit (just a little).
We will allow scripts that reside on your local system to run. However,
scripts that come from network resources (including the Internet) will
need a digital signature from a trusted script author. Later in this book you
learn how to digitally sign WPS scripts. You also learn to restrict your sys-
tem to scripts that you or your colleagues have signed.

To allow the script to run, enter the following:

Set-ExecutionPolicy remotesigned

16 CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

Then, start the script again (see Figure 1.9). Now you should see a
message that the user account has been created (see Figure 1.10).

B Windows PowerShell

N
hs> Set—ExecutionPolicy remotesigned
hs> C:istemphCreateUser.psl
* on Computer localhost
User created: Dr. Holger Schuichtenberg
PS C:-“Documents\hs> _

Figure 1.9 Running your first script to create a user account

HolgerSchwichtenberg Properties E |

Femote control I Teminal Services Profile I Dialin I
General | Member OF | Frofile I Enviranment | Sessions

‘g HalgerSchwichtenberg

Full name: IDr. Holger Schwichtenbeig

Description: |Auth0r of thiz book / www.Windows-Scripting.com

™ User must change password at next logan
I User cannot change password

™ Password never expires

™ Accountis disabled

I™ ccountis locked out

(0] h Cancel Apply

Figure 1.10 The newly created user account

Downloading and Installing PowerShell Community
Extensions

WPS 1.0 includes only 129 commandlets. You might ask why I wrote only.
You will notice soon that the most important commandlets are those with
the verbs get and set. And the number of those commandlets is quite
small compared to the large number of objects that Windows operating
systems provide. All the other commandlets are, more or less, related to
WPS infrastructure (for example, filtering, formatting, and exporting).

DOWNLOADING AND INSTALLING POWERSHELL COMMUNITY EXTENSIONS 17

PowerShell Community Extensions (PSCX) is an open source project
(see Figure 1.11) that provides additional functionality with commandlets
such as Get-DhcpServer, Get-DomainController, Get-MountPoint,
Get-TerminalSession, Ping-Host, Write-Gzip, and many more.
Microsoft leads this project, but any .NET software developer is invited to
contribute. New versions are published on a regular basis. At the time of
this writing, version 1.1.1 is the current stable release.

DOWNLOAD POWERSHELL COMMUNITY EXTENSIONS
www.codeplex.com/PowerShellCX

PSCX is provided as a setup routine that should be installed after WPS
has been installed successfully.

i =loix]
j E“E |Windnws powershell extensions P

/2 Powershell Community Extensions - Home - Windows Internet Explorer

@ - |m http:ffwiwi. cadeplex. comWikifView. aspx?Projectiame=PowershelCx

J File Edt View Favorites Tools Help

3¢ ¢ 5| Powershell Community Extensions - Home

| - B - 8~ oo - o - @ L 3 B

. .
& powershell Community Extensions
| Home | Releases || Discussions || Issua Tracker || Source Code || People || License ‘ RSS ¥ CTEnT Release
11 Producti
Comments | Print | Page Info | Change History (all pages) Search Wiki: I:l Vﬁt&mAM
All Releases =
Home
MNews Feeds Activity 7 30 All days
Page Views 2589 =
Project Description e =
Pages Per Visit 313
PowerShell Community Extensions (PSCX) is aimed at providing a widely useful set of additional cmdlets, Work Items Closed 2
providers, aliases, filters, functions and scripts for Windows PowerShell that members of the community Discussion Pasts 8
have expressed interest in. Anl
ety WebTrends.
If you are interested in contributing to PSCX, drop me an email, or use the new Patch Upload [feature
for a one-off fix or script contribution. Developers: please read over the PSCX Developer's Guide. For a
description of what features are currently in PSCX, check out the PSCX 1.1 Features web page.
Release Status
PSCX 1.11s Released.
There are a lot of additions and enhancements for 1.1 incuding Less as a replacement paging utility for
the standard man and help functions. Installation note: you will be required to uninstall PSCX 1.0 befare
installing 1.1. If you don't you will get an installer error which if you look at the details, effectively tells you
to uninstall previous versions of PSCX. E
LT T iememe ST

Figure 1.11 PowerShell Community Extension website

—
==
=
7]
-
v
—
m
-4
v
=
=
=
H
=4
(=)
=
v
)
o
=
m
=
wv
=
m
=
=

www.codeplex.com/PowerShellCX

18 CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

You can incorporate additional functionality of PSCX into WPS by
using a profile script (see Figure 1.12). Just copy this profile script to your
My Documents/Windows PowerShell directory, if you want, during PSCX
setup. As a beginner, you should use this option.

@ H:\WindowsPowerShell [(=] 3]
Fle Edt View Favortes Tools Help ‘ b
(DBack ~) - T # & Osearch = Folders | [T+ | [Ordnersynchronisierung
Address [HiwindowsPawershel FEee

Name_~ | Size | Type | Date Modified |
File and Folder Tasks &[] Profile.pst BKB PS1Fie 13.06.2007 16:51
] Rename this file
[T RLTET R [Profile.ps1 - Notepad o =] 5|
Copy this fils Ele Edit Format Yiew Help
@ Fublish this file tc =
() Emailthisfle |y configure standard Powershell variables to more useful settings
¥ Deletethisfie [¥ ——- :
$MaximumHistoryCount = 512
$FormatEnumerationLimit = 100
Other Places I
i+ Powershell community Extensions preference variables. Comment/uncomment
gm WORK (H:) i# or change to suit your preference.
@ MyComputer locyraxteditorpreferance = "Notepad"
W My Network Plact
i+ Dirx/dirs/dirt/dird/dirw functions will specifies -Force with the_value of
s # the following preference variable. Set to $true will cause normally hidden
Details # items to be returned.
"
Profile.ps1 $PscxDirForcerreference = $true
P51 File R
DatEM”d‘HEdf Mittwe e pirx/dirs/dirt/dird/dirw functions filter out files with system attribute set.
Junl 2007, 1651 i# The performance may suffer on high Tatency networks or in folders with
Size: 7,83 KB i+ many files.
L+
$PscxDirHidesystemPreference = $true
L 1 i1 il 1
i# Displa ile sizes in kB, mMB, GB multiples.
Type: P51 File Date Modifi [+ el P
$pscxFilesizeInunitspreference = §false
n
i# The send-smtpMail default settings.
"
$PscxsmtpFromPreference = 'john_doeBexample. net'
$pscxsmtpHostPreference = 'smtp.example.net’
[## $PscxsmtpPortPreference = 25
- |

Figure 1.12 The PSCX profile script that was created during PSCX setup

Testing the PowerShell Extensions

The installation of PSCX changes the WPS console just a bit. Instead of the
current path, the prompt now contains a counter. However, the path does
display in the window?s title.

Start WPS and type Get-DomainController (if your computer is a
member of an Active Directory) or test PSCX by using Ping-Host with
any computer on your network (see Figure 1.13).

DOWNLOADING AND INSTALLING THE POWERSHELLPLUS 19

PoverShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

1# Get—DomainController

ServerNane : E@2
DnsHostName : EB2.1T-Visions.local
Site : Defau First—Site
i : IT-Visions.local
DN : CN=E@2,0U0=Donain Controllers.DC=IT-Uisions,DC=local
GlobalCatalog : True

28 ping—host wuww.IT-Visions.de

Pinging www._it-vizions. with 32 hytes of data:
Reply from 195.234.228.60 hyte tine=16ns
Reply from 195.234_228 .60 hyte time=15ns
Reply from 195.234.228.60 hyte time=16ms T
Reply from 195.234_228.60 hyte time=15ns

Ping statistics for wwu.it-visjons.de:
Packets: Sent = 4 Received = 4 (Bx loss)
fipproximate round trip time: min = 15ms, max = 16ms, avg = 1G5ns

TIHSHIMOJ SMOGNI| HLIM SdILS 1S¥I{ °|

Figure 1.13 Testing Get-DomainController and Ping-Host

Downloading and Installing the PowerShellPlus

Unfortunately, Microsoft does not provide a script editor for WPS yet.
However, a few third-party editors support WPS (see Chapter 9,
“PowerShell Tools”). Throughout this book, we use PowerShellPlus Editor,
which is free for noncommercial use.

A previous editor called PowerShell IDE from the same author was
free even for commercial use. However, PowerShell IDE never made it to
a final release and was discontinued.

The PowerShellPlus Editor is part of PowerShellPlus. PowerShellPlus
consists of the editor and a console that provides IntelliSense while using
the PowerShell interactively.

POWERSHELLPLUS WEBSITE www.powershell.com

PowerShellPlus does not need any setup. It is a true .NET application
with XCopy deployment. You just unpack the ZIP file to the directory of
your choice and start the PowerShellPlus.exe that is part of the
package.

www.powershell.com

20

CHAPTER 1

FIRST STEPS WITH WINDOWS POWERSHELL

Testing the PowerShell Editor

The PowerShellPlus has, according to the WPS console, two modes: an
interactive mode and a script mode (see Figure 1.14). After starting the
PowerShellPlus, you will see the interactive mode. You can use any com-
mandlet (or pipeline). When you press Return, the commandlet is exe-
cuted, and the result displays in the same window. The handy feature is the
IntelliSense. If you enter Get-P, you will see a drop-down list of the avail-

able commandlets that start with these letters.

3 PowershellPlus [PowerShell - hs [elevated user] - H:\demo\WPS] Commercial use requires a license

fle Edt View Tooks Settings Help
i & cmd History | [Z]minmode | [Code Editor

Al RE
® Warning: Elevated Privileges Enabled

£ Free for non-commercial use. Commercial use requires 3 license. Please click here to find out more.

: PouerShellPlus Host
1.8

.0.8
86dc3-049c—4cB1-8d0c—45ca?412239a
tem.Management .Automation.Internal.Host.InternalHostUserInterface

urrentCulture DE

urrentUICulture : en—US

[PrivateData * SrtBGj4.NeoBy9RP4+cI0xU.NAIUIENL jgHOBSUx

B Get-MountPaint

& Get-Networkadapter

ER)Get-PagecHelp.pst

& Get-PEHeader

& Get-PFxCertificate

& Get-Pipelinelnfa

& Get-PaintingDevice
4[] & cet-priviege

B Get-Pracessar

=10l

Pl ariabies 3 ox

$ConsoleFileName
7 $DebugPreference

e s

T fAsTaRFEnansinn [PSOhie L
4

= Y-
Name [value [Description -
g1} Clear-Host
gr True Execution status of la
frgn Clear-Host o
s (Nothing)
77 §_PsoxCdBackward... (PSObject)
$_PsoxCdForwardst., | (PSObject]
$_PsoDebugBreak... | True
$_PsoDebugSkipCa, | 0
$_PsoPrafileRanOn... (Nothing)
$a System.Obj..,
¥ $args (Nothing)
i sb System.Obj..,
¥ $ConfirmPreference High Dictates when confirt

Name of the current ¢
SilentlyCont... | Dictates action taken

-

] Introduction

Feature Overview
wskallation Requirements
“.[E] Licensing

Welcome to PowerShell Plus!

PowerShell Plus is 3 PowerShell Development Environment a5 well as an interactive
console for every-day use. With this document, we start to document the rich
PowerShell Plus feature set. Documentation is by far not completed. To check for
updated documentation, visit the following link:

http://documer psplu om.

® Feature Overview
@ Installation Requirements
® Licensing

There are many waus how vou can sunnnrt us if vou like what we do:

i\ 7] U\Iil\ i Quickdit S 1-Cickgde (]| @ | 2 -| k) @ -| mawaysonTap

El Misc

Attrbutes (Callection)
Description Execution status of last commans
Hame ?
Cptions ReadOnly, Allscope
PSDrive variable
PslsContainer False
PSPath Microsoft.PowerShell.Core'\Variab
PProvider Microsoft.PowerShell.Core'\Yariab
Value True

Name

Figure 1.14 WPS IDE in interactive mode

To use the PowerShellPlus in script mode, click Code Editor and cre-
ate a new script file (New/PowerShell Script) or open an existing script PS1
file (Open). Now open the script file CreateUser.ps1 that you created
earlier. You will see line numbers, and you will encounter the same
IntelliSense features that you have in interactive mode. To run the script,

TESTING THE POWERSHELL EDITOR 21

click the Run symbol in the toolbar (see Figure 1.15). The result will dis-
play in the interactive Windows in the background.

WARNING Make sure the user account does not exist before running the
script. Otherwise the script will fail with the error “The account already exists.”

=2 Power SheBPlus [PowerShell - hs [elevated user] - 1t dema’\WPS] Commercial use requires o fcense E B (= 5
Ble [t Yew Took ettngs b
i " o Pistory MNM -2l R
© ario Geses e i - I
: : = B -
=1 [Hame [vatue] Besoiption =1l
B ClearHast |
e H S e e B Permwes ShellPlus Edece —

Ewecution | Edt View Snippeb

T Srep Over I,! ,-: ?g_g”;;; -Uu = "‘H

Step Ot 1o Cunsor
o i B hew M

]

Runy

Lxscuttion DebuggerOption: | | reakpaints || Argumerts

Efcreatetserps® x ([
1B #08 Povers
Ui cre

0] =

£. Holger Schvichtenberg™
s = *HolgerSehuichtenberg™
! "Author of this book / Uebaite: Uindows-Scripeing.com”
B| $Pasaword = “secret+123”
$Computer = ~localhoat”

- 10
i 11| "reacing Uzer on Computer §Compuzer®
ot b
13| # Access to Container uaing fhracy TActive Directory Service Interie
14| §Contatmer = [ADSI] "UARNT://SC e

JCreate {Tusee™, JAccountname)

", Hame)

Tion”, §bescripeion)

$Passvord)

Figure 1.15 WPS IDE in script mode

Another great feature is debugging. Place the cursor on any line in
your script and click the Debugging icon. Next, go to any line and press F9.
This creates a red circle next to that line, called a breakpoint. Now run the
script. You will see the PowerShellPlus Editor executing the script in slow
motion, marking the current line yellow and stopping at the line with the
breakpoint (see Figure 1.16). In the Variables Inspector window, you can
inspect the current value of all variables. In the interactive window, you
can type any WPS command that will be executed within the current con-
text. That is, you can interactively access all script variables. To continue
the script, press F8 or click the Continue icon in the toolbar.

—
==
=
7]
-
v
—
m
-4
v
=
=
=
H
=4
(=)
=
v
)
o
=
m
=
wv
=
m
=
=

22 CHAPTER 1 FIRST STEPS WITH WINDOWS POWERSHELL

(- H = om B FawershelPlus Ldtor —rEE|
o) for view Soppes

Pase “Asup 'lumm. & % neto 510 e cm o

e o =EnE|
. | Contine S50 0t B 1o Crsor i o < . | A X

DebeggerOptions [+ Breabpaity | Argumenty

1w]) | =

3 2t ok / Website: Vindows-Scripting.com”
“secrec+123"
=lgealkost™

mereating User on Computer {Computer=

3| 8 ac
Concainer

[0 OperatingSysteniversion
5 Owner
 Proceiser

Fl SrocmirC i

Author of this book / Website: Windows-Scripting.com
Hame O, Holger Schavichtenberg
ohilser System.DirectoryServices DirectoryEnkry

] secrets 123

Script i e, Praes 20 step, FS 1o cortirum or R0 i cancel

Figure 1.16 Script debugging with the WPS IDE

Code snippets are also a nice feature of the PowerShellPlus. In a script
file, click Snippet/Insert on the toolbar or select Insert Snippet in the con-
text menu in the main Editor window. You will be able to select a snippet.
You can create you own snippets with the PowerShellPlus (via Snippets/
New on the toolbar).

Summary

Windows PowerShell is a new .NET-based environment for scripting and
is an interactive command-line shell. WPS is an optional feature on
Windows Server 2008 and an add-on for Windows XP, Vista, and Server
2008. Commands in WPS are called commandlets. The PSCX extends
WPS with additional commandlets.

SUMMARY 23

The PowerShellPlus is an alternative shell for WPS commands and an
editor for WPS scripts.

In the next chapter, you learn much more about commandlets and
pipelines. You also learn how to get help if you are seeking a command or
the available options for a commandlet.

—
==
=
7]
-
wv
—
m
-4
v
=
=1
=
H
=4
(=]
=
v
S
=
m
=
wv
=
m
=
=

This page intentionally left blank

COMMANDLETS

In this chapter:

Intfroducing Commandlets 25
Aliases . . .o 29
Expressions 32
External Commands 33
Gefting Help 35

Commands in Windows PowerShell (WPS) are called commandlets. This
chapter introduces the concept of commandlets and discusses their com-
mon parameters. It also covers aliases and the available options for getting

help.

Introducing Commandlets

A regular WPS command is called commandlet (cmdlet) or function. In
this chapter, we first deal only with commandlets. A function offers an
opportunity to create a command in WPS itself. Because the differences
between commandlets and functions are partly academic from a user point
of view, there will be no differentiation at this point.

A commandlet usually consists of three parts:

1. A verb
2. A noun
3. An (optional) parameter list

25

26

CHAPTER 2 COMMANDLETS

The verb and noun are separated by a hyphen (-), the optional param-
eters by spaces. Thus, the following composition is created:

Verb-noun [-parameter list]

The use of upper- or lowercase is irrelevant in commandlet names.
A simple example without parameters is the following;

Get-Process

This command retrieves a list of all processes.

TIP You can use tab completion in the WPS console with commandlets, when
the verb and hyphen have already been typed in (for example, Export-Tab).
You can also use placeholders. Entering Get-2?e* and pressing Tab will show
you Get-Help Tab Get-Member Tab Get-Service.

Parameters

Entering one parameter will get you only those processes whose names
match the entered pattern:
Get-Process i*

Another example for a command with parameter is the following:

Get-ChildItem c:\Documents

Get-ChildItem lists all branches of the indicated object
(c\Documents), in this case all files and directories listed below this file.

Parameters are regarded as a string, even when they are not explicitly
marked by quotation marks. Quotation marks are optional. Quotation
marks are mandatory only in case of a blank within a parameter itself,
because a blank serves as delimiter between parameters:

Get-ChildItem "C:\Program Files"

INTRODUCING COMMANDLETS 27

All commandlets have numerous parameters, differentiated by their
names. In case no parameter names are indicated, predefined standard
properties are used (that is, the sequence is essential):

Get-ChildItem C:\temp *.doc
means the same as
Get-ChildItem -Path C:\temp -Filter *.doc

If a commandlet has more than one parameter, either the sequence of
the parameters is decisive or the user has to indicate the names of the
parameters, too. All the following commands have the same meaning:

Get-ChildItem C:\temp *.doc
Get-ChildItem -Path C:\temp -Filter *.doc
Get-ChildItem -Filter *.doc -Path C:\temp
When indicating parameter names, you can change their sequence:

Get-ChildItem -Filter *.doc -Path C:\temp

The following, however, is wrong, because the parameters are not
named and the sequence is incorrect:

N
:
n
=)
=
=
>
=
=]
=3
m
=
wv

Get-ChildItem *.doc C:\temp

Switches are parameters without any value. Using the parameter name
activates the function (for example, the recursive run through a data file
branch with —-recurse):

Get-ChildItem h:\demo\powershell -recurse

Calculated Parameters

Parameters can be calculated (for example, combined out of substrings and
merged by a plus sign). (This makes sense especially in connection with
variables, which are discussed later in this book.)

28

CHAPTER 2 COMMANDLETS

The following syntax does not deliver the desired result, because here
the delimiter before and after the + is a parameter delimiter at the same
time:

Get-ChildItem "c:\" + "Windows" *.dll -Recurse

However, it also doesn’t work without the two delimiters before and
after the +. In this case, parentheses have to be used to ensure that the cal-
culation is carried out first:

Get-ChildItem ("c:\" + "Windows") *.dll -Recurse

Another example follows demonstrating the calculation of numbers.
The following command results in the process with the ID 2900:

Get-Process -id (2800+100)

More Examples
The following shows those system services whose names don't start with
the letters K to Z:

Get-Service -exclude "[k-z]*"

Commandlet parameters may also limit (filter) the output. The follow-
ing command delivers only directory entries of type user of a certain
Active Directory path (the example presupposes the installation of PSCX).

Get-ADObject -dis "LDAP://E02/ou=Management,dc=IT-Visions,
wdc=de"-class user

TIP Tab completion also works with parameters. Try the following input at the
WPS console:

Get-ChildItem -Tab

ALIASES 29

Placeholders

Often, placeholders (wildcards) are allowed in parameters. You get a list of
all processes starting with the letter I as follows:

Get-Process i*

Other Aspects of Commandlets

Note that nouns used in commandlets are always used in the singular, even
when a number of objects are asked for. However, the result doesn’t always
have to be a number of objects. For example, when entering

Get-Location
you get only one object with the recent path. With
Set-Location c:\windows

you change the recent path. This operation doesn’t have any results.

NOTE The case of commandlet and parameter names (uppercase or lowercase)

N
:
n
=)
=
=
>
=
=]
=3
m
=
wv

is irrelevant.

When started, WPS creates a process. All commandlets run within this
process. This is difference from the classic Windows command shell,
where executable files (. exe) run in separate processes.

Aliases

By using so-called aliases, you can shorten what you have to type for com-
mandlets. For example, the aliases ps (for Get-Process) and help (for
Get-Help) are predefined. Instead of Get-Process 1i*, you can also
write ps i*.

Enumerating Aliases

With Get-Alias (or the relevant alias aliases), you receive a list of all
predefined abbreviations in the form of instances of the class System.
Management .Automation.AliasInfo.

30

CHAPTER 2 COMMANDLETS

When you add a name to Get-Alias, you receive the meaning of
the alias:

Get-Alias pgs

However, if you want to know all aliases of a commandlet, you have to
write the following:

Get-Alias | Where-Object { $_.definition -eq "get-process" }

Here you need to use a pipeline, which we discuss in detail in the next
chapter.

Create a New Alias

The user can define a new alias with Set-aAlias or New-aAlias. For
example

Set-Alias procs Get-Process
New-Alias procs Get-Process

The difference between Set-alias and New-Alias is marginal: New-
Alias creates a new alias and delivers a failure, when the alias to be cre-
ated already exists. Set-Alias creates a new alias or overwrites an alias
when the alias to be created already exists. You can use the parameter
-description to create relevant description text.

You can use aliases not only for commandlets, but also for classical
applications, such as the following:

Set-Alias np notepad.exe

WARNING When you create a new alias, the system does not check whether
the respective commandlet or application exists. The failure will not appear until
you call the new alias.

You cannot place any values on parameters via alias definitions. For
example, if you want to define that the entering of Temp executes the

ALIASES 31

action Get-ChildItem c:\Temp, you need a function to do so. This
doesn’t work with an alias.

Function Temp { get-childitem c:\temp }

Later on, we discuss functions in detail (see Chapter 7, “PowerShell
Scripts”). WPS contains numerous predefined functions (for example, c:,
d:, e:, mkdir, and help).

The newly defined aliases are valid only for the recent instance of the
WPS console. You can, however, export your own alias definitions with
Export-Alias and import them later with Import-aAlias (see Table
2.1). As storage formats, the CSV format and the WPS script file format
(PS1, see later chapters) are available. When you use the PS1 format, you
must choose the script with dot sourcing to reimport your file.

Table 2.1 Importing and Exporting CSV

Save

Load

File Format CSV File Format PS1
Export-Alias Export-Alias c:\meinealias.psl
c:\meinealias.csv -as script

Import-Alias
c:\meinealias.csv . c:\meinealias.psl

The number of aliases is, as standard, limited to 4,096. You can change
this by using the variable $MaximumaAliasCount.
Aliases are also defined as features. Instead of

Get-Process processname, workingset
you can also write
Get-Process name, ws

These aliases are defined in the file types.pslxml in the installation
dictionary of WPS (see Figure 2.1).

N
n
=)
=
=
>
=
=)
=3
m
=
wv

32 CHAPTER 2 COMMANDLETS

B types.psixml - Notepad

Fle Edt Format View Help
<Type> =
<Name>| /Names
<Members>
<Memberset>
<NamespPsstandardvembers</Names
<Members>
<NOTEProperty>
<Name>serializationpepth</Name>
<valuesl</value>
</NoTeProperty> J
<Propertysety
<NamE>DEFau'ItD1sp'\ayPrUpErtySet</Name>
<referencedpPropert
<Name>Id</Names>
<Mame>Hand] es </Mame>
<Name>CPU</Name>
<Nama>Name</Name>
</ReferencedProperties>
</Propertyset>
</Member s>
</Memberset>
<Propertysets
<Name>PsConfiguration</Name>
<Referencedrroperties>
<Name>Name</Name>
<Name>Id</Name>
<Name>PriorityClass</Name>
<Name>FiTeversion</Name>
</ReferencedProperties>
</Propertysat>
<Propertysets
<Name>PSResources</Name>
<peferencedrroperties>
<Name>Name</Name>
<Name>Id</Name>
<Name>Hand]ecount</Name>
<Name>workingset</Name>
<Name>NonPagedMemorysize</Name>
<Name>Pagedilemorysize</Name>
<Name>PrivateMemorysize</Name>
<Name>VirtualMemorysize</Name>
<Name>Threads.count</Name>
<Name>TotalProcessorTime</Names
</ReferencedProperties>
</Propertysats>
<aliasPropertys>
<Name>Nama</Name>
<referencedvembername>Processname</Referencedvember name>
</aliasProperty>
<AliasProperty>
<Name>Hand1es</Name>
<referencedvembername>HandTlecount </Referencedvember Name>
</AliasProparty>
<aliasProperty>
<Name>VM</Name>
<preferancedvembername>virtualmemorysize</Referencedmembernames>
</AliasProparty>
<AliasProperty>
<Name>ws</Name>
<peferancedmembernama>work ingset </Refer encedmembarnames
</AliasProperty>
<aliasProparty>
<NamesPM</Names
<referencedvemberNames>Pagedmemorysize</rRefer encedvember Names
</AliasProparty>
<aliasPropertys>
<Name>NPM</Name>
<Refereancedvembername>Nonpagedsystemmemorysize</Referencedmembarnames>
</aliasProperty>
<ScriptProperty>
<Names>Path</Names>
<GetscriptBlock>$this.mainmodule. FileName</GetscriptBlocks =

Figure 2.1 The content of the predefined file types.ps1xml

Expressions

Single WPS commands may also consist of (mathematical) expressions,
such as the following:

10* (8 + 6)
or

n Hello " n n + "WOIld"

EXTERNAL COMMANDS 33

Microsoft calls this the expression mode of WPS, in contrast to the
command mode, which is used when you write the following:

Write-Output 10* (8 + 6)

WPS knows two command-processing modes: command mode and
expression mode. In command mode, all input is treated as a string. In
expression mode, numbers and operations are processed. You may mix
command mode and expression mode.

You can integrate an expression in a command by using parentheses.
Furthermore, a pipeline can start with an expression. Table 2.2 shows dif-
ferent examples of expressions.

Table 2.2 Expressions in WPS

Example Meaning

2+3 It’s an expression. WPS executes the calculation and
writes 5.

echo 2+3 It’s a pure command. 2+3 is regarded as a string and is
shown without result on the screen.

echo (2+3) It's a command with an integrated expression; 5 appears
on the screen.

2+3 | echo It’s a pipeline starting with an expression. The screen
shows 5.

echo 2+3 | 7+6 It’s an invalid entry. An expression may be used only as

the first element of a pipeline.

$a = Get-Process It’s an expression with an integrated command. The result
is directed to a variable.

$a | Get-Process It’s a pipeline starting with an expression. The content of
$a is passed on to Get-Process as parameter.

Get-Process | It’s an invalid entry. An expression may be used only as
the first element of a pipeline.

External Commands

All entries that are not recognized as commandlets or mathematical for-
mulas are treated as external applications. Classic command lines (such
as ping.exe, ipconflg. exe, and netstat.exe) can be executed, as can
Windows applications.

N
n
=)
=
=
>
=
=)
=3
m
=
wv

34

CHAPTER 2 COMMANDLETS

The entry of c:\wWindows\Notepad.exe is thus possible to start the
“popular” Windows Editor. Likewise, Windows Script WSH scripts may be
started from WPS.

Figure 2.2 shows the call of netstat. exe. At first, the output remains
unfiltered. In the second example, the commandlet Select-String has
also been implemented. As a result, only those lines are shown that contain
the term LDAP,

4t netstat
Active Connections

Local Address Foreign Adde tate

5
eB1:1878 192.168.1.25:182 ESTABLISHED
efl: 65.55.5_84:https ESTABLISHED
efl: EB2:1dap CLOSE_MAIT
efl: EBA2:1dap CLOSE_UAIT
edl EB2:1dap CLOSE_MAIT
efl:58 nf—-in—f9? .google .com:http CLOSE_UAIT

efl: EB2:1dap CLOSE_MAIT
edl: EB2:1dap CLOSE_WAIT
efl: EB2:1dap CLOSE_MAIT

Figure 2.2 Execution of netstat

WARNING Sometimes an internal command of WPS (commandlet, alias, or
function) will have the same name as an external command. In such a case,
WPS does not warn you of this ambiguity. Instead, it executes the command
according to the following preferences, in order:

1. Aliases

2. Functions

3. Commandlets

4. External commands

Filenames

According to Windows settings in the registry, the standard application
gets started and the document is downloaded when file paths are entered.
Filenames have to be marked by quotation marks only when they contain

blanks.

GETTING HELP 35

Getting Help

Knowing how to get help is of primary importance when you begin using
new software. This section describes the help functions included in the
WPS console and external help files, too.

Getting a list of Available Commands

To get a list of all available commandlets, enter the following:
Get-Command
Patterns are also valid:

m Get-Command get-* delivers all commands starting with get.

m Get-Command [gs]et-* delivers all commands starting with get
or set.

m Get-Command *-Service delivers all commands containing the
noun Service.

m Get-Command -noun Service also delivers all commands contain-
ing the noun Service.

N
n
=)
=
=
>
=
=)
=3
m
=
wv

You can also use the commandlet Get-Command to gather information
about what WPS regards as a command. Get-Command searches in com-
mandlet names, aliases, functions, script files, and executable files (see
Figure 2.3).

If you write the name of an . exe file after Get-Command, WPS shows
the path where you can find the executable file. The search takes place only
in paths that are included in the environment variable $Path%.

The following command shows a list of all directly callable executable

files:

Get-Command *.exe

Getting Commandlet Help

You can request help text about a specific commandlet with Get-Help
commandletname (for example, Get-Help Get-Process; see Figure 2.4).

36

CHAPTER 2 COMMANDLETS

20 PoSh C:\WINDOWS\system32\windowspowershell\v

751 Get—Command

fipplication
Application

?7?8# Get—Conmmand

ExternalScript
Cmd let
Cndlet
Cmd let
Cndlet
ExternalScript

(EL]

ps

Hotepad.exe

Hane
notepad.exe
notepad.exe

[+

Set—Acl

Set—Alias
Set—AuthenticodeSignature
Set—Breakpoint
Set—Cliphoard
Set—Content
Set—Date
Set—ExecutionPolicy
Set—FileTime
Set—Foregroundiindow
Set—Item
Set—ItenProperty
Set—Location
Set—Privilege
Set—PSDebug
Set—ReadOnly.psi
Set—Service
Set-TraceSource
Set—Variable
Set—VoluneLahel
Set—Uritabhle.psl

Definition

Get—Process

Definition

C:S\UINDOUSsnotepad.exe

C:AUINDOUS s ysten3d2 notepad.exe

Set—Acl [-Pathl <{Stringll1> [
Set—fAlias [-MNamel {String’
Set—AuthenticodeSignature [—
paran{[scripthlock] %condit

Set—Cliphoard [-Text {String...
Set—Content [-Pathl {Stringl...
Set—Date [-Datel {(DateTime> ...
Set—ExecutionPolicy [-Execut...
Set—-FileTime [-Pathl {String...
Set—ForegroundWindow [[-Hand...
Set—Item [-Pathl <{Stringl[l1> ...
Set—ItenProperty [-Pathl <{St...
Set—Location [[-Pathl {Strin...

Set—Privilege [-Privileges] .
Set—PSDebug [-Trace {Int322>]
C:“\Progranne“PowverShell Comn
Set—Service [-Namel {String

Set—TraceSource [Namel {Str

Set—Variabhle [-Namel {String
Set—VoluneLabhel [[-Pathl <{St.

C:xProgranne“PoverShell Conm...

Figure 2.3 Example for the use of Get-Command

By using the parameters —-detailed and -full, you can get more
help. On the other hand, Get-Help get lists all commandlets that use the
verb get. Help text language is based on the installed language version of
WPS.

TIP Alternatively to calling Get-Help, you can also add the general parameter
-2 to the commandlet (for example, Get-Process -?). If you do so, you get
a short version of help, but no option for the more detailed versions.

GETTING HELP :;;’

[=] lows PowerShell

PS B:\> get—help get-process ! out—host —p

NAHE
Get—Process

SYNOPSIS
Gets a list of processes on a machine.

DETAILED DESCRIPTION
get-process Cndlet gets a list of the process running on a machine and
dl.play“ it to the console along with the process properties.

This conmand also supports the ubiguitous paraneters:
-Dehuy ¢~db3, -Errorfiction {—ea), -Errorlariable (—eu)
—OutBuffer (-oh>, —OutUariable (-ou), and —Uerbose C(-ub).

To learn more see help about_ubiquitous_parameters.

USAGE
Get—Process [[-Namel <{8ystem.String[1>1 [-Uerhose [{8ystem.Boolean>11 [-Deh
ug [{System.Boolean>11 [-ErrorfAction <ActionPreference>] [-Errorlariable <8
ystem.String>] [-OutVariable <System.String>] [-OutBuffer <System.Int32>]

Get—Process —Id <System.Int32[1> [-Uerhose [<System.Boolean>11 [-Dehug [<Sy
stem.Boolean>11 [~Errorfiction <ActionPreference>] [—Errorlariable <System.§
tring>]1 [-Outlariable <System.String>] [-OutBuffer <System.Int32>1

Get—Process —InputObject <Systen.Diagnostics.Process[1> [-Uerbose [{Systen.
Boolean>1] [-Dehug [{System.Boolean>1] [-Errorfiction <ActionPreference>] [—
Errorlariable <Systen.String>] [-OutUariable <Systen.String>] [-OutBuffer <
System.Int32>1

PARANETERS
~Hame <System.String[1>
The name of the process

Parameter required? false
Parameter position?

Parameter type System.Stringl1
Default value Hull

ficcept multiple values? erue

Accepts pipeline input? true (ByPropertyName)
ficcepts wildcard characters? false

~InputOhject <SystemDiagnostics.Process[1>
The object on which to act

Paraneter required?
Paraneter position?
Paraneter tupe

true
naned
System.Diagnostics.Process(]

Default value

Accept multiple values? true

Accepts pipeline input? true (Bylalue)
Accepts wildcard characters? false

<System.Int32[1>
The Id number of the process

Paraneter required? true
Parameter position?
Parameter type

named
System.Int32[1
Default value nu

ficcept multiple values? true

Accepts pipeline input? true (ByPropertyName>
ficcepts wildcard characters? false

INPUT TYPE
PSObject

RETURN TYPE
Ohject

Figure 2.4 Clipping from help text referring to the commandlet Get -Process

A graphic help file for WPS in CHM file format has been available
since the end of May 2007 (half a year after the official launch of WPS 1.0)

as a separate download at Microsoft.com. [MSO01]

N
~n
(=]
=
=
>
=
=
-
m
=
7

38 CHAPTER 2 COMMANDLETS

ol
Hide

indows PowerShell Help

- & [

Back Prnt Options

=1olx|

Contents | Search |

[5] Windows PowerShel Graphical Help Filea
(2] About Topics
5 &3 Cdet Help

Clear{tem
Clear-ltemProperty
Clearariable
Compare-Object
ConvertFrom-SecureSting
Convert-Path
ConvertTo-HTML
ConventTo-SecureSting
Copy-tem
Copy-temProperty

GetEventlog
GetExecutionPolicy
GetHelp
GetHistory
GetHost

Getltem
GetltemProperty
GetLocation
GetMember

bR arkfinte &
| >

Get-Childltem

Additional Resources for Get-Childltem

Replicating (and Extending) the DIR Command
http:/fanww microsoft com/technet/scrij iter/topics/msh/ /get-

childitem.mspx

SYNOPSIS
Gets the items and child items in one or more specified locations.

SYNTAX
Get-Childlitem [[-path] <string[]=] [[-filter] <string>] [-include <string[]=] [-
exclude <string[]>] [-name] [-recurse] [-force] [<CommaonParameters>]

Get-Childitem [iteralPath] <string[] [[-filter] <string>] [-includs <string[]>] [-
exclude <string[]>] [-name] [-recurse] [force] [<CommonParameters>]

DETAILED DESCRIPTION

The Get-Childitem cmdlst gets the items in one or more specified locations. If
the item is a container, it gets the items inside the container, known as child
items. You can use the Recurse parameter to get items in all child containers
A location can be a file system location, such as a directory, or a location
exposed by another provider, such as a registry hive or a certificate store.

PARAMETERS

-path <string[]>
Specifies a path to one or more locations. Wildcards are permitted. The

Get-AuthenticadeSignature

Get-Childitem default location is the current directary ().

Get-Command

Get-Content | Required? false
¥ Paosition? 1

Default value <NOTE: if not specified uses the
Current location=>
Accept pipeline input? true (ByValue, ByPropertyName)

Accept wildcard characters? true

-include <string[]>

Retrieves only the specified items. The value of this parameter qualifies the
Path parameter. Enter a path element or pattern, such as ™ txt". Wildcards
are permitted.

The Include parameter is effective only when the command includes the
Recurse parameter or the path leads to the contents of a directory, such as
C:\Windows*, where the wildcard character specifies the contents of the C:\ =l

Figure 2.5 Help file for WPS

This CHM also contains advice about the manual transfer of VBScript
code to WPS (see Figure 2.6).

Documentation of .NET Classes

For more information about. NET classes with which WPS works, check
out the following resources:

m WPS documentation for the namespace System.Management.
Automation

m NET Framework software development kit or Windows software
development kit for NET 3.5 or Visual Studio 2008.

GETTING HELP 39

m Product-specific documentation (for example, Exchange Server
2007 documentation)

E? Windows PowerShell Help E o [=] 53]
< & O

Hide Back. Piint Options

[
Contents | Search
|seece] Date

[E] Windows PowerShel Graphical Help File =
(21 About Topics
(3 Cmdlet Help
(1 &3 VBScript to PawerShel

Definition: Returns the curent system date.

[Abs In VBScript you can use the Date function to assign the current date (and only
E] Addition the current date, not the current time as well) to a variable. In Windows

[E] And PowerShell you can do the same thing by calling the Get-Date Cmdlet and
5] Away using the —formaitd (for date) parameter. For example, this command assigns
5] Ase the curent date to the variable $a:

[£] Assignment
% E:‘ $a = get-date -format d
=] CBool
% CByte LI When you run this command and then echo back the value of $a you should
[] cowr back something similar to this:

[coate
[£1 cowl 9/1/2006
[E cnr

[5 cint

[5] Class

£] Clear

[E] cLra

[] Concatenation

[£] CreateDbject
=] CSng

B

[5] DateAdd
[5] DateDiff
[E] DatePart
[] DateSerial
E] DateValue
[£] Day

[5] Default
[£] Description
=] Dim

[£] Division
B oo

51 Eqv

[E] Erase

[E] Escape

[E] Eval
[£] Everute
121 Fuer tafiinh=l | Plﬂ

N
:
n
=)
=
=
>
=
=]
=
m
=
wv

Figure 2.6 Help referring to the transfer of VBScript to WPS

The documentation shows the available class members (properties,
methods, events, constructors; see Figure 2.7).

NOTE Because the documentation concerning .NET classes has been written for
developers, it is often too detailed for WPS users. Unfortunately, there is cur-
rently no version in sight adapted to the needs of administrators.

40

CHAPTER 2 COMMANDLETS

Figure 2.7 shows the documentation of the class Process in the name-
space System.Diagnostics. In the left branch, you will recognize differ-

ent kinds of members: methods, properties, and events.

isual Studio Ducument ation - Microsolt Document Explorer =1)
(O @ [A @ A | @ Howgor - Qgnorch [index @ Contents [T Help Favortes | [08 4 | %J aska Quostion) 4 o
Proress Membrrs | Search | - X
byt URL: irs-hae M5, VS, vB0/MS, MSCH. vB0/MS, NETDENF, v20. e cpred 6T T_System_Disgrrostics_Process_Meribers,bn -
J (i itered) = NET Framauark Clags Library
@ PerfcemanceCourtrrinmissonerirycol x| | Process Members
PufCeTARCOCLELATYDE Enumerofion S Al Constructors Evants Methuds Propertins
= Process Class
pacte h = Collapse All | =] Mambers Gotions: Shaw All o
Precess Construd 5 . - : =
Gets & stream used to write the input of the application.
B Petcass Vathecs & Standardineut P pp
BegnErrufieading Method - StandardOutout Gets & stream used to read the output of the appicativn,
BaginubputRead ing Mathod
Cancelirrorfiesd Method S0 statiale Gets or sals the praperties ta pass to the Start methad of
CancstCulputRiad Method the Process.
Closn Mothod
CloseMaWindow Mathod = RartTine Gels the lirme thal the assuciated process was started.
- Disrse Method
Erent - = ronizi Gets or sets the abject used to marshal the svent handier
oMo calls that are issued a5 & result of & process exit event.
GetCurrentProcess Method
- GalProgessByld Method -l Threads Giets the sek of thraads that are running in the assnciated
& GrtProcesses Mathod process.
- GetProcessestiyName Method - -
oot = r Gets th tatal processar time for this process
LeaveDebugMode Method " " : "
g = Userfrocassortime Gets the user processor time for this process.
Rfresh Helhond .
YirlyalMemerySize .
ot e Gets the size of the process's virtusl memory
Tatring Methed = VirtualMemorySizees Gets tha amount of the virtual memory allocated for the
- WakFurExd Mathod Ll associated process.
@ WakFor il Method
i m";:,“ e Workings: Gets the assaciated process's physical memory usaga.
Bl Process Everks
[Processnduds Clss - o WorkingSetia Gets the amount of physical memory sliocated for the
5 Procsssmadiecaiectin assucated process,
ProcessPriorityClass Enuneralion Top -~
@ ProcessStartinfo Class
- FrocessThresd Class - ;
B ProcaesThrasdcalacitn # Protected Properties
Procn: o Enumeration = ie Mathiod D A Mathod
i SourcaPher Clags = Public (see also Pr)
Sourcelevels Enuameralion
@ SnurenSwitch Class Hame Description
£ StodiFroms Crss > Beginkrrariesdling Beging read ions an the
B StackTrace Class strearm af the
B Stogmeatch Class
[Switch Class v peginQuinutReadiing Begins read ians on the
i Swikchiciribute Class StandardDutput stream of the apalicstion.
B Suchlavmialtrisia Class @ Cancelirroriasd Cancels the asynchroncus resd operation on the rediracted
@ TratWrinrTracel lsterer Class stream of an
ThreadPriomtyLevel Enumeration
ThesadStske Enieralion “ CanselDutputResd Cancels the asynchronous read operation on the redirected
Themadoaimasen Ere - streaem of an
« - o l o@ ol Frees all the resources that sre associsted with this
- — camponent,
i Conents | index | T]Helo Favantes =l
Ry &

Figure 2.7 Clipping from the documentation of the .NET class

System.Diagnostics.

Process

SUMMARY 41

Summary

A commandlet consists of a verb and noun separated by a hyphen.
Placeholders can be used and parameters can be calculated. You have also
learned that you can cut down on your typing by using aliases. A lot of
aliases are predefined, but you can define as many as you want.

You have also learned that you can start classic command-line tools and
Windows programs from the WPS console and that you can even use the
console as a calculator.

You have become familiar with the commandlet Get-Help, which is
one of the most important commandlets because it lists the contents of the
XML help files that are available for most commandlets.

N
:
n
=)
=
=
>
=
=]
=3
m
=
wv

This page intentionally left blank

PIPELINING

In this chapter:

Pipelining Basics 43
Pipeline Processor 47
Complex Pipelines 48
OUIPUL 49
Getting User Input 56

Windows PowerShell (WPS) shows its real power through its object-
oriented pipeline (that is, the passing of typed data from one commandlet
to another). The pipeline in WPS contains structured objects, and the WPS
provides a few commandlets for working with these objects, (for example,
filtering, sorting, and calculating).

Pipelining Basics

To create a pipeline, you use the vertical line (|), as you would in UNIX
shells and the normal Windows console.
The command

Get-Process | Format-List

means that the result of the Get-Process commandlets will be passed
on to the commandlet Format-List. The standard output form of Get-
Process is a table. When you use Format-List, the single properties of
the listed processes are written one beneath the other rather than in
columns.

43

44

CHAPTER 3 PIPELINING

Object Orientation

Object orientation is the outstanding feature of WPS: Commandlets can be
linked to other commandlets by pipelines. In contrast to pipelines in UNIX
shells, WPS commandlets do not exchange strings, but typed .NET
objects. Object-oriented pipelining is, in contrast to string-based pipelin-
ing, common in UNIX shells and the normal Windows shell (cmd. exe),
not dependent on the position of the information in the pipeline.

In a pipeline such as

Get-Process | Where-Object { $_.name -eqg "iexplore" } |
wFormat-Table ProcessName, WorkingSet

the third commandlet is therefore not dependent on a certain posi-
tioning and formatting of the previous commandlets, but has direct access
to the property of the objects via the so-called reflection mechanism (the
built-in inspection mechanism of the .NET Framework).

NOTE To be exact, Microsoft calls this procedure Extended Reflection or
Extended Type System (ETS), because WPS can add properties to obijects that
actually do not exist in the class definition.

Object Types and Data Members

In the preceding example Get-pProcess puts a .NET object of the type
System.Diagnostics.Process in the pipeline for each running process.
System.Diagnostics.Process is a class (alias type) from the .NET
Framework class library; commandlets, however, can place any .NET
object in the pipeline, even ordinary numbers or strings. As in .NET, there
is no differentiation between elementary types and classes. However, to
place a string in a pipeline will remain an exception, because the typed
access to objects is much more robust against possible changes than the
string evaluation with regular outputs.

The object-orientation approach becomes clearer when you use a
number rather than a string. WorkingSet64 is a numeric value of 64 bits
that represents the recent cost of a process. All processes that currently
need more than 20MB of RAM are listed with the following command:

Get-Process | Where-Object {$_.WorkingSet64 -gt 20*1024*1024 }

PIPELINING BASICS 45

Instead of 20%1024*1024, you could also use the code 20MB. And you
can shorten Where-Object with a question mark. The short version of the
command is as follows:

ps | ? {$_.ws -gt 20MB }

When only one commandlet is used, the result is shown on the screen.
When several commandlets are combined in a pipeline, the result of the
last commandlet of the pipeline is also written on the screen. When the last
commandlet doesn’t deliver any data to the pipeline, however, you will see
no result.

Executing Methods

The object pipeline has another advantage: According to the object-
oriented paradigm, .NET objects not only have properties, they also have
methods. Therefore, as a WPS user, you can also call the methods of
objects in a pipeline. Objects of the type System.Diagnostics.
process, for example, have a method ki1l (). In WPS, the call of this
method is nested in the method Stop-Process.

The following WPS pipeline command ends all instances of Internet
Explorer on your local system; the commandlet Stop-Process receives
the instances of the relevant process from Get-Process:

Get-Process iexplore | Stop-Process

If you are an expert in .NET Framework, you may as well call the
method directly. In this case, however, you need an explicit ForEach loop.
Commandlets iterate automatically over all pipeline objects, whereas
method calls don’t. Note that the parentheses after the method name ki1l
are mandatory. If you omit them, you get information about the method,
but the method will not be executed.

Get-Process iexplore | Foreach-Object { $_.Kill() }
To abbreviate this, you can also use WPS aliases:
ps | ? { $_.name -eqg "iexplore" } | % { $_.Kill() }

The application of the method Ki11 () was used only for demonstra-
tion purposes, to make clear that the pipeline really carries objects. In

46

CHAPTER 3 PIPELINING

practice, you could perform the same more easily with the integrated
Stop-Process.

However, this works well only when there are instances of Internet
Explorer. If all of them have already been closed, Get-Process reports a
failure, which might not be the desired behavior. With another pipeline,
however, this failure can be prevented:

Get-Process | Where-Object { $_.Name -eq "iexplore" }
= | Stop-Process

The second pipeline differs from the first. The filtering of the pro-
cesses from the process list are now not executed by the Get-Process, but
by a commandlet named Where-Object in the pipeline itself. where-
Object is more tolerant than Get-Process concerning the possibility that
there might not be an adequate object.

ps is an alias for Get-Process, Kill for Stop-Process. Further-
more, Get-Process has an integrated filter function. To end all instances
of Internet Explorer, you can either write

Get-Process | Where-Object { $_.Name -eg "iexplore" }
= | Stop-Process

or

ps -p "iexplore" | Kill

Pipelining of Parameters

The pipeline can carry all kinds of information—not only complex objects,
but also elementary data. Some commandlets support the fetching of
parameters out of the pipeline. The following pipeline command creates a
listing of all Windows system services starting with the letter I:

"i*" | Get-Service

Pipelining of Classic Command

Generally, you may as well use classic command-line applications in WPS.
When you execute a command such as netstat.exe or ping.exe, they
transfer a number of strings to the pipeline: Each line of output is an object
of type System.String.

PIPELINE PROCESSOR 47

You can analyze these strings with the commandlet Select-String.
Select-sString allows only those lines to pass the pipeline that match the
written regular expression (see Figure 3.1)

In the following example, only those lines of the expression of
netstat.exe will be filtered that have an uppercase E followed by two
numbers.

NOTE The syntax of regular expressions in .NET is not discussed in detail in
this book. You can find good documentation in [MSDNO8].

178 netstat

Active Connections

Local Address Foreign Adde State

efl:1878 192.168.1.25:182 ESTABLISHED
efl1:1142 65.55.5.84:https ESTABLISHED
efl:55908 EB2:1dap CLOSE_\WAIT
efl:5600 EB2:1dap CLOSE_\WAIT
efl:5858 nf-in—§f%%.google.com:http CLOSE_WUAIT

efl1:6233 EA2:1dap ESTABLISHED
TCP eBl:6266 EB4:1789 TIME_MAIT
18# netstat | select—string “Endhd" —case

efl1:5590 :ldap CLOSE WAIT
efl:5600 :ldap CLOSE_MnIT
efl1:6233 :ldap ESTABLISHED
eBl:6295 lopsngr TIME_MAIT

Figure 3.1 Use of select-string for the filtering of expressions of classical
command-line tools

Pipeline Processor

Responsible for the transfer of .NET objects to commandlets is the
PowerShell Pipeline Processor (see Figure 3.2). The commandlets them-
selves do not have to worry about either object transfer or parameter eval-
uation.

NOTE As you can see Figure 3.2, the commandlet next in line immediately
starts to work when it receives its first object from the pipeline. Sometimes, there-
fore, the first commandlet has not yet created all objects when the commandlets
next in line start processing the first objects. A commandlet is immediately called
as soon as the first object is ready.

48

CHAPTER 3 PIPELINING

get-service | Where-Object {$_.status -eq "running"} | out-file
[e] [elie]
ERSS EE
iz iz
g3 23

Commandlet #3
out-file

Commandlet #1
get-service

where-object

Commandlet #2" I

NET Objects of Type
System
ServiceProcess.
ServiceController

Storing

Output Pipeline
Output Pipeline

Input Pipeline
Input Pipeline

PowerShell Pipeline Processor

Figure 3.2 The PowerShell Pipeline Processor transfers objects from the
downstream commandlet to the upstream commandlet.

Complex Pipelines

Users can define the length of a pipeline (that is, the number of commands
in a single pipeline is unlimited). Here’s an example for a more complex
pipeline:

Get-ChildItem h:\Documents -r -filter *.doc
| Where-Object { $_.Length -gt 40000 }

| Select-Object Name, Length

| Sort-Object Length

| Format-List

Get-ChildItem identifies all Microsoft Word files in the directory
hA\Documents and its children. The second commandlet (Where-Object)
reduces the result to those objects where the property Length is greater
than 40000. Select-Object cuts all properties from Name and Length.
The fourth commandlet in the pipeline sorts the expression according to
the property Length. Finally, the last commandlet creates a list format.

The sequence of the single commands, however, is not optional. You
cannot, for example, put sorting after formatting in the preceding com-
mand; even though there is an object after the formatting, this object rep-
resents a text stream. Where-Object and Sort-Object could be
exchanged; for reasons of resource use, however, it is wiser to limit the out-
put first and sort the limited list after this.

OuTPUT 49

You can access all properties and methods of .NET objects that have
been placed by an earlier commandlet in the pipeline. Members of the
objects can be used either via parameters of the commandlets (for exam-
ple, in Sort-Object Length) or by an explicit reference to the recent
pipeline object ($_) in a loop or condition (for example, Where-Object {
$_.Length -gt 40000 }).

NOTE Not all sequences of commandlets make sense. Some sequences aren't
even valid. A commandlet may expect certain kinds of input objects. Therefore,
you should use commandlets that can process any kind of entry object.

Output

A regular commandlet should not create its own screen output, but should
put a number of objects in the pipeline. Only certain commandlets are pre-
defined to create an output, including the following:

m Out-Default Standard output according to WPS configuration
(DotNetTypes.Format.pslxml).

m Out-Host Same as Out-Default with additional option for

pagewise output.

out-Null Pipeline objects are not transferred.

Format-Wide Two-column list (see Figure 3.3)

Format-List Detailed list (see Figure 3.4)

Format-Table Table (see Figure 3.5)

NOTE Unfortunately, after the beta versions, Microsoft removed some com-
mandlets that offered an output on a higher abstraction level. Therefore, the fol-
lowing commandlets are not available in WPS 1.0:

Windows Forms data grid (Out-Grid)
Excel chart (Out-Excel)

E-mail (Out-Email)

Column diagram (Out-Chart)

However, Microsoft has announced that at least a commandlet named out-
Gridview will be available in WPS 2.0.

50

CHAPTER 3 PIPELINING

= windows PowerShell
:\> get—process | Format—uwide

FolderShare

IEXPLORE

inetinfo

Hatrox.PouverDesk SE
Hatrox.PouerDesk.Services

nuraidservice
powvershell
RohoScreenCapture
services

sgluriter

appngr
cidaemnon
cisve
csrss
daenon
devenu
dexplore
explorer
Idle
IEXPLORE
x.PoverDesk.PDeskNet
Hatrox.PouerDesk.Services
nnec
nsdtc
nstsc
HvHixerTray
OUTLOOK
rapingr
Rtuscan
ENSS
sglzerur
SPVCSUry
suchost
svchost
suchost
svchost
suchost
svchost
Systen
Virtual PC
ucesconn
winampa
UINUORD
uniprvse

get—process | Format-List

3452

82
8.83125
alg

528

186
8.846875
appngr

cidaenon
564

384
48,.296875
cisve

5868

23
B.815625
cm

712

out—host —-p

Figure 3.4 Format-List output

OuTPUT 51

1 windows Powershell y

PS B:\> get—process | Format-Tahle
NPHCEKD PHCKD US (K> UHCHD

AcroRd32Info
alg

appngr
cidaenon
cidaemon
cidaenon
cisuve

cnd

corss
ctfnon
daenon
Defllatch
devenu
devenv
dexplore
elenentngr
explorer
FolderShare
Idle
IEXPLORE
IEXPLORE
inetinfo

lsass

4
4
i

[X]
00 N (D 00 L O 00) L L

Hatrox
Hatrox
Hatrox
Hatrox

-PouverDesk SE

-PouerD o -

-PFoverD

‘PoverDesk.§. ..

ndn

nne

ngsve

nsdte

nsnnsgr
stse

Figure 3.5 Format-Table output

Standard Output

When you do not name a format function at the end of a pipeline, WPS
automatically uses the commandlet Out-Default. Out-Default uses a
predefined output standard that is stored in DotNetTypes.Format.
pslxml in the installation directory of WPS. There, you can get the infor-
mation that, for example, type System.Diagnostics.Process produces
an output in an eight-column table (see Figure 3.6).

Pagewise Output

Often, output is too long to be presented on one screen page. Some out-
put is even longer than the standard buffer of the WPS window (for exam-
ple, Get-Command | Get-Help). You enforce the pagewise output with
the parameter -p in the Out-Host commandlet. In this case, Out-Host
has to be written as follows:

Get-Command | Get-Help | Out-Host -p

52 CHAPTER 3 PIPELINING

[P DotNetTypes.Format.ps1xml - Notepad R = =] 53

Fle Edt Format View Help
<View> -
<Name>@</r\lame> B
<viewselectedBy>
<TypeName>System.Diagnostics. Procass</TypeName>
TypenamesDeserialized. System. Diagnostics. Process</TypeNamas
</ViewSelectedBy>
<Tablecontrols>
<TahbleHeaders>
<TablecalumnHeader >
<LabelsHandles</Labals
<width>7</width>
<alignment>right</Alignment>
</TableColumnHeader>
<TablecalumnHeader >
<Labels>NPMEK)</LabeTs
<width>7</width>
<Alignment>right</Alignment>
</TableColumnHeader>
<TablecalumnHeader >
<Label>Pm(K)</Label>
<width>8</width>
<alignment>right</Alignment>

</TablecolumnHeader>
<TablecolumnHeader >

<Label>ws(K)</Label>
<width>10</Mwidths
<alignment>right</Alignment>
</TablecolumnHeader>
<TablecolumnHeader >
<Label>wm(M)</Label>
<width>5</width>
<alignment>right</Alignment>
</TablecolumnHeader>
<TablecolumnHeader >
<Label>cPufs)</Labels>
<width>8</width>
<alignment>right</Alignment>
</TablecolumnHeader>
<TablecolumnHeader >
<widths>6</widths
<alignment>right</alignment>
</TablecolumnHeadars
<TableColumnHeader />
</TableHeaderss>
<TablerowEntries>
<TablerRowentry>
<TablecolumnItemss>
<TablecolumnItems>
<PropertyName>Hand]eCount</PropertyNames>
</TablecolumnItem>
<Tablecolumnitem>
«:Scr"iHJtEl'\Dck;['iﬂt](ﬁ_.NF‘M / 1024)</scriptBlocks
</TahleColumnItem>
<Tablecolumnitem:>
<scriptBlock>[int]($_.PM / 1024)</ScriptBlocks>
</Tab1ecuﬁlumn1tem>
<Tablecolumnitems>
<Scr1'HJtEl'\Dck>[‘int]($,.ws / 1024)</scriptBlocks
</TablecolumnItems>
<TablecolumnItem>
<scr1‘gta'\uck>[1‘nt]($,.vm / 1048576)</scriptBlock>
</TablecolumnItems
<TableColumnItems>
<scriptBlock>
if (§_.CPU -ne $€))

§_.cpu.Tostring("n")

</scriptelocks>
</TablecolumnItems>
<Tablecolumnitem>
<PropertyName>Id</PropertyNames |

Figure 3.6 Clipping from the description of the standard output for type

System.Diagnostics.Process in DotNetTypes.Format.pslxml

Restricting the Output

The output commands allow specifications of object properties to be pre-
sented. For example

Get-Process | Format-Table -p id,processname,workingset

OuTPUT 53

creates a table of processes with process ID, name of processes, and
use of space. Names of properties can also be abbreviated with placeholder
* as follows:

Get-Process Format-Table -p id,processn*,working*

NOTE You can get the same output when you use Select-Object:

Get-Process | Select-Object id, processname,
wyworkingset | Format-Table

Output of Single Values

To display specific text or the content of a variable, you just have to write
this on the console (see Figure 3.7). Alternatively, you can use the com-
mandlets Write-Host, Write-Warn, and Write-Error. The command-
lets write-warn and Write-Error create highlighted output.

With Write-Host, you can specify colors:

Write-Host "Hello Holger" -foregroundcolor red -backgroundcolor
wyhite

& powerShell - hs [elevated user]

Windows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

H: ~denosUPS
ift "Hello World"
Hello World
24t $x = "World"
3 "Hello ™ + $x
Hello World

5# Urite—Host "Hello $x™
ello World
6 Write—Warning "Hello 5x"
AR Hello World
st "Hello %$x" —ForegroundGolor red —BackgroundGolor white

Figure 3.7 Output of constants and variables

54

CHAPTER 3 PIPELINING

To mix literals and variables in an output, you must either link them
with +

Sa + " can be reached at " + Sb + ".
wThis information is dated: " + $c + "."

or integrate the variables directly in the string. In contrast to other lan-
guages, WPS evaluates the string and searches for he dollar sign ($) (vari-
able resolution):

"Sa can be reached at $b. This information is dated: $c."

You can also use placeholders and format markers common in .NET
(for example, d = date in the long version). In addition, include the param-
eter -f after the string. Based on the format possibilities, this option is the
most powerful:

"{0} can be reached at {1}.
wThis information is dated: {2:d}." -f Sa, S$b, Sc

The following list summarizes the three equivalent possibilities:
Sa = "Holger Schwichtenberg"

$b
Sc

"hs@windows-scripting.com"

get-Date

possibility 1
$a + " can be reached at " + S$b + ".
wThis information is dated: " + $c + "."

possibility 2
"Sa can be reached at $b. This information is dated: Sc."

possibility 3
"{0} can be reached at {1}.
wThis information is dated: {2:D}." -f $a, $b, Sc

OuTPUT 55

Listing 3.1 Formatted Output (of the preceding script)

Holger Schwichtenberg can be reached at hs@windows-scripting.com.
wThis information is dated: 14.09.2007 16:53:13.

Holger Schwichtenberg can be reached at hs@windows-scripting.com.
wThis information is dated: 14.09.2007 16:53:13.

Holger Schwichtenberg can be reached at hs@windows-scripting.com.
wThis information is dated: Thursday, 14. September 2007.

Suppressing the Output
Because the standard output is in place, all return values of commandlet
pipelines also display. This is not always desired.

You have three alternatives to suppress the output:

1. At the end of the pipeline, use out-Null:
Commandlet | Commandlet | Out-Null

2. Transfer the result of the pipeline to a variable:
$a = Commandlet | Commandlet

3. Convert the result of the pipeline to type [void]:
[void] (Commandlet | Commandlet)

Other Output Functions
The following list shows further output possibilities in WPS 1.0:

With the commandlet out-Printer, send the output to the printer.
With out file, you can write the content to a file.

Output the process list to the standard printer:

Get-Process | Out-Printer

Output the process list to a specific printer:

Get-Process | Out-Printer "HP LaserJet PCL6 on EO02"

Output the process list in a text file (overwriting existing content):
Get-Process | Out file "c:\temp\processlist.txt"

56 CHAPTER 3 PIPELINING

m Output the process list in a text file (adding to existing content):
Get-Process | Out file "c:\temp\processlist.txt"
-Append

Getting User Input

Text input by the user may be received via Read-Host:

PS C:\Documents\hs> S$name = read-host "Please enter username"
Please enter username: HS

PS C:\Documents\hs> Skennwort = read-host -assecurestring

w "Please enter password"

Please enter password: ***x*

Input Dialog

A simple input box is provided by the function InputBox () (see Listing 3.2
and Figure 3.8); you might already be familiar with this input box from
Visual Basic/VBScript. This function also exists in the NET Framework in
the class Microsoft.VisualBasic.Interaction. To use this function,
you must load the assembly Microsoft.vVisualBasic.d1ll. More details
about loading assemblies and executing .NET methods directly are cov-
ered in a later chapter.

Listing 3.2 Simple Graphic Data Input in WPS

[System.Reflection.Assembly] : : LoadWithPartialName

w ("Microsoft.Visual Basic")

Sinput = [Microsoft.Visual Basic.Interaction]::InputBox ("Please
wenter your name!")

"Hello Sinput!"

GETTING USER INPUT 57

Windows PowerShell
Copyright (C)> 2086 Hicrosoft Corporation. All rights reserved.

H: ~deno“UPS
1#f [System._Reflection._fAssemblyl::LoadWithPartialName ("Microsoft _UisualBasic")

Location

v2_@.58727 C:A\UINDOUSNassenblysGAC_HSIL\Hicrosoft UiszualBasic\8.8__.

2?"§input = [Microsoft.VisualBasic.Interactionl::InputBox{("Please enter your nan|
et

System.Management.Automation j

Flease enter your name!

Cancel

Holger 5 chwichtenberd

Figure 3.8 An input box in action

Dialog Boxes

To use dialog boxes, you can apply .NET classes. The script in Listing 3.3
asks the user for a decision within a dialog box (Yes/No).

Listing 3.3 Use of the Class MessageBox in WPS

[System.Reflection.Assembly] : : LoadWithPartialName

w ("System.windows.forms")

[System.Console] : :Beep (100, 50)

[System.Windows .Forms.MessageBox] : : Show("We will ask you a

question", "Advanced Warning", [System.Windows.Forms.MessageBoxKeys]::0K)

Sanswer = [System.Windows.Forms.MessageBox]::Show("Do you like
wijindows PowerShell?", "Headline",

w [System.Windows.Forms .MessageBoxKeys] : : YesNo)

if (Sanswer-eqg "Yes")

{ "You agreed!" }

else

{ "You disagreed!" }

58 CHAPTER 3 PIPELINING

Avuthentication Dialog Box

A Windows authentication dialog box opens WPS with Get-Credential
(see Figure 3.9). The result is an instance of System.Management.
Automation.PSCredential with the username in plain text in UserName
and the password coded in Password. In Chapter 14, “Processes and
Services,” you can see an example of how to use the entered credentials to
start a process with a different identity.

Windows PowerShell Credential Re

& powerShell - Holger Schwichtenbd @ i
VAL |
’1'| A

Please enter your credentials,

LUser name: Ig itvihs j J

Password: I sennenal

Cancel |

34
3% Get—Credential

cndlet Get—Credential at command pipeline position 1
Supply values for the following paraneters:
Credential

Figure 3.9 Use of Get-Credential

Summary

WPS commandlets can be connected through pipelines. One commandlet
places objects into the pipeline, and other commandlets can access these
objects. In contrast to classic shells, WPS pipelining is object oriented.
This means that WPS pipelines carry structured objects rather than
unstructured strings. Structured objects not only contain data, they also
provide methods that can be executed.

ADVANCED PIPELINING

In this chapter:

Analyzing Pipeline Content 59
Filtering Objects 70
Castrating Objects 73
Sorting Objectso 74
Grouping Objects 74
Caleulationso 76
Intermediate Steps in the Pipeline, 76
Comparing Objects 78
Ramifications 78

This chapter includes advanced Windows PowerShell (WPS) pipelining
features such as filtering, sorting, grouping, comparing, and calculating.
The chapter introduces a few commandlets that are commonly used (for
example, Where-Object, Sort-Object, Group-Object, and Get-
Member).

Analyzing Pipeline Content

One of the greatest challenges in working with WPS is to answer the fol-
lowing two questions:

1. Which type do the objects, which are placed in the pipeline by a

commandlet, have?
2. Which properties and methods do these objects have?

59

60

CHAPTER 4 ADVANCED PIPELINING

The commandlets’ help is not always “helpful” here. In Get-Service,
you can read the following:

RETURN TYPE
System. ServiceProcess.ServiceController

But in Get-Process, it is not much help; it says only this:

RETURN TYPE
Object

The WPS documentation ([MS01] and [MS02]) will not help you at all
with the properties and methods of the resulting objects. You will find
these only in the MSDN documentation about .NET Framework.

The following two helpful commandlets are introduced, which will
help you in everyday work with WPS to learn what you really have in the
pipeline:

Get-PipelineInfo
Get-Member

Get-Pipelinelnfo

The commandlet Get-PipelineInfo from the PowerShell Extensions
of www.IT-Visions.de, delivers three important pieces of information about
the pipeline contents (see Figure 4.1):

m Number of objects in the pipeline (the objects are numbered)
m Type of objects in the pipeline (name of .NET class)
m String representations of objects in the pipeline

The phrase string representation needs to be explained: Each .NET
object has a method ToString (), which changes the object into a string,
as ToString() is implemented in the “mother of all NET classes,”
System.Object, and is passed on to all NET classes and thus to all their
instances. Whether Tostring () delivers a sensible output depends on the
relative class. In the case of System.Diagnostics.Process, the class
name and process name are delivered. You can easily get this with gps |
foreach { $_.ToString() } (see Figure 4.2). On the other hand, the
conversion of class System.ServiceProcess.ServiceController,
whose instances are delivered by Get-Service, is not so good, because

www.IT-Visions.de

ANALYZING PIPELINE CONTENT

61

the string contains only the class name, so the single instances cannot be

diversified (see Figure 4.3).

& powershell - Holger Schwichtenberg {www.I

58 get—Childiten C:sinetpubswwuroot | Get—Pipelinelnfo

(BB L AT

[

TypeNane

Systen. im
Systen.I10_Di
Systen.
Systen.
Systen.
Systen.
Systen. im
Systenm.I0_Fil
Systen.I0.Fil
Systenm.I0_Fil
Systen.I0.Fil

ectorylnfo
ectorylnfo
ectorylnfo
ectorylnfo
ectorylnfo
ectorylnfo
ectorylnfo
elnfo
elnfo
elnfo
elnfo

String

aspnet_client

images
wwu.dotnetfranevork.de
wuu . IT-Uisions.de

wuww . powvershell-doktor.de
_private

q
t.htn
pagerror.gif
info._htnl
inf .htnl

:h
>
2
=
=
n
m
S
=7
-
m
c
=
=
o

Figure 4.1 Get_PipelineInfo tells us that there are 11 objects in the data
directory, 7 of which are subregistries (class DirectoryInfo) and 4 which

are files (class FileInfo).

NOTE The conversion into the class name is the standard behavior, inherited
from System.Object, and this standard behavior unfortunately is customary,
because the developers of most of the .NET classes at Microsoft did not take the

initiative to define a sensible string representation.

ToString () generally is not a serialization of the complete object content,
but only mirrors the prime key of the object.

'owerShell - Holger Schwichtenberg {www.I

Windows PowerShell
Copyright (C) 2806

i foreach {
.Diagnostics
.Diagnostics
.Diagnostics
.Diagnostics
.Diagnostics

.Diagnostics.
-Process
-Process
-Process
-Process
-Process
-Process
-Process
-Process

.Diagnostics
.Diagnostics
.Diagnostics

.Diagnostics
.Diagnosti

.Diagnostics
.Diagnostics
.Diagnostics
.Diagnostics
.Diagnostics.

.Diagnostics
.Diagnostics
.Diagnostics
.Diagnostics
.Diagnostics

Hicrosoft Corporation.

$_.tostring() >

-Process
-Process
-Process
-Process

Process
rocess

Process
rocess

-Process
-Process
-Process
-Process
.Process

{BBLauncher>

A1l rights reserved.

(Bildschirnpausenreninderdienst)

{cidaemon)
(cidaemon)
{cidaemon)
(cisve)
{csrss)
(ctfmon)
{daenon)
(DAUSRU)
(DefUWatch)
(devenu)
{dexplorel
Cdlpsp)r
(dlpudnt>
(dlsdbnt)
{exngnt)
(explorer)
(Firefox)
(FolderShare)

{GoogleToolharNotifier)

Figure 4.2 Use of Tostring () on instances of class
System.Diagnostics.Process

62

CHAPTER 4 ADVANCED PIPELINING

& Powershell - Holger Schwichtenberg (www.IT-¥isions.de) - [Running as Ai

ch { §__tostring() >

ServiceController

-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
viceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
-ServiceProce ServiceController
_ServiceProce ServiceController

Figure 4.3 Use of Tostring () on instances of class System.
ServiceProcess.ServiceController

Get-Member

The commandlet Get -Member (alias gm) is another helpful commandlet: It
shows the .NET class name of the objects in the pipeline and the proper-
ties and methods of this class. The output of Get-Process | Get-
Member is so long that you need two screenshots for the presentation (see
Figures 4.4 and 4.5). Get-Member is included in the basic WPS 1.0 com-
mandlet set.

NOTE |f there are different kinds of object types in the pipeline, members of all
types are displayed, grouped according to the head section, starting with
TypeName.

The output shows that from a WPS point of view, a .NET class has
seven kinds of members:

m Methods m Script properties
m Properties m Code properties
m Property sets m Alias properties
m Note properties

ANALYZING PIPELINE CONTENT ‘Ei:!

NOTE Concerning the previously mentioned member forms, only Method and
Property are actual members of the .NET class. All other kinds of members are
extensions, which WPS has added to the .NET object via the previously men-
tioned Extended Type System (ETS).

I Windows PowerShell

FS B:v> get-p enher

TypeNane: System.Diagnostics.Process

Cance10utputRead
ose

CloseMaintindou

CreateOhRef

Dispose

Equals

get_BasePriority

get _MachineName
get_MainModule
get_HainlindowHandle

get
get

NonpagedSystemMenorySize

PagedSystentenoryS izebd

[
El
o+
(i
fache)
L
FE3
=
i
g
1]
K]
2ac
T
B
EE]
EE
e
1)
e
R
oo
:d
&

tualtenoryS ize
tuallemorys ize64

cakllorkingSet64
orityBoostEnahled
ityClass

vateHomorus ize
vateMemorySize6d
ilegedProcessorTine
,Prn:assName
_Processorfiffinity
“Responding
“Seszionld
get Site
get_StandardError
get _StandardInput
get_StandardOutput
get _Start
get_Startline
get_SynchronizingOhject
get Threads
get_TotalProcessorTi
get UserProcessorT
get_UirtualMemoryS
et Uirtualemorys ine6a
get_WorkingSet
get _UorkingSet64
GetHashCode
GetLifetineService
GetType
InitializeLifetineService
Kill

HonpagodSys conffenoryS ize6d

AliasProperty
fAiliacProperty
AliasProperty
fAliacProperty
Method
Hethod

Method

e
NonpagedSystenMenorySize
PagedHenorySize
UirtualMemorySize
= MorkingSet
id add_Disposed(Event

BeylnErrnrReadLlne()
BeginOutputReadLine (>
CancelErrorRead<
GancelOutputRoad<>
Clog
Shaten. Boolean CloseMaintndouc)
§ysten.Runt ins . Renoting. ObjRet . ..
System.Uoid Dispos
§ysten.Boolean Equaln(DhJect obj>
System.Int32 get_BasePriority()
Suatem. ConponantHodal. 1 Contasn
Syeten.Booloan get EnableRaisi
System.Int32 get_ExitCode<)
System.DateTine get ExitTime()
System.IntPtr get_Handle(d
System.Int32 get_HandleCount<)
System.Boolean get_HasExited<>
System.Int32 get_Ld<)
System.String get_MachineName (>

System.Diagnostics.ProcessModu
System.IntPtr get_HainlindowHa
System.String get_Mainlindowli
Systen. IntPer get HaxllorkinaSet

System.IntPtr get_HinWorkingSet
System.Diagnostics.ProcessHodu
System.Int32 get_NonpagedSyste
System.Int64 get NonpagedSyste
System.Int32 get_PagedHemoryS
System.Int6d get

System. Int32
System. Int6d
Syctem. Int32
System. Int6d
System. Int32
System. Int6d
System.Int32 get PeakWorkingSet{>
§ysten:Intbd get_PeaklloriingSe

@

@

&
Lol
e a
835
]
=5
oty
Fha
2439
LS E R
B83
=
==z
a8

aq
am
e
e
1
o
=
=
B
&
&
=
=
&

System.TineSpan get_Privileged
System.String get ProcessName(
System.IntPtr get ProcessorAff...
System.Boolean get Responding(d
System.Int32 get_Sessionld()
System.Conponentfodel.I8ite ge
System.10.StreanReader yet Sta
System.l10.Streaniriter “Sta
System.l10.StreanReader yet Sta
System.Diagnostics.ProcessStar
System.DateTime get StartTime(d
System.ConponentHodel.ISynchro
System.Diagnostics.ProcessThee
System.TineSpan get_TotalProce
System.TineSpan get UserProces
System.Int32 ge tuallemory
System. Int6d ge irtuallemory
System.Int32 get UnrklnySet()
System.Int64 get UorkingSetba(d
System.Int32 GetHashCode(?
System.Object GetLifetimeServi...
System.Type GetType()
System.Ohject InitializeLifeti...
System.Uoid Kill()

Figure 4.4 Part 1 of the output of Get-Process | Get-Member

:Eh
>
2
=
=
n
m
S
=7
-
m
c
=
=
o

64

CHAPTER 4 ADVANCED PIPELINING

Refresh Method System.Uoid Refresh()
remove_Disposed Method System.Void
rDataRece ived System.Uoid
System.VUoid remove_Exited(Even
System.Uoid remove OutputDataR
System.Uoid set_EnableRaisingE
System.Uoid set_HaxUorkingSet
set HannPklngS System.Uoid set HanurklngS:t(
Bnn"tEnahled System.Uoid set P ityBoostE
[set] ity System.Uoid set] ityClass<
set Pru:essnrﬂfflnlty System.Uoid “et Pru:essnrﬂffln
set Site u set_Site(ISite val
set_StartInfo id set_StartInfo{(Proc
set_SynchronizingObject System.Uoid set _Synchronizing0
St System.Boolean Start()
ToString System.String ToSt
MaitForExit System.Boolean UaltFurExlt(Int
WaitForInputldle System.Boolean WaitForInputldl
e System.String _ NounNanme=Process
System.Int32 BasePriority {(get;}
Svatem. Conponenthoda 1. 1Cantain
System.Boolean EnableRaisingEv
System.Int32 ExitCode {get;>
System.DateTine ExitTime {get;>
Property System.IntPtr Handle {get;>
Property System.Int32 HandleCount {get;)
Property System.Boolean HasExited {get;>
Property System.Int32 1d {get;}
Property System.String HachineName {(get
Property System.Diagnostics.ProcessModu
Property System.IntPtr HainWindowHandle
Property System.String MainWindouTitle
Property System.IntPtr HaxWorkingSet (g
MinlorkingSet Property System.IntPtr HinlorkingSet {g
Modules Property System.Diagnostics.ProcessHodu
NonpagedSystentemoryS ize Property System.Int32 NonpagedSystenHem
NonpagedSystentenorys izebd Property System.Intb4 NonpagedSystenHem
agedHemorySize Property System.Int32 PagedMemorySize
Property System.Intb4 PagedMemorySize64
Property System.Int32 PagedSystemMenory
[PagedSystenMenorySize6d Property 1 PagedSystenMenory
[PeakPagedHemorySize Property PeakPagedHemorySi
PeakPagodanoryS ize6d Property System.Intb4 PeakPagedHenorySi
P kU tuallenorySize Property System.Int32 PeakUirtualHenory
'tnalﬂennr951heﬁ4 Property System.Intb4 PeakUirtualHenory
PeakUurklngS Property System.Int32 PeakllorkingSet {g
PEakUnrk)ngSetﬁ4 Property System.Intb4 PeaklorkingSet64
yBoostEnabled Pr System.Boolean PriorityBoostEn
System.Diagnostics.ProcessPrio
System.Int32 PrivateMenorySize
System.Int64 PrivateMenorySize
ivilegedProcessorTime p System.TimeSpan PrivilegedProc
[ProcessNane System.String ProcescMame (get
[ProcessorAffinity Property System.IntPtr Processorfffinit
T Property System.Boolean Responding {get
SESS]DnId Property System.Int32 Sessionld {get
S 1 Property System.ComponentHodel.18ite i
2 andardErrar Property System.10.StreanReader Standar
StandardInput Property System.l0.Streanlriter Standar
S tandardOutput Property System.10.StreanReader Standar
StartInfo Property System.Diagnostics.ProcessStar
StartTine Property System.DateTime StartTime (get
SynchronizingObject Property Suatom. ConponentHade 1. 1Sync iwo
Threads Property System.Diagnostics.ProcessThee
TotalProcessorTine Property System.TimeSpan TotalProceszor
UserProcessorTine Property System.TineSpan UserProcessorT
UirtualMenorySize Property System.In 32 u ualﬂemnr951_e
UirtualMenorySize64 Property System. Int tuallenorySize
MorkingSet Property Sy tem. lnt32 “DPklﬂQSEt {yet;>
oxkingSet6a Property System.Intb4 UorkingSet64 {get
[PSConfiguration PropertySet PSGonfiguration {Name. Id. P
[PSResources PropertySet PSResources {Name, Id. Handlec
Company ScriptProperty System.Object Conmpany {get=%th
CPU SeriptProperty System.Ohject CPU (get=$this.T
Description ScriptProperty System.Object Description {get
FileUersion ScriptProperty System.Object Filelersion {get
[Path ScriptProperty System.Ohject Path {get=5this.
[Product ScriptProperty System.Object Product {get=5th
[ProductUersion ScriptProperty System.Object ProductUersion

[PS_B=\D

Figure 4.5 Part 2 of the output of Get-Process | Get-Member

Methods are operations that you can call on an object and that will start
an action, such as Ki11 (), which ends the process. Methods, however, may
also display data or change data within an object.

WARNING To call a method, you must use parentheses at all times, even if
there are no parameters. Without parentheses, you will get only information
about the method; you will not call the method itself.

ANALYZING PIPELINE CONTENT 65

Properties are data elements that contain information about an object
or with which information can be transferred to an object (for example,
MaxWorkingSet). In the screenshots with the output of Get-Process |
Get-Member, it is remarkable that there are two methods for each prop-
erty (for example, get_MaxWorkingSet () and set_MaxWorkingSet ()).
The cause for this lies within the internals of the .NET Framework: Here
properties (not fields) are mapped by a pair of methods—one method to
fetch the data (called “get” method or Getter), and another method to set
the data (called “set” method or Setter).

This means that for you, as the WPS user, you have two possibilities to
call data:

:h
>
=
=
=
n
m
o
=7
-
-
=
=
=
)

m By using the property

Get-Process | Where-Object { $_.name -eq "iexplore" } |
Foreach-Object { $_.MaxWorkingSet }

m By using the relevant “get” method

Get-Process | Where-Object { $_.name -eq "iexplore" } |
Foreach-Object { $_.get_MaxWorkingSet() }

Likewise, you have the option to use the property as follows:

Get-Process | Where-Object { $_.name -eqg "iexplore" } |
Foreach-Object { $_.MaxWorkingSet = 1413120 }

Alternatively, you can use the relevant “set” method:

Get-Process | Where-Object { $_.name -eqg "iexplore" } |
Foreach-Object { $_.set_MaxWorkingSet (1413120) }

TIP The beginner might not be so happy about these options as they inflate the
output; the advanced user will like it. In the end, there is a great advantage pro-
vided by the listing of getters and setters, besides the syntactical freedom. You
can recognize which actions are possible on a property. If the setter is missing,
the property cannot be changed (for example, StartTime in the class
Process). If the gefter is missing, you can set only one property. There is no
example for this scenario in the class Process. Furthermore, this scenario is
much rarer, but becomes evident with keywords, which cannot be regained
because they were not saved in plain text, but only as hash values.

CHAPTER 4 ADVANCED PIPELINING

Property sets are a summary of a number of properties under one
umbrella. For example, the property set psRessources covers all proper-
ties that refer to the resource use of a process. Therefore, you do not have
to name the single property. You can write the following instead:

Get-Process | Select-Object psRessources | Format-Table

The developers of WPS thought of many things, but did not cover
everything. For instance, for one process the preceding command leads to
the failure report “Access is denied”; the pseudo-process “Idle” cannot be
asked for TotalProcessorTime (see Figure 4.6).

indows PowerShell

PS5 B:»> Get—Process | select—ohject psresources | format—tahle

Id HandleCou WorkingSe PagedHemo PrivateHe UirtualHe
t t rySize norySize norySize

2875392 778248 778248 19472384

4218888 1146888 1146888 25247744

1327184 2318336 2318336 36761608

5799936 16858304 10850384 54673408

1318942 2248784 36458496

4575232 45694976

1583232 148247084

551321608

17395712

42356736

16879616

15802368 69152768 69152768 339902464

257433608 124456960 124456960 603566088

12251136 31484832 31404832 222687232

2883584 708416 708416 211353608

20447232 26914816 26914816 152686592
24875808 24260688 24260608 186479616 H
: Exception getting "TotalProcessorTime™: "Access is denied”

+ Get—Process L psre&ources i format—tahle
a a 28672 a a

Idle a
598 2297856 21708808 21703808 172183552
506 1265664 17698624 17698624 156581888
584 2256896 18714624 18714624 1661975208
1155872 14962688 14962688 143116144
14626816 18833920 18833928 98820096
17530880 15138816 15138816 68169728
888832 3452928 3452928 35241984
5521488 25681928 25681920 163868672
1576968 274432 274432 14544896
1576968 274432 274432 14544896
3645448 1869856 1869856 27979776
5177344 9322496 9322496 97787984
7602880 4747264 4747264 44888064
8368128 14663688 14663680 102612992
4272128 1740808 1740808 25829376

Figure 4.6 The WPS developers didn’t address the special status of the pseudo-
process “Idle.”

Property sets do not exist in .NET Framework; they are a specialty of
WPS and are defined in the file types.pslxml in the installation directory
of WPS (see Figure 4.7).

ANALYZING PIPELINE CONTENT ‘i;’

<Propertyset>
<Mame>Psconfiguration</Name>
<referencedrropertiess>
<Name>Name<,/Namea>
<Name>Id</Name>
<Name>Priorityclass</Name>
<NamexFileversion</Names
</rReferencedprroperties>
</Propertyset>
<Propertyset»
<Name>PSResources</Name>
<peferencedrProperties>
<NamexName</Name>
<Name>Id</Names>
<NamesHandlecount </Names
<Name>workingset</Name>
<Name>NonPagedMemorysize</Name>
<NamexPagediemorysize</Namex
<Name>Privatememorysize</Name>
<Mame>VvirtualMmemorysize</Names>
<Name>Threads. Count</Namex
<NamesTotalProcessorTime</Names>
</ReferencedProperties>
</Propertyset>

Figure 4.7 Definition of the property sets for the class System.
Diagnostics.Process in types.pslml

Note properties are additional data elements that do not come from the
data source, but have been added by the WPS infrastructure. In the class
process, it's __NounName, which gives a shortened name to the class. Other
classes have numerous note properties. Note properties do not exist in
NET Framework; they are a specialty of PowerShell.

A script property is a calculating property that is not saved within the
object itself. This does not mean that the calculation has to be a mathe-
matical one; it can also be the access to the properties of a subobject. The
following command lists all processes with those products belonging to the
relevant processes (see Figure 4.8):

Get-Process | Select-Object name, product

This is good to keep in mind when you are looking in your system at a
process that you do not know and that you might take for a virus.

The information about the product cannot be found in the process
(Windows does not list this information in the Task Manager either), but in
the file, which contains the program code for the process. The .NET
Framework offers access to this information via MainModule.
FileversionInfo.ProductName. Microsoft offers a shortcut of the
command:

Get-Process | Select-Object name,
wMainmodule.FileVersionInfo.ProductName

:h
>
=
=
=
n
m
o
=7
-
m
=
=
=
)

68

CHAPTER 4 ADVANCED PIPELINING

1 windows PowerShell

PS B:\> Get—Process ! sclect—object name, product
Product

Microsoft® Wi Operating Systen
i i Operating Systen
Operating Systen

Hicrosofti Ui Operating Systen
rosoft® Ui Opera Systen
rosoft® Ui Opera Systen
Hicrosoft® Windous® Operating System

Hicrosoft® Windous® Operating Systen
DAEMON Tools
Norton Antilirus

Uisual Studie .NET

Vindows® Operating System
Microsoft® Windous® Operating Systen

Microsoft® Windous® Operating Systen
Windows® Operating System
Windows® Operating Systen
Windows® Operating Systen
Internet Information Services
Microsoft u:ndmm- Operating Systen
PoverDesk-§ cation
Matrox PD\Jel‘DE..k—HF
ervices Services Application
Matrox.PowerDesk.Services Services Application
Microsoft® Uisual Studio .NET
Windows® Operating Systen
Windous® Operating System
System Center Data Protec
Windows® Operating System
Messenger
chl'n"n}‘t i Operating Systen
i Operating System

HNUIDIA NURRID
Hi Office Outlook

ic Conmand Shell
Hicrosoft ActiveSync

Symantec Antilirus
i Windows i System

Windows® Operating System
Windows® Operating System

Microsoft SQL Server

i $QL Server

Windows® Operating System
Windows® Operating Systen
Windows® Operating System
Windows® Opera Systen
Windows® Opera Systen
Windows® Opera
Windous® Opera
Windows® Opera
Windows® Operating
Windows® Operating
Windows® Operating
Windows® Operating
Windows® Operating

Microsoft® Windows® Operating System

Microsoft® Windous® Operating Systenm
Hicrosoft Uirtual PC 208
Symantec fintilirus

Microsoft ActiveSync

Hicrosoft ActiveSync

Hicrosoft Office 2003
Hicrosoft® Windousd Operacing Systen
Hicrosofté Windousd Ope sten

Figure 4.8 Listing of the calculating property Product

Microsoft offers this shortcut via the script property. This shortcut is
defined in the file types.pslxml in the installation directory of WPS (see
Figure 4.9).

Script properties do not exist in .NET Framework; they are a specialty
of WPS.

A code property equals a script property; the program code, however,
is not given as script in WPS language, but as NET code.

An alias property is a short form for a property. It is not based on a
calculation, but on a shortening of the name. For example, ws is short for
WorkingSet. The alias properties are also defined in the file types.
pslxml in the installation directory of WPS. Alias properties are also a
WPS specialty.

ANALYZING PIPELINE CONTENT 69

<ScriptPropert
<Name>h&</mame>
<GetscriptBlock>$this.mainmodule.Fileversioninfo.ProductName</GetscriptBlocks
</scriptProperty>

Figure 4.9 Definition of a script property in types.pslxml

More Information about Get-Member

You can reduce the output of Get-Member by limiting it to a certain kind
of members. You can accomplish this with the parameter -Membertype
(or -m). The following command lists only properties:

Get-Process | Get-Member -Membertype Properties
Furthermore, you can set a name filter:
Get-Process | Get-Member *set*

The preceding command lists only those members of the class
Process whose names contain the word set.

Extended Type System (ETS)

As already pointed out, WPS shows for many .NET objects more members
than there are actually defined in the class. In some cases, however, mem-
bers are suppressed. This is accomplished through the ETS.

The extension of members via ETS is applied to enable the WPS user
to display data directly from some .NET classes, which are meta classes
for the actual data (for example, ManagementObject for WMI objects,
ManagementClass for WMI classes, DirectoryEntry for entries in
directory services, and DataRow for data rows).

Members are suppressed when they are not usable in WPS or if there
are better alternatives via extensions.

In the documentation, you find the following commentary from the
WPS development team: “Some .NET object members are inconsistently
named, provide an insufficient set of public members, or provide insuffi-
cient capability. ETS resolves this issue by introducing the ability to extend
the .NET object with additional members.” [MSDNO04] Simply put, this
means that the WPS team is not really satisfied with the development
team’s work with the .NET class library.

:h
>
=
=
=
n
m
o
=7
-
m
=
=
=
)

70

CHAPTER 4 ADVANCED PIPELINING

The ETS generally packs each object, which had been placed in the
pipeline by a commandlet, into a WPS object, type PSobject. Then,
the implementation of the class Psobject decides what remains visible for
the following commandlets and commands.

This decision is influenced by different instruments:

m WPS object adapters that have been implemented for certain types,
such as ManagementObject, ManagementClass, DirectoryEntry,
and DataRow

m Declarations in the types.psIxml file

Members added in the commandlets

m Members added through the use of the commandlet Add-Member

Filtering Objects

Often, you will not process all objects displayed by a commandlet.
Limitation criteria are conditions (for example, only processes with a cost
greater than 10000000 bytes) or positions (for example, only the five
processes with the greatest cost). As a means of limitation, you can use the
commandlet Where-Object (alias where).

You can define limitations via conditions with Where-0Object:

Get-Process | Where-Object {$_.ws -gt 10000000 }

Limitations via the position are defined with Select-object. (In the
following command, for the previously named example, an additional sort-
ing is integrated, to get a sensible output.)

Get-Process | Sort-Object ws -desc | Select-Object -first 5
Likewise, you can display the process with lowest cost as follows:

Get-Process | Sort-Object ws -desc | Select-Object -last 5

FILTERING OBJECTS 7'1

You might find it difficult to get used to the syntax of the relational
operators. Instead of >= you write —ge (see Tables 4.1 and 4.2). The use of
regular expressions is possible with the operator -Match. (For example,
the following expression lists all Windows services with a display name that
consists of exactly two words separated by a white space; see Figure 4.10.)

Get-Service | Where-Object { $_.DisplayName -match
- A\WE AwFS")

Windows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

H :~demo“UPS
1%t Get—Service | Where—Object { $_.DisplayName —match "“u#* \ux$" 3

NHame DisplayName
AppHgnt Application MHanagement
AudioSrv Windows Audio

Brouser
CiSwve
CryptSvc
Dhep
Dnscache
Eventlog
HITPFilter
idsve
IsnServ
LicenseService
MSIServer

Hetlogon
Netman

NtFrs

NtnsSvc
Policyfigent
ProtectedStorage
RemoteRegistry
SCardSvr
Schedule
seclogon
Spooler
TernService
W32Time

WECSUC
wuausery

WZCSUG

Computer Brouwser
Indexing Service
Cryptographic Services
DHCP Client

DNS Client

Event Log

HITP SSL

Uindows CardSpace
Intersite Messaging
License Logging

Win 5 Installer
Message Queuing
Network DDE

Het Logon

Network Connections
File Replication
Removahle Storage
IPSEC Services
Protected Storage
Remote Registry
Smart Card

Task Scheduler
Secondary Logon
Print Spooler
Terninal Services
Windows Time

Event Collector
flutomatic Updates
Wireless GConfiguration

Figure 4.10 Services with two words in the display name

The syntax of regular expressions in .NET is not discussed in detail in
this book. For more information about such, refer to [MSDNOS].

:h
>
2
=
=
n
m
S
=7
-
m
c
=
=
o

72 CHAPTER 4 ADVANCED PIPELINING

Table 4.1 Relational Operators in WPS Syntax

Comparison with Comparison with

Case Sensitivity Case Insensitivity Meaning

-1t -ilt Smaller

-le -ile Smaller or even

-gt -igt Greater

-ge -ige Greater or even

-eq -ieq Even

-ne -ine Not even

-like -ilike Similarity between strings, use of
placeholders (* and ?) possible

-notlike -inotlike No similarity between strings, use
of placeholders (* and ?) possible

-match Comparison with regular expression

-notmatch Does not comply with regular
expression

-is Type comparison

Table 4.2 Logical Operators in WPS Syntax

Logical Operator Meaning
-not or ! Not
-and And
-or Or

Aggregation of Pipeline Content

The number of objects in the pipeline may be heterogeneous. For exam-
ple, this is automatically the case when Get-ChildItemis executed in the
file system: The result contains FileInfo and DirectoryInfo objects.
You can also link two commands, which both send objects to the
pipeline, so that the content of the pipeline looks like this (see Figure 4.11):

$(Get-Process ; Get-Service)

CASTRATING OBJECTS 73

But this is only sensible when the following commands in the pipeline
are able to handle heterogeneous pipeline content correctly. The standard
expression can do this. In other cases, the type of the first object conditions
the kind of processing in the pipeline (for example, with Export-csv).

[X PowerShell - Holger Schwichtenberg (www.IT-Visions.de) - [Running as Administrator] - HADEV\IT¥isions_PowerShell Cof

15# $¢ Get-process i®* ; Get—Service i* > | Get-Pipelinelnfo

Count TypeNane

System.Diagno: 3 €Idle
System.Diagno: explore)

.Process

System.Diagno netinfo)
System.Diagno . C1SRService)
Controller

System.ServicePr i g ~ System.ServicePro
System.ServicePr viceController System.ServicePro ServiceController

Figure 4.11 Use of GetPipelineInfo on a heterogeneous pipeline

Castrating Objects

The analysis of the pipeline content shows that there are often many mem-
bers in the objects in the pipeline. Generally, however, you need only a few.
Not only for reasons of space saving, but also because of concern for clar-
ity, it is worth the effort to “castrate” objects in the pipeline.

With the command Select-0Object, you can castrate an object in the
pipeline. (that is, (almost) all object members are deleted from the pipeline,
except those members explicitly mentioned behind Select-Object).

For example, the command

Get-Process | Select-Object processname, get_minworkingset,
wyws | Get-Member

keeps only the members processname (property), get_minwork-
ingset (method), and workingset (alias) of the Process objects in the
pipeline (see Figure 4.12). As Figure 4.12 shows, castrating doesn’t work

without pain:

m Get-Member does not show the actual class name any longer, but
instead shows PSCustomObject, a special class of WPS.
m All members are degraded to note properties.

:h
>
2
=
=
n
m
S
=7
-
m
c
=
=
)

74

CHAPTER 4 ADVANCED PIPELINING

That there are four more members in the list besides the three desired
ones is easily explained. Each (that means really each single NET object)
has these four methods because they are derived from the basic class
System.Object and inherited by each .NET class and thus each .NET
object.

B windows Powershell 8

PS B:\> Get—Process | select—ohject processname, get_minworkingset, ws | get—mem
her

TypeNane: Systen.Management.fAutonation.PSCustonObject

HenmberT ype

Hethod Systen.Boolean Equals{Object ohj)>

Hethod Systen.Int32 GetHashCode()

Hethod Systen.Type GetType(d

MHethod Systen.String ToString()
get_minworkingset NoteProperty get_minworkingset=null
ProcessName NHoteProperty System.S5tring ProcessName=alg

HoteProperty Systen.Int32 WS=2875392

Figure 4.12 Effect of select-oObject

TIP With the parameter —exclude, you can also exclude single members in
Select-Object.

Sorting Objects

With Sort-oObject (alias sort), you can sort objects in the pipeline based
on the properties previously mentioned. The standard sorting direction is
in ascending order.

The following command sorts processes in a descending order accord-
ing to their cost:

Get-Process | sort ws -desc

Grouping Objects

With Group-0Object, you can group objects in the pipeline according to
their properties.

GROUPING OBJECTS 75

With the following command, you can display how many system serv-
ices are running and how many have been stopped:

PS B:\Scripte> Get-Service | Group-Object status

Count Name Group
64 Running {AeLookupSvc, ALG, AppMgmt, appmgr...}
54 Stopped {Alerter, aspnet_state, ClipSrv,

wclr optimiz...

:h
>
2
=
=
n
m
S
=7
-
m
c
=
=
[

The second example groups the files in the System32 directory accord-
ing to the file extension and sorts the grouping afterward in a descending
order according to the number of files in each group (see Figure 4.13).

Get-ChildItem c:\windows\system32 | Group-Object Extension |
Sort -Object count -desc

& rowerShell - hs [elevated user]

PowerShell) B
Copyright <C> 2886 Microsoft Corporation. All rights reservved.

H :“demo“UPS
1# Get—childitem c:“windows“system32 | group object extension | sort—object coun
t —desc

Group

c.dll, aaaamon.dll, acctres.dll. acle...

.EeXe wiz .exe, actmovie.exe, ahui.exe. alg.exe.

N {ctype.nls, c_B37._nls. 18888 .nls, c_18881....
{1825, 1828, 1831, 1833...%

-0Cx {a"ctrls.ncx BtnPluﬂl ocx, CmboPlsl.ocx,. Co...
{admgmt .msc, Appsrv.mSc, AZMan.msc, certngr.
{CUHCTZHZ DEP, CUHCTHHZ DEP,. COMCTL32. DEP C.
{ADODC.SRG,. CHMDIALOG.SRG. COMCT332.SRG. COMC.
{axperf.ini, desktop.ini, esentpef.ini, ftpc
{access.cpl, appwiz.cpl, desk.cpl, firewall.
{axctrnm._h, ftpctrs_h,. iasperf.h, infoctrs_h.
{acelpdec.ax,. bdaplgin.ax. emPRP.ax. g7iicod.
{eventgquery.vhs, iisapp.vhs, iishack.uvbs,. II.
{comm.drv, keyhoard.drv, lanman.drv, mciavi.
{ansi.sys, country.sys, himem.sys,. keyBl_sys
{chcp.com, command.com, diskcomp.com, diskco.
{d3dBcaps .dat, d3dY9caps.dat,. dssec.dat. empt.
{cmmgr3d2.hlp, DRUVFP.HLP, edit.hlp,. javaperm.
{active t1lb, amcompat.tlb, mgoalB.tlb, mgo
{imaadpl2.acm, ldcodeca.acm, ldcodecp.acm. m
{at1M .pdb,. mfc?l_pdb, MHFC?1d.pdb,. mfc?lu.pd
{clusoc.txt, eula.ol -txt, eula.txt,. h3231
{bopomofo.uce, gh231 ce, ideograf.uce. kan
{advpack.dll.mui, icardres.dll.mui, ieframe.
{h323.tsp,. hidphone.tsp,. ipconf.tsp,. kmddsp.
{DRUUFP.CNT, MSCAL.CNT. MSORCL3J2.CHT., MSSCRI.
{Swinnt$._inf. homepage.inf, jeuwinit.inf. map.
{DevExpress.RtralGrid.Appearances . .xml, DevExp.
{MFC71 .MAF,. MFC71D_MAP. MFC?71U.MAP. MFC71UD.
{pcl.sep. pscript.sep, sysprint.sep, sysprtj.
{UBADE3Z .0LB. UBAEN32 _OLB. UBAEND3Z_.OLB. UEN...
{sfmuam.ifo, sfmuam5.ifo, waminst.ifol
{sfmuam.rsc, sfmuamb scl
{logon.scr, SCFNSave.scr, AFGUE .SCEY
{login.cmd,. usrlogon.cmd. nem.-cnd?
{icravBl.rat,. rsaci.rat, ticrf.ratl
{nuvaudio .nuu, nunem.nuu, nusmb.nuu?
{biosl.rom, bhios4.rom, v?vga.rom?

{cliconf .chm,. =sglncli.chm,. sglsodbe.chm}
{cliconfg.rll, sglnclir.rll, sqlserv3d2.rll>
{zonedoff .veg, zonedon.reg?

{noise.ita, whdhase.ital

{noise.nld, whdbase.nld>

{noise.fra, whdhase.fral

{noise.deu. whdbase . deu>

Figure 4.13 Use of Group-0Object and Sort-Object

76

CHAPTER 4 ADVANCED PIPELINING

TIP When the only purpose is to display groups and not to determine the fre-
quency of group elements, you can use Select-Object with the parameter
—unique for grouping:

Get-ChildItem | Select-Object extension -Unique

Calculations

Measure-Object executes various calculations (number, average, sum,
minimum, maximum) for objects in the pipeline. Here you should name
the property that is the subject of the calculation, because the first prop-
erty is a often text that cannot be processed mathematically.

For example, to access information about the files in c:\Windows use
the following (see Figure 4.14):

Get-ChildItem c:\windows | Measure-Object -Property
w]ength -min -max -average -sum

& powerShell - hs [elevated user]

Windows PowerShell
Copyright (C) 2086 Hicrosoft Corporation. All rights reserved.

H:“\deno“UPS
1# Get—ChildIten c:“\Windows | Heasure—Object —Property length —nin —nax —fAverage

258
: 2168867,44
: 548216860
= 512151552
B
: length

Figure 4.14 Example for the use of Measure-Object

Intermediate Steps in the Pipeline

A command in the pipeline may be as long as you want, and therefore also
as complex. When a command becomes unclear or you want to have a
closer look at the intermediate steps in the pipeline, you should buffer the

INTERMEDIATE STEPS IN THE PIPELINE 77

content of the pipeline. WPS offers to file the content of the pipeline in
variables. Variables are marked by a preceding dollar sign ($). Instead of

Get-Process | Where-Object {$_.name -eq "iexplore"} |
wForeach-Object { $_.ws }

you can also enter the following commands one after another in sepa-
rate lines in the shell window:

$x = Get-Process
$y = $x | Where-Object {$_.name -eq "iexplore"}
$y | Foreach-Object { $_.ws }

P
>
-
=
=
~
m
-]
]
-
=
=
=
=
(=}

The result is the same in both cases.

The access to variables without content does not produce a failure as
long as you do not use commandlets later in the pipeline, where objects in
the pipeline will definitely be anticipated (see Figure 4.15).

= rowershell - hs [elevated user] - H:\demo\WPS

Windows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

H:“deno“UPS
1 $x

2% $x | get—member

Figure 4.15 Access to variables without content

TIP A filled variable can be cleared with the commandlet Clear-variable.
Here, you should write the name of the variable without the dollar sign, as

follows:

Clear-Variable x

78 CHAPTER 4 ADVANCED PIPELINING

Comparing Objects

With Compare-Object, you can compare the content of two pipelines.
The following command sequence displays all processes started during a
certain interim (see Figure 4.16):

Sbefore = Get-Process

Start a new process

Safter = Get-Process
Compare-Object S$before Safter

& rowershell - hs [elevated user]

Uindows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

1#t $hefore = get—Process

28 notepad

38 notepad

41t Safter = get—Process

5# conpare—ohject $hefore Safter

InputObject SideIndicator

Figure 4.16 Comparison of two pipelines

Ramifications

Sometimes you want to pass on the result not only in the pipeline, but also
in a variable or within the file system. The commandlet Tee-Object is
used for ramifications within the pipeline, with the Tee standing for ram-
ify. Tee-Object passes the content of the pipeline on in an unchanged
condition to the next commandlet, but also offers to file the content of the
pipeline in a variable or in the file system, according to your choice.

The following command uses Tee-Object two times for both use
cases:

Get-Service | Tee-Object -var a | Where-Object { $_.Status
w_cg "Running" } | Tee-Object -filepath g:\services.txt

SUMMARY 79

After execution of the command, the variable $a provides a list of all
services, and the TXT file services. txt has alist of all running services.

WARNING Note that when using Tee-Object with the parameter
—variable, you must write the name of the variable without the usual

variable marker $.

Summary

This chapter introduced you to some commandlets that provide helpful
functions in WPS pipelines, including the following:

Where-Object for ﬁltering

Sort-Object for sorting

Group-Object for grouping

Measure-Object for calculating sum, average, minimum, and
maximum

Compare-Objects for comparing pipelines

In addition, we discussed various WSP variables. You learned about the
dollar sign ($) variable, for example, which enables you to store any content,
including the full content of a pipeline. As discussed, you use variables to
compare pipelines and to store the content of a pipeline for later use.

:h
>
=
=
=
n
=}
o
=
-
m
=
=
=
)

This page intentionally left blank

CHAPTER =)

THE POWERSHELL NAVIGATION
MoDEL

In this chapter:

Navigation through the Registry 81
Providers and Drives 83
Navigation Commandlets 84
Paths . .. 85
Defining Driveso 87

Besides object pipelining, Windows PowerShell (WPS) has another interest-
ing concept to offer: the uniform navigation paradigm for all kinds of data.
The call of the command Get-pPSDrive not only lists expected drives but
also environment variables (env), the registry (HkcU, HKLM), Windows cer-
tificate store (cert), PowerShell aliases (Alias), PowerShell variables
(Variable), and PowerShell functions (Function). WPS interprets this
data also as drives. Consequently, you have to use a colon in the call: Get-
ChildItem Alias: lists all defined aliases, just like Get-alias.

Navigation through the Registry

In the registry, the administrator can work with the same commands as in
the file system. Examples for valid registry commands include the follow-
ing (see Figure 5.1):

m Navigation to HKEY_LOCAL_MACHINE/Software:

cd hklm:\software

82

CHAPTER 5 THE POWERSHELL NAVIGATION MODEL

This is the short form of the following:
Set-Location hklm:\software

m Listing of the subkeys of the current key:
Dir
This is an abbreviation for the following:
Get-ChildItem

m Creating a subkey with the name IT-Visions:
md IT-Visions

m Creating a subkey with a standard value:

New-Item -Name ‘"Website" -Value "www.IT-Visions.de"
w_type String

2 select Windows PowerShell

d hklm:\\softuare
Nsoftvare> dir i

: Microsoft.PowerShell.CoresRegistry: :HKEY_LOCAL_MACHINENsof tware

ggn“talll’ath. CommonPath>

L83
Ipswitch L% 3
:nsoftvare> md IT-Uisions

: Microsoft.PowerShell.Core\Registry: :HKEY_LOCAL_MACHINE\sof tuare
Property

IT-Uisions
Nsoftuare)> dir i

: Microsoft.PowerShell.Core Registry: :HKEY_LOCAL_MACHINENsof tuare
Property

Innovasys {InstallPath, CommonPath}

InstallShield O

Intel

Ipswitch
IT-Visions

ftuwarenIT-Uis s> new—iten —name "Website" —value "www.IT-Uisions.de" —type String

: Microsoft.PowerShell.CoresRegistry: :HKEY_LOCAL_MACHINENsoftwareNIT-Uisions
Name Property
site {{defaultd>

snsoftuaresIT-Uisions?> dir

: Microsoft.PowerShell.Core\Registry: :HKE¥Y_LOCAL_MACHINENsoftwareNIT-Uisions
Property
Website {Cdefaultd>

:nsoftware\IT-Uisions> B

Figure 5.1 Navigation in and manipulation of the registry

PROVIDERS AND DRIVES 83

Providers and Drives

Get-pPsDrive shows that there are different “drive” providers. Normal
drives belong to the provider FileSystem (FS). Microsoft calls the
providers navigation providers or commandlet providers, and wants to
treat all data equally with the same basic verbs (Get, Set, New, Remove,
and so on), regardless of whether they are flat or hierarchical. The number
of providers and the number of drives can be extended.

WPS 1.0 contains the following drives (see Figure 5.2):

m Windows file system (a, B, ¢, D, E, and so on)
m Windows registry (HKCU, HKLM)

m Windows environment variables (env)

m Windows certificate store (cert)

m Functions of PowerShell (function)

m Variables of PowerShell (variable)

m Aliases of PowerShell (alias)

& powershell - hs [elevated user] - H:\demo\WPS

Windows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

FileSysten H

FileSysten H WINDOUS
Certificate

FileSysten

FileSysten

Environnent

FeedStore

Function

v
=
=
m
-
o
=
=
=
v
x
m
=
£
=
@
5
=)
H
=
=)
=]
m
-

AzsemhlyCache
FileSysten H:

ry HKEY_CURRENT_USER
HKEY_LOCAL_MACHINE
I

deno“WPS

istry

FileSysten
DirectoryS... isions.locals
FileSysten

FileSysten

FileSysten

FileSysten

FileSysten

FileSystem

Variable

FileSysten

Figure 5.2 From the point of view of WPS, environment variables, aliases, and
registries are drives, too.

84 CHAPTER 5 THE POWERSHELL NAVIGATION MODEL

The Active Directory can also be ruled by this navigation paradigm.
Earlier beta versions of WPS contained a provider for this; however, it did
not make it into the final version. The Active Directory provider is now
available as part of the PowerShell Community Extensions (PCSX)

[CODEPLEXO01].

TIP You can see all installed providers with Get-PSProvider.

Table 5.1 Available WPS Providers

Provider Source

Alias WPS 1.0

Environment WPS 1.0

File system WPS 1.0

Function WPS 1.0

Registry WPS 1.0

Variable WPS 1.0

Certificate WPS 1.0

RSS feed store PCSX 1.1.1 [CODEPLEXO01]
Assembly cache PCSX 1.1.1 [CODEPLEXO01]

Directory services PCSX 1.1.1 [CODEPLEXO01]

Windows SharePoint 'WPS SharePoint provider
services or
SharePoint
Portal Server

[CODEPLEX02]

Drives

Alias

Env

A, B, C, D, and so on
Function

HKLM, HKCU
Variable

cert

Feed

Gac

Windows NT 4.0-compatible
name of domain

Any name

Navigation Commandlets

Table 5.2 shows the commandlets applicable for navigation.

PATHS 85

Table 5.2 Navigation Commandlets
Commandlet Aliases Description
Get-ChildItem dir, 1s Listing of children
Get-Cwd cd, pwd Change of location
Get-Content type, cat Call of element content
New-Item mkdir Creation of an item (branch or leave)
Get-Location Call of the current location
Set-Location cd Setting of the current location
Paths

Path indications in WPS support two different placeholders as well as the
following:

One dot (.) stands for the current directory.

Two dots (. .) stand for the parent directory.

The tilde (7) stands for the profile directory of the current user
(shown Figure 5.4).

m Brackets stand for one of the characters within the bracket.

Consider this example. The following command lists all files of a
Windows directory that begin with the letter A, B, C, or W (see Figure 5.3):

Get-ChildItem c:\windows\ [abcw]*.*
Alternatively you can also write the following:
Get-ChildItem c:\windows\ [a-cw]*.*

Several commandlets offer support to navigate through WPS drives.

?‘
-
=
=
)
c
=
=
=
w
=X
=
=
=
=
£
=
S
=
=
=)
o
=
m

86 CHAPTER 5 THE POWERSHELL NAVIGATION MODEL

& rowershell - hs [elevated user]

13# Get—Childitem c:\windows\[ahcul*_ *

Directory: Microsoft.PowerShell.CoresFileSysten::C:\windows

LastWriteTine Length

actzetup. log
1841928 adfs.nsp

fAdf=0cn. log
adsww.ini

5 ARJ.PIF
aspnetocn.log
Blue Lace 16_hnp
hootstat.dat
cadkasdeinstB1 .exe
certocn. log
clock.avi
cnsetacl.log
Coffee Bean._bnp
consetup. log

B control.ini
win.ini

8 wincnd.ini
UindowuslUpdate.log

2 windows_r2setup. log
winhelp.exe
winhlp32 . exe
unsetup. log

6 unsetuplB. log
UHS ysPr?.prx

B wplog.txt

Figure 5.3 Use of placeholders

Test-Path checks whether there is a path. The result is True or
False (System.Boolean):

Test-Path c:\temp
Test-Path HKLM:\software\IT-Visions

Resolve-Path resolves placeholders in paths and displays the result-
ing path as an object of the type System.Management.Automation.
PathInfo (see Figure 5.4).

Many commandlets display path indications of the type System.
Management .Automation.PathInfo. To convert this into a simple string
(which, however, will be provider specific), you can use the commandlet
Convert-Path.

DEFINING DRIVES 87

Uindows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

1# resolve—path ..

28 Resolve—-Path . .“temp

Figure 5.4 Use of Resolve-Path

Defining Drives

The navigation model of WPS allows the definition of new drives, which
can then be used as shortcuts for (complex) paths.
The following command defines a new drive, Scripts, as an alias for a

file system path:

v
=
=
m
-
o
=
=
=
v
x
m
=
£
=
£
=
=)
H
=
=)
=]
m
-

New-PSDrive -Name Scripts -PSProvider FileSystem -Root
"h:\Scripts\PowerShell\"

After this, you can access the path by just writing the following:

Dir Scripts:

WARNING The newly defined drive functions only within WPS and is not
applicable in other Windows applications. To be precise, the new drive func-
tions only within the current instance of WPS. Two WPS windows do not share
such declarations! If you like to have certain custom drives by default in all WPS
consoles, you must add the New -Drive command to the WPS profile script
(see Chapter 10, “Tips, Tricks, and Troubleshooting”).

88 CHAPTER 5 THE POWERSHELL NAVIGATION MODEL

You can define shortcuts for the registry, too:

New-PSDrive -Name Software -PSProvider Registry -Root
HKLM: \SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

The number of drives is by default limited to 4,096. You can change
this with the variable $MaximumbDriveCount.

Summary

After object-oriented pipelining, the navigation model is the second
biggest innovation of WPS. The navigation model enables you to use dif-
ferent stores, such as the registry, environment variables, the certificate
store, and even the variables in WPS to be treated as a file system, where
you can navigate and operate with well-known commands such as dir, cd,
md, and rd. These well-known commands, however, are just short forms
(aliases or functions) for WPS commandlets.

CHAPTER 6

THE POWERSHELL SCRIPT
LANGUAGE

In this chapter:

GeftingHelp 90
Command Separation 90
Comments Q0
Variables 91
Available Types 92
Numbers 96
Random Numbers 98
SHITINGS © o 99
Date and Time 102
ATTAYS © o 105
Associative Arrays (Hash Tables) 106
Operators 108
Control Structures 110

Besides the commandlet infrastructure, Windows PowerShell (WPS)
offers its own scripting language for the creation of command sequences
in the classic imperative programming style. The PowerShell Script
Language (PSL) includes variables, loops, conditions, functions and error
handling.

Microsoft did not use an existing script language as the basis for this
new creation, but was, according to their own words, “inspired” by the
UNIX shell languages, PERL, PHP, Python, and C#. As a consequence,
the language uses curly brackets; semicolons, however, are not needed as
separators.

89

90 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

Getting Help

The language constructs of WPS, just like the WPS commandlets, is
explained in simple, purely text-based help documents that are installed
along with WPS. Help documents for the language constructs begin with
“About.” For example, the command

Get-Help About_for

displays help for the for loop.

The command
Get-Help About

shows a list of all “About” documents.

Command Separation

Each line in WPS script is a command. A command may consist of several
commandlets, separated by the pipe symbol (]). You can place several
commands in one line, separated by a semicolon (;). You can also use the
semicolons at the end of each line, just as in C++ und C#, but you do not
have to.

Should one command fill several lines, the use of an inverted comma
(V) at the end of a line indicates that the next line should be added to the
command:

gps |
format-list

Comments

Comments are marked with the symbol #:

Comment

VARIABLES 91

Variables

Variables start with the variable symbol $. Variable names can consist of
letters and numbers, as well as an underscore. Names, which have already
been given to predefined variables, especially the name $_, are not valid.

Set the Type
Variables are either untyped

Sa = 5

or explicitly typed on a WPS data type (also known as type accelerator) or
any .NET class:

Sa
Sa

[int] 5
[System.DateTime] "1.8.1972"

You can use all NET class names as type names, as well as some pre-
defined WPS type names. For example, [int], [System.Int32], and
[int32] are completely identical. [int] is the integrated WPS type indi-
cator for whole numbers with a length of 32 bits. Internally, this is the
NET class [System.Int32]. This name, however, can be shortened to
[int32].

TIP The use of a type name in front of a variable assignment (for example,
[int] S$a = 5) limits the variable to accept only data of this type, and is thus
related to the classic syntax in languages such as C++, Java und C#.

A variable is implicitly declared by an assignment of a value and is valid
within the relevant scope in which it had been declared (for example, a
block, a subroutine, or within the whole script). With Remove-variable,
you can remove a variable declaration.

If variables do not have to be declared explicitly, there is always the
danger that typing errors may cause undesired effects. With the command
Set-PSDebug -Strict, you can make sure that WPS reports a failure if
you use a variable that has not yet been assigned a value.

o
-
=
m
-
=)
=
=
=
wv
x
m
m
=
wv
[a)
=
-
-
—
>
=
@
c
>
)
m

92 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

In the following example, WPS reports a failure in the last command,
because $y is valid only within the block marked by curly brackets:

Set-PSDebug -Strict

S$x = 5
{
Sy = 5
Sx
}
Sy

Available Types

Table 6.1 shows all available type accelerators. You will find descriptions of
some of them (for example, [wMI] and [ADSI]) later in this book.

Table 6.1 WPS Type Accelerators

[int] typeof (int)

[int[]] typeof (int[])

[long] typeof (long)
[longl[]] typeof (longl[])
[string] typeof (string)
[string[]] typeof (string[])
[char] typeof (char)
[char[]] typeof (char[])
[bool] typeof (bool)
[bool[]] typeof (booll[])
[bytel] typeof (byte)
[double] typeof (double)
[decimal] typeof (decimal)
[float] typeof (float)
[single] typeof (float)

[regex] typeof (System.Text .RegularExpressions.Regex)
[array] typeof (System.Array)

AVAILABLE TYPES 93

[xml] typeof (System.Xml .XmlDocument)

[scriptblock] typeof (System.Management .Automation.ScriptBlock)

[switch] typeof (System.Management .Automation.
SwitchParameter)

[hashtable] typeof (System.Collections.Hashtable)

[typel typeof (System. Type)

[ref] typeof (System.Management .Automation.PSReference)

[psobject] typeof (System.Management . Automation.PSObject)

[wmi] typeof (System.Management .ManagementObject)

[wmisearcher] typeof (System.Management .ManagementObjectSearcher)

[wmiclass] typeof (System.Management . ManagementClass)

Getting the Type

You can always get the data type of the variable, whether the variable has
been explicitly typed or not. Untyped variables automatically take over the
type of the last assigned value.

The method GetType () retrieves the data type in the form of a NET
object of the type System. Type. Because each WPS variable is an instance
of a .NET class, each WPS variable owns the method GetType (), handed
down to all NET objects by the mother of all NET classes, which is
System.Object. In most cases, you will be interested only in the class
name, returned from the property Fullname (including namespace) or
Name (without namespace):

Sb = [System.DateTime] "1.8.1972"
"Sb has the type: " + $b.GetType() .Fullname

Predefined Variables

WPS knows several predefined variables (also called integrated variables
or internal variables). Table 6.2 shows only some of these variables.

o
-
=
m
]
e
=
=
=
wv
=X
=
m
=
wv
[a)
=2
-
3
=
>
=
@
(=
=
©
-

94 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

Table 6.2 Predefined WPS Variables (Selection)

Variable Meaning

Strue Value true

$false Value false

SOFS Separator for displaying object collection

$Home Home directory of the entered user

$PSHome Installation directory of the WPS host

$Args Parameter (to be used in functions)

$Input Current content of the pipeline (to be used in functions)

S Current object of the pipeline (to be used in loops)

$StackTrace Current call sequence

$Host Information about the WPS host

$LastExitCode Return value of the last executed external Windows or console
application

$Error Complete list of all errors that have occurred since the start of
WPS (maximum of errors saved is set by $MaximumErrorCount)

Example

Consider this example for the use of $0Fs:
The command

$OFS:"/" ; [string] ("a", "b", ncn)
displays the following output:

a/b/c

TIP All declared variables, integrated and user defined, are listed by the com-
mand Get-ChildItem Variable (alias Dir Variable:).

Dir Variable:p* lists all variables that start with the letter P (uppercase
or lowercase). Get-Variable p* has the same effect.

AVAILABLE TYPES 95

Constant Values

Some of the integrated variables cannot be changed. You can “lock” your
own variables as follows:

Set-Variable variablename -Option readonly

WARNING Note that in this scenario, you must use the variable name without
the dollar sign!

Variable Resolution

Variables are not only resolved in expressions, but also within strings. If you
declare

[int] Scount = 1
[string] S$Computer = "EO1"

then, instead of

Scount.ToString () +". Access to Computer " + S$SComputer
you can write this shortcut:

"Scount. Access to Computer S$SComputer"

In both cases, the result is the same:

"1l. Access to Computer EO1"

Variable resolution also works in parameters of commandlets. The fol-
lowing two commands have the same meaning (that is, in both cases the
directory path WinNT://E01 is called):

Get-DirectoryEntry ("WinNT://" + S$Computer)
Get-DirectoryEntry "WinNT://$SComputer"

o
-
=
=
-
e
=
=
=
wv
=
=
m
=
wv
(o)
=
-
-
—
>
=
@
[
=
®
-

96 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

The variable resolution is not just a resolution of variables, but a reso-
lution of expressions. The dollar sign can also start any expression (see
Figure 6.1). For example

"1+3=$(1+3)"
"Current Time: $((Get-Date).ToShortTimeString())"

& powershell - hs [elevated user] - C\WINDOWS
Uindows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

18 "1+3=5(1+3>"
1+3=

"Current Tine: $({(Get—Date).ToShortTineString()>>"
Current Time: 18:39
34

Figure 6.1 Output of the preceding examples

WARNING A variable resolution does not take place when the string is set in
simple quotation marks:

'Scount. Access to computer $Computer'.

Numbers

In WPS, you can write numbers as simple numbers, formulas, or as value
ranges (see Figure 6.2). You can express hexadecimal numbers by prefix-
ing 0X (for example, 0X££ = 255); you can then use them just as you use
decimal numbers (for example, 0Xff+1 = 256).

When assigning a number literal to an untyped variable, WPS creates
an instance of the type System.Int32. If the value range of Int32 is not
sufficient, Int64 or Decimal is created. If the number literal is a fraction
(with a dot as separator for the internal decimal places), WPS creates
Double or Decimal.

NUMBERS 97

Powershell - hs [elevated user] - H:\demo\WPS

Uindows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

H: “deno“UPS
i 1

1
24 142

3
3 2.5

Figure 6.2 Numbers in WPS

If you want to have control over the data type of the variables, you
must type the variable explicitly (for example, with [Byte] or
[Decimal]). For Decimal, you have another option. You can also add the
letter D to the literal (for example, 5.14):

Implicit Integer
$1 = 5
$i.GetType () .Name

Implicit Long
$i = 5368888888888888
$i.GetType () .Name

Implicit Decimal
$1 = 536888888883838888388388388888
$i.GetType () .Name

Explicit Long (i.e. 64-bit integer)
[Int64] $1 = 5
$1.GetType () .Name

Explicit Byte
[Byte] $b = 5
Sb.GetType () .Name

Implicit Double
sd = 5.1
$d.GetType () .Name

sh
=
=
m
-
(=}
=
m
=
wv
=
m
=
=
wv
o
=
]
-
—
=
=
@
(=3
3
(2]
m

98

CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

Implicit Decimal
sd = 5.1d
Sd.GetType () .Name

Explicit Decimal
[Decimal] $d = 5.1
Sd.GetType () .Name

When you explicitly set the type, you can choose whether you use the
WPS types [int] and [long] or the corresponding .NET class names
[System.Int32] and [System.Int64].

WARNING With the short forms KB, MB, and GB, you can assign the units of
measure kilobyte, megabyte, and gigabyte (for example, 5MB stands for the
number 5242880, 5 * 1024 * 1024).

These units of measure are valid starting with WPS 1.0 RC2. Before that,
the short forms M, X, and G were used.

Random Numbers

You can create a random number with the commandlet Get-Random,
which is part of the PowerShell Community Extensions (PSCX) [CODE-
PLEXO01]. Get-Random creates a number between 0 and 1. You can influ-
ence the range with the parameters -Min and -Max (see Figure 6.3).

B rowershell - Holger Schwichtenberg (www.IT-¥isions.de) - [Running as Ad

i
Get—Random

Get—Random
Get—Random
Get—Random
Get—Random
Get—Random
Get—Random
Get—Random
Get—Random
Get—Random

Get—-Random

Figure 6.3 Use of Get-Random for the creation of random numbers 100
and 200

STRINGS 99

Strings

Strings exist in the WPS as instances of the .NET class System.String.
They are marked by quotation marks or by @ at each end of the string. The
last option, which also allows including line breaks, is called Here-String.

Listing 6.1 Here-String Example

#Here-String

Q

Long text

can be split

into different lines
using a specific separator
‘e

In both cases, the strings may contain variables or expressions, which
are automatically resolved.

Listing 6.2 Variable Resolution within a String

Sa = 10
Sb= "The current value is $a!"
Write-Warn Sb

NOTE When you want fo transfer parameters to commandlets, remember that
you can surround strings with quotation marks only; otherwise, the parameter-
separation would become unclear (for example, if there is a blank).

Working with Strings

WPS provides all processing options for strings of the class System.
String (for example, Insert (), Remove (), Replace(), and Split());
see the list of members in Figure 6.4.

o
-
=
=
-
e
=
=
=
wv
=
=
m
=
wv
(o)
=
-
-
—
>
=
@
[
=
®
-

100 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

PoverShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

no“UPS
' | get—menber —mn method

TypeNane: Systen.String

HemberType Definitio

Hethod .Object Clone<{>

Hethod .Int32 ConmpareTo{(Ohject value), System.Int...

Hethod .Boolean Contains{String value)

Hethod Uoid CopyTo{Int32 sourcelndex, Charl[] des...
EndsWith Hethod .Boolean EndsWith{String value), System.Bo...
Equals Hethod .Boolean Equals{Ohject ohj), Syszten.Boolea...
GetEnunerator Hethod -CharEnunerator GetEnumerator(}
GetHashCode Hethod -Int32 GetHashCode ()

Hethod .Type GetType(>

Hethod .TypeCode GetTypeCode()

Hethod .Char get_Chars{Int32 index>

Hethod _Int32 get_Length()

Hethod -Int32 IndexOf (Char value, Int32 startInde...

Hethod -Int32 IndexOffiny(Char[] anyOf, Int32 sta

Hethod .8tring Insert{Int32 startIndex, String va.

Hethod .Boolean IzsMNormalized{)>, System.Boolean I

Hethod -Int32 LastIndexOf (Char value, Int32 start.
LastIndex0ffiny Hethod _Int32 LastIndexOffiny(Char[] any0f, Int32 _
Hornalize Hethod .String NHornmalize{(}, Systen.String Nornal

Hethod -String PadLeft{(Int32 totallWidth), Systen

Hethod .8tring PadRight{Int32 totalWidth)., Syste

Hethod .String Remove(Int32? startIndex, Int32 co

Hethod .String Replace{Char oldChar, Char neuCha

Hethod String[] Split{(Paramns Charl] zeparator),
StartsWith Hethod .Boolean StartsWith{String value)., Systen
Substring Hethod String Substring(Int32 startlndex), Syste.
ToCharfirray Hethod & ToCharfirray{>, System.Charl] ToCha...
ToLower Hethod - ToLower(), Syszten.String ToLower(C...

Hethod . i ToLowerInvariant{}

Hethod - i ToString(>, System.String ToString...

Hethod . i Tolpper{>, Systen.String Tolpper{C...

Hethod - i TollpperInvariant ()

Hethod & ing Trim{Parans Char[] trinChars)>, Sys...

Hethod . TrinEnd(Parans Char[] trim rs)

Hethod Systen.String TrinStart(Params Char[] trim

Figure 6.4 Methods of the class system.String

Listing 6.3 shows the following string operations:
m Changing all letters to capital letters

m Inserting text
m Extracting a portion of text as single characters

Listing 6.3 Changing Strings

Convert to uppercase letters
Sa = "Dr. Schwichtenberg"
Sa.ToUpper ()

$b

STRINGS 101

Insert a string at a certain position
Sa = Sa.Insert(4, "Holger ")
Sa

Extract text parts
Sc = sal4..9]
Sc

P§ J:sdemo\Dokumente?
DR. SCHWICHTENBERG

Dr. Holger Schwichtenberg
ul
o
1
tl
e
¥

Figure 6.5 Output of the preceding script

Splitting and Joining Strings

Sometimes, you have to split a string (for example, "Holger;
Schwichtenberg; Essen;Germany;www.IT-Visions.de").
For this case, the NET Framework offers the method split () in the

class System. String (see Listing 6.4).

Listing 6.4 Use of the Method sp1it ()

System.String.

[String] $CSVString =

w "Holger; Schwichtenberg; Essen;Germany;www.IT-Visions.de"
SCSVArray = S$CSVString.Split(";")

SSurname = $SCSVArray[l]

$Surname

Alternatively, you can use the commandlet Split-String from
PSCX. This shortens things a bit (see Listing 6.5).

o
=
=
m
-
=)
=
=
=
w
x
m
m
=
w
[a)
=
-
-
—
>
=
@
c
>
)
m

102 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

Listing 6.5 Use of the Commandlet sp1it-string

[String] $CSVString =

w "Holger; Schwichtenberg; Essen;Germany;www.IT-Visions.de"
$SCSVArray = Split-String $CSVString -Separator ";"
$Surname = $CSVArray[1l]

$Surname

The counterparts for the joining of strings are the method Join () and
the commandlet Join-String (see Listings 6.6 and 6.7). When you use
Join(), keep in mind that this is a static method of the class
System.String.

Listing 6.6 Use of the Static Method Join ()

SArray = "Holger", "Schwichtenberg", "Essen", "Germany",
- 'www.IT-Visions.de"

SCSVString = [System.String]::Join(";", SArray)
SCSVString

Listing 6.7 Use of the Commandlet Join-String

SArray = "Holger", "Schwichtenberg", "Essen", "Germany",
- "ywww.IT-Visions.de"

$CSVString = Join-String $Array -Separator ";"
$CSVString

Date and Time

The commandlet Get-Date creates an instance of the .NET class
System.DateTime, which contains the current date and time.

Get-Date
You reduce the output to the date as follows:

Get-Date -displayhint date

DATE AND TIME 103

You reduce the output to the time as follows:
Get-Date -displayhint time

You can also use Get-Date to create a specific date/time and to save
this in a variable:

$a = Get-Date "8/1/1972 12:11:10"

You can calculate the difference between the current date and the
date/time saved in a variable by calling the method Subtract ():

(Get-Date) .Subtract ((Get-Date "8/1/1972 12:11:10"))
Alternatively, you can simply use the minus operator:
(Get-Date) - (Get-Date "8/1/1972 12:11:10")

The preceding examples create the following output:

Days : 12662

Hours 11

Minutes : 56

Seconds : 57

Milliseconds : 927

Ticks : 10940398179276185
TotalDays : 12662,4978926808
TotalHours : 303899,949424338
TotalMinutes : 18233996,9654603
TotalSeconds : 1094039817,92762
TotalMilliseconds : 1094039817927, 62

Internally, WPS processes periods of time as instances of the class
System.TimeSpan. You can also create periods of time by yourself with
New-TimeSpan and use this to calculate, for example, the following;

Speriod = New-TimeSpan -Days 10 -hours 4 -minutes 3
w-seconds 50

Snow = Get-Date

Sfuture = Snow + S$Speriod

o
-
=
=
-
e
=
=
=
wv
=
=
m
=
wv
(o)
=
-
-
—
>
=
@
[
=
®
-

104

CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

NOTE With New-TimeSpan, you can indicate the period only in days, hours,
minutes, and seconds. An indication in months or years in not possible.

Remote Computers

You cannot get the time from a remote system with the commandlet Get-
Date. You can do so only with assistance of the Windows Management
Instrumentation (WMI) class Win32_Currenttime, as follows:

Get-Wmiobject Win32_CurrentTime -computername E02

The result of the preceding operation is not, however, a .NET object
of the type System.DateTime, but a .NET object of the type System.
Management . ManagementObject, which wraps a WMI object of the type
root\cimv2\Win32_LocalTime.

Changing the Date and Time

You can set the current time on the local system with Set-Date (see
Figure 6.6).

2 PowerShell - Holger Schwichtenberg (www.IT-Visions.de) - [Running as Administrator] - C:\... [H[=] B

18% Scurrent = Get—Date
19# Scurrent

31 Decenber 1999 23:80:10
208 Scurrent = Get—Date
21#ft Scurrent

B2 Octoher 20087 13:48:44

22%# set-Date "1,1-2000 08:08"
A1 January 2000 B0:80:88

238 c:\temphapp.exe

248 set-Date Scurrent

B2 Octoher 2007 13:40:44

254

Figure 6.6 Use of set-Date to start an application with a different date

ARRAYS 105

Arrays

An array is declared by assigning a value set, separated by commas:
Sa = 01,08,72,13,04,76

The array can also be declared explicitly with the WPS type identifier

[Array]:
[Array] S$b
$b = 1,2,3

If you want to define an array with only one element, you have to start
the list with a comma or declare the array explicitly:

$a = ,"Only one element"
[Array] $a = "Only one element"

To list an array, you can use the commandlet Foreach-Object, but
you do not have to. If an array is the output of the last commandlet in the
pipeline, the array is displayed (see Figure 6.7).

The property Count delivers the number of elements in the array:

[array] S$b
$b = 1,2,3
$b.Count

To access elements, you must set an index (starting with 0) or an index
range in brackets. The index range has to be separated by two dots (for
example, $a[3..6]). The operator += completes an element at the end of
an array (see Figure 6.7). The removal of elements is not possible. (You can
only copy the elements into another array.)

You can join two arrays with the plus operator:

$DomainControllers = "EO1", "EO2", "EO3"
SMemberServers = "E04", "EO5", "EO06"
SAllServers = S$DomainControllers + S$MemberServers

SAllServers.Count # Result: 6 !

o
-
=
m
-
e
=
=
=
wv
=X
=
m
=
wv
[a)
=
-
-
—
>
=
@
(=
=
®
-

106 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

= windows PowerShell]

PS J:\Denmo\Skripte> 5a = 81.88.72.13.84.76
{S J:\DenoSkripte> %a

\DemoSkripte> %al2]

\DemoSkripte}> %a += 11
\DenosSkripte> %a

\DenosSkripte> $h = $al@,1 + 3..($a.length — 131
:\Demo“Skripte> $h

:sDemosSkripte >

Figure 6.7 Output of an array

Multidimensional arrays are possible, when you surround the elements
with parentheses. The following example shows the creation of a two-
dimensional array. The elements of the first dimension contain arrays with
three elements each. In this scenario, you can also complete the collection
with the plus operator:

$DomainControllers = ("EO1", "192.168.1.10", "Building 1"),
w ("EQ2", "192.168.1.20", "Building 2"),

= ("EQ3", "192.168.1.30", "Building 3")

"Number of Computers: " + S$DomainControllers.Count

"IP Address of Computer 2: " + S$DomainControllers[1][1]

wi 192.168.1.20

"Building of Computer 2: " + $DomainControllers[1][2]

w# Building 3

$DomainControllers += ("E04", "192.168.1.40", "Building 4")
"Building of Computer 4: " + $DomainControllers[3][2]

w# Building 4

Associative Arrays (Hash Tables)

Besides the arrays, WPS also supports named (associative) lists in the form
of so-called hash tables. Elements in a hash table are not identified by their

ASSOCIATIVE ARRAYS (HASH TABLES) 107

position, but by a distinct marker (called a key). You can find this concept in
other languages, too, where it is often called an associative array. The basic
concept for this is the NET class System.Collections.Hashtable.

To define a hash table, you have to use the @ sign, followed by an ele-
ment list in curly brackets ({}). You must use a semicolon (;) to separate
each element. Each element consists of an element name and an element
value, which have to be separated by an equals sign (=). The element name
must not be set in quotation marks. If you want to explicitly indicate the
data type, use [Hashtable].

Implicit Hash Table
$Computers = @{ E01 = "192.168.1.10"; E02 = "192.168.1.20";
wEQ3 = "192.168.1.30"; 1}

Explicit Hash Table
[Hashtable] $Computers = @{ E01 = "192.168.1.10"; E02 =
w"192.168.1.20"; E03 = "192.168.1.30"; 1}

Hash tables can be accessed both via the notation with square brack-
ets as simple arrays and via the dot operator. This makes working with hash
tables rather elegant:

Get IP Address of Computer E02
SComputers["E02"]
SComputers.E02

You can also write to the elements directly:

Change on Element
SComputers.E02 = "192.168.1.21"

It is very convenient that a new element is created when you write a
value to this element. Thus, you can also create a hash table step by step
(that is, you can start with an empty list). An empty list is expressed with
@{ 1}, as follows:

Add a new Element
SComputers.E04 = "192.168.1.40"

Start with an empty list
SMoreComputers = @{ }

o
-
=
m
-
=)
=
=
=
wv
x
m
m
=
wv
[a)
=
-
-
—
>
=
@
c
>
)
m

108 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

$MoreComputers.E05 = "192.168.1.50"
$MoreComputers.E06 = "192.168.1.60"
SMoreComputers.Count # Result = 2

You can join two hash tables just as you can join two arrays. However,
this works only when each element name appears only once in both lists.
If there are duplicates, a runtime error is generated:

Add two hash tables
SAllComputers = S$SComputers + S$SMoreComputers
$AllComputers.Count # Result = 6

You can use hash tables not only for real lists, but also for a simple def-
inition of your own data structures (for example, to save information about
a person):

Use a hash table as a custom data structure
SAuthor = @{ Name="Dr. Holger Schwichtenberg";
wAge=35; Country="Germany" }

SAuthor .Name

SAuthor.Age

$Author.Country

Operators

WPS supports the basic arithmetic operators +, -, *, /, and % (modulo
operation, alias division remainder). The plus sign (+) is used in addition
and in the linking of strings. Even lists (arrays, hash tables) can be linked.
The star operator (*) is used in multiplication, but also has another mean-
ing: You can multiply a string as well as an array with this sign. Therefore,
signs or elements are repeated as often as necessary. However, it lies in the
nature of a hash table that elements cannot be multiplied, because this
would lead to doubled element names, which is invalid:

Multiply a string

$String = "abcdefghijklmnopgrstuvwxyz"
$LongString = $String * 20

"Count: " + $LongString.Length # = 520

OPERATORS 1 ()G?

Multiply an Array

$a = 1,2,3,4,5

Sb = sa * 10

"Count: " + S$b.Count # = 50

The equals sign (=) is used as an assignment operator. Of special inter-
est are cross-assignments, which enable you to elegantly exchange the con-
tents of two variables. Normally, you need an interim variable to do this. In
WPS, however, you can just write $x, $y = $y, $x (see Figure 6.8).

= rowershell - hs [elevated user] - H:\demo\WPS

Windows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

H:sdeno“UPS
1 gx =
28 Sy
3% 5
44
1

by

-1
. 5y = Sy, Sx

*
x

Figure 6.8 Cross-assignments for the exchange of variables in WPS

Another interesting operator is the ampersand (&). You can use it to
execute a string as a command, thus enabling you to write dynamic and
self-modifying program code.

Here’s an example:

SWhat = "Process"
& ("Get-"+$What)

The preceding command sequence leads to the execution of the com-
mandlet Get-Process. You could get the content of the variable $what
from another source, too (for example, a user input).

Alternatively, you can use the commandlet Invoke-Expression
rather than the operator &:

SUserEntry = "Process"
invoke-expression ("Get-"+$UserEntry)

.ON
=
=
m
-
(=}
=
m
=
wv
=
m
fo
=
wv
P
=
<
-
—
=
=
@
(=3
3
(2]
m

110 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

WARNING Keep in mind that dynamic code execution raises a safety risk
when user entries are processed directly in commands. You could get the impres-
sion from the preceding example that the risk is limited, because the Get com-
mand is always executed. However, it is not, as the following script shows:

SUserEntry = "Process | Stop-Process"

invoke-expression ("Get-"+$UserEntry)

Control Structures

The PowerShell Script Language (PSL) contains the following control

structures:

if (condition) {...} else {...}

switch ($var) {value {...} value {...} default {..} } }
while(condition) { ... }

do { ... } while (condition)

do { ... } until (condition)

foreach ($var in S$collection) {...}
function name {...}

break

continue

return

exit

trap failure class { ... } else { ... }

throw "failure text"
throw failure class

NOTE You can find more information about the commands in WPS help docu-
ments. In this book, we avoid a detailed description of these basic constructs in
favor of other content, specifically because their functioning is quite similar to
other programming languages. Throw and Trap are discussed separately in
Chapter 7, “PowerShell Scripts.”

Loops

Listing 6.8 shows self-explanatory examples for the constructs for, while,
and foreach.

CONTROL STRUCTURES lI l lI

Listing 6.8 Loops

Loops from 1 to 5
"for:"
for ($1i = 1; $i -1t 6; Si++) { $i }

"While:"

$i =0
while($i -1t 5)
{ Si++

Si

}

"Foreach:"
$i =1,2,3,4,5
foreach ($z in $i) { $z }

Conditions

Listing 6.9 shows self-explanatory examples for the use of 1 £ and switch.

Listing 6.9 Conditions

if (si -1t 10)

{ "Smaller than 10" }
else

{ "Greater than 10" }

switch ($1)
{
1 {"one"}
5 {"five"}
10 {"ten"}
default { "other" }

o~
.
-
=
m
)
o
=
m
=
wv
=
m
=
=
wv
n
=
<
-
—
>
=
D
c
>
(2]
m

112 CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

Subroutines

Listing 6.10 shows self-explanatory examples for subroutines with parame-
ters and return values.

Listing 6.10 Subroutines

function UnnamedParameter ()

{

"To this functions has been given: S$args[0] and S$Sargs[1]"
return Sargs([0] + Sargs[1l]

}
UnnamedParameter 1 2

function NamedParameter ([int] $a, [int] $b)

{

"To this function has been given: $a and S$b"
return $b + $a

}

NamedParameter 1 4

TIP WPS has several integrated functions (see Figure 6.9). The installation of
PSCX adds even more. The execution of the command dir function: lists all
functions and demonstrates that even some commands, such as C: and Dir,
retained for backward compatibility with the classic Windows console, are real-
ized as integrated functions.

SUMMARY

113

[Powershell - hs [elevated user]

W dir functio
ConnandT ype

Function
[Function
[Function
Function
Function
[Function
[Function
Function
Function
[Function
[Function
Function
Function
[Function
[Function
Function
Func

[Func

Function

pronpt
TahExpansion
Clear-Host
nore

help

nan

nkdir

N>======>—l=l===.e~=oz:r=r—.~=n~nmunw=a

Test-PscxPreference
Start-EyeCandy
Urite—Pronpt
Update—HostTitle
Get—Propertylalue
Remoue—ficcessors
New-HashOhject
Invoke-Ternar:
Invoke-HullCoalescing
Add-Pachlariahle

c

Get-UariahleSorted
Get—Pscxlariable
Get-Pscxflias
GotPooxCndlet
PscxDrive
Eae-rile
Update-Profile
Edit-Profile
Edit-HostProfile
Edit-GlohalProfile
Edit-GlobalHostProfile
Tacs
Quote-List
Quote-String
Collect
Get—ExceptionForHR
Get-Exceptionforliindz
Set-Dreakpo
Gt taiisTaan
Enahle-Breakpoints
Dicahle-Breakpointe
Skiv-Dreakpoints

Definitinn

Urlte Pronpt ((Get—History —
aran<4line, %lastWord) Get—

spaceType - [Systen.Managen.
paran{[string[11épathsd; if.

Set-Location

Set-Location

et-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

get-Location

Set-Locat

Sot-Locaton

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location

Set-Location Z:

paran<$nane> if (Test—Path

if ($PgexForeColor> C...

naran<sld $ForeColor = $Psc.

$P"can"tT1tlePrePerence.

param([u ing] $propertyNane.

process

process {
pthlocklconditio.
pthlockléprimaryE.

= $(throw

ndx .
Get-Uapriahle | Sort Nage

able ! Where €
i Mhere {§_.Descri.
Get—Conn and ~tupe ondlet | Ui-
Get—PSDr Uhere 5 _.Prou.
parand [stwing15Pach) hegin (.
$UserProfile. ..
Eglt File $UserProfile...

e $Proflle
Edit-F Path §PSHone .
Edit—File <Join-Path SPSHame.
$0utputEncoding = [Consolel:.
Sargs
"oargs "
[System_GC1::Collect (>
parant[long 15k $(thrnu
parand [int 15ex =
Daran([ﬁcrlpthlu:k] Sconditi.

Figure 6.9 List of integrated functions (including PCSX)

Summary

PowerShell Script Language (PSL) does not use the exact same syntax as
any other existing programming language, but it is very similar to PERL,
PHP, Python, and C#. Variables can be typed or untyped. All used types
are classes from the NET Framework class library, even basic types such

o~
B
=
=
m
-
(=]
=
m
=
wv
=
m
=
=
wv
o
=
]
-
—
=
=
(2]
(=3
3
(2]
m

114

CHAPTER 6 THE POWERSHELL SCRIPT LANGUAGE

as string and int have a corresponding class in the .NET Framework.
Therefore, the whole functionality for manipulation of types (for example,
string functions) is available to the WPS user.

Variables can contain single values or an array of values. An array can
be accessed via a numeric index or distinct marker.

In addition to variables, WPS supports all the important syntax con-
structs for structured programming (for example, conditions, loops, and
subroutines).

POWERSHELL SCRIPTS

In this chapter:

A First PowerShell Script Example 115
Start a PowerShell Script 117
Including Scripts 118
Scripting Security 118
Signing of Scripts 120
letting a Script Sleep 122
Errors and Error Treatment L 122

Command sequences can be saved as Windows PowerShell (WPS) scripts
in the file system and executed later (with or without observation by any
user). These scripts are pure text files and have the file extension .ps1.
The number 1 here stands for version 1.0 of WPS. Regarding longevity of
many scripts, Microsoft provided the possibility that different versions of
WPS with different script file formats can coexist on one system.

A First PowerShell Script Example

Listing 7.1 shows a script that files a hierarchy of keys in the registry. The
simple addition of numbers is here intentionally contained in a subroutine,
to show the return of values to the caller with the return command.
Literals and expressions, which are in the script without a commandlet,
display at the console.

115

116 CHAPTER 7 POWERSHELL SCRIPTS

Listing 7.1 A PowerShell Script to Manipulate the Registry

FhAHH SRR S

PowerShell Script

The script creates a key hierarchy in the registry.
(C) Dr. Holger Schwichtenberg

FhAHAH SRR

=== Subroutine, executing an addition
function Addition

{

return $args[0] + Sargs[1l]

}

=== Subroutine, creating a key in the registry.
function CreateEntry
{

"Create entry..."

New-Item -Name ("Eintrag #{0}" -f $Sargs[0]) -value Sargs[1]
w_-type String

=== Major routine
"PowerShell Registry Script (C) Dr. Holger Schwichtenberg 2006"

Navigation in the Registry
cd hklm:\software

Check, if entry \software\IT-Visions exists
$Sb = Get-Item IT-Visions

if (Sb.childName -eq "IT-Visions")

{ # Delete existing entry with all sub-keys
"Key already exists, delete..."

cd hklm:\software

del IT-Visions -force -recurse

}

Create new entry "IT-Visions"

"Create IT-Visions..."

md IT-Visions

START A POWERSHELL SCRIPT 1‘7

cd IT-Visions

Create subkey
for($a=1;%a -1t 5;S%a++)

{

Sresult = Addition $a S$Sa
CreateEntry $a S$Sresult

}

™
-
(=]
=
m
=
wv
=
m
=
=
wv
Pal
=
]
-
73

Start a PowerShell Script

Jetfrey Snover, leading architect of WPS, called the fact that a WPS script
cannot be started with a double-click on the symbol in Windows a “top-
security function.” Basically, you can add this start option, but it is not con-
tained in the standard WPS installation.

A WPS script is started by entering the filename with or without the
file extension. Moreover, the prefaced commandlet Invoke-Expression
or the operator & are optional. You can use a relative or an absolute path:

ScriptName or
ScriptName.psl or
& ScriptName.psl or

Invoke-Expression ScriptName.psl

Alternatively, you can start a WPS script out of the normal Windows
command-line window via a link from the Windows desktop or as login
script by prefacing the following:

powershell .exe:
powershell.exe ScriptName

WARNING WPS scripts are subject to the same limitations and workarounds
as WSH scripts, as far as Vista user account control (User Account Control,
UAC) is concerned.

118

CHAPTER 7 POWERSHELL SCRIPTS

Including Scripts

Dot sourcing describes a possibility to call a script and to make the defini-
tions included in this script permanently available in the current WPS con-
sole. The difference to the previously mentioned possibilities of starting a
script is that after dot sourcing all variables declared in the script, all WPS
functions contained in the script are available for later operations outside
the script. Dot sourcing is an easy way to extend the functionality of WPS.
Dot sourcing is activated by a pre-positioned dot followed by a blank space:

ScriptName.psl

NOTE When a dot-sourced script contains “free” commands (that is, commands
that are not part of a function), these commands are executed immediately.

You can also integrate one script into others with dot sourcing:

Listing 7.2 A WPS Script That Exists Only to Integrate and to Call Other Scripts

Demo User Management
Include three scripts

("H:\demo\PowerShell\ADS\Localuser_Create.psl"
("H:\demo\PowerShell\ADS\LocalGroup.psl")
("H:\demo\PowerShell\ADS\Localuser_Delete.psl")

Scripting Security

Active Scripting via scripting features in Internet Explorer, Outlook, and
Windows Script Host (WSH) raised security concerns. In contrast, how-
ever, and according to Microsoft documentation, WPS is “by default a
secure environment.” [MS02] When you try to use the WPS console either
interactively or to start a script, you will soon notice that no script can be
executed (see Figure 7.1). The execution policy does not accept any scripts
whatsoever. In the following pages, you learn how to change this behavior.

SCRIPTING SECURITY 1‘9

& windows PowerShell

PS H:wdemosps™,
PS H:vdemosps: 1lide>
PS H:\demosps“powershellide> -\UMI_Demos.psi

PS " H:\demo\psSpou 1lide>
PS H:\demo‘\ps*; 1lide> Set—ExccutionPolicy RemoteSigned
PS H:vdemops™, 1lide?

PS H:wdemops: 1lide> -\WHI_Demos.psi

UQL-Demo

adaptertype description

Ethernet 882.3 1394 Net Adapter

[Ethernet 882.3 NUIDIA nForce Metworking Controller
Ethernet 8682.3 NUIDIA nForce Networking Controller
Ethernet 882.3 Uirtual Machine Network Services Driver
Ethernet 882.3 Uirtual Machine Network Services Driver
WML —Hon iker—Demo

|
.
o
(=]
=
m
=
wv
=
m
=
=
wv»
Pal
=
il
-
73

Figure 7.1 At first, script execution has to be activated explicitly in WPS.

Even before the final launching of WPS, intended WPS viruses were
reported. However, these were only a threat if started explicitly.
[MSSec01]

Security Policy

A user can use WPS interactively only after lowering the security level on
the execution policy via the commandlet Set-Executionpolicy. The fol-
lowing modes are available:

m Restricted. This is the default value and prevents execution of any
script.

m AllSigned. Only signed scripts of trusted sources can start.

m RemoteSigned. A trusted signature is needed only for scripts from
the Internet (via browsers, Outlook, and Messenger) and other net-
work resources; local scripts also start without a signature.

m Unrestricted. All scripts can run.

You (I hope) do not want to use Unrestricted; the Unrestricted mode
opens the door to “evil” scripts that might be transferred as e-mail attach-
ments, for instance. In the long run, you should opt for AllSigned.
However, if you don’t want to delve into the complex process of digital
signing, the option RemoteSigned is a compromise.

The security policy is stored in the registry, on system level and
user level, in the keys HKEY_CURRENT_USER\Software\Microsoft\
PowerShell\I\Shelllds\Microsoft. PowerShell\ExecutionPolicy and HKEY_
LOCAL_MACHINE\SOFTWARE\MiCT()SOft\PowerShell\l\Shelllds\
Microsoft. PowerShell\ExecutionPolicy (see Figure 7.2).

120 CHAPTER 7 POWERSHELL SCRIPTS

4/ Reqgistry Editor =1ox]

File Edit View Favorites Help

=1 PowerShell ;I Mame Type |/ Data

21 [2B)(Default) REG_SZ (value ot set)

- 128 [ab] ExecutionPalicy REG_SZ RemoteSigned

-3 1031 [ab]path REG_SZ CHAWINDOWS\system32iWir

(] 1033
[1038

-] 1040
Qo CIETTE 2

-] 1042 2
[1046 Walue name:

IE #eculionPolicy

{7 3082
[PowershellEngine
=+ PowerShellsnapIns

{1 1Tvisions_PowerShell_Extensions Cancel
-7 Pscx

D Quest.ActiveRoles, ADManagement
-7 WorldwideWings_Powershell_Extensions
=20 shelids

4= Microsoft,Powershell :I 1] |

‘Mv Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft|Powershell}1\Shelllds\Microsoft. Powershell

Walue data;

sz

Figure 7.2 Persisting of the security policy in the registry

WARNING Note that the storing of the security policy in the registry under
Windows Vista can be changed only when the console runs under elevated
rights.

Signing of Scripts

When used within companies, digital signatures are adequate. For the sign-
ing of scripts, WPS offers the commandlet Set-AuthenticodeSignature.
To sign a script, follow these steps (also see Figure 7.3):

1. If you do not have a digital certificate to sign code, you must
create a certificate (for example, with the command-line tool
makecert.exe).

2. List your own Windows certificates in the WPS console:

dir cert:/currentuser/my

3. Display the position of the certificate that you want to use, and
save this certificate in a variable. (Note that the counting starts
with 0!)

Scert = @(dir "cert:/currentuser/my/")[1]

SIGNING OF SCRIPTS

121

4. Sign the script:

Set-AuthenticodeSignature scriptname.psl Scert

B windows Powershell

PS8 B:“\Code“Kapitel2B_PowerShell> dir cert:/currentusers/my
Directory: Hicrosoft.PowerShell.SecuritysCertificate: :currentuser‘my
B2789478247DA3BD1A496F76212AF85873C6DE?8 Cl U_HS

8F5n818ECB6C2FFB7445@75AB6 EE472DD5CE3344 O chwichtenbhery DEMO
8DDBADB28412F48ED33E13A6A510B82ABA515841 CN=WSE2QuickStartClient

PS B:“\Code“Kapitel2@ PowerShell} Scert = B{dir "cert:/currentuser/my/">[11]
PS B:“\Code\Kapitel?@_PouerShell> %cert

Directory: Microsoft.PoverShell.SecuritynCertificate: :currentusersmy

Thumbprint Subject
8F5N818ECB6C2FFBY?445875006 EE472DD5CE3344 CN=HSchwichtenberg DEMO

PS B:\Code\Kapitel2B_PowerShell> Set—AuthenticodeSignature Softwareinventar3.psl Scert

Directory: B:“\Code“Kapitel2B@_PowerShell

SignerCertificate Status Path

8F5A818ECB6C2FFB7445875AB6EE472DD5CE3344 Ualid Softwareinventar3.psi

PS B:“Code“Hapitel28_PowerShell> _

|
.
o
(=]
=
m
=
wv
=
m
=
=
wv»
Pal
=
il
-
73

Figure 7.3 Signing of a WPS script

Now, if you write

Set-AuthenticodeSignature AllSigned

the WPS script signed by you should run; no other scripts will run.

WARNING [f WPS prompts asking whether you really want to start the script
(see Figure 7.4), this is a sign that the script has been signed by somebody, the
issuing certificate authority is known in your regular certificate authority, but you
do not yet explicitly trust this script author. If you choose the option Always Run,
the script author is added to the list of trustworthy publishers in the certificate

management console.

122 CHAPTER 7 POWERSHELL SCRIPTS

B windows PowerShell

“Code\Kapitel2@_PowerShell>
“Code\Kapitel28_PowerShell>
“Code \Kap::lte 128_PowerShell>

NCodeNKapitel2@_PowerShell>

“Code“Kapitel2B PowerShell>

“Code\Kapitel2B_PowverShell>

“Code\Kapitel2B_PowerShell> Set—ExecutionPolicy allsigned
“CodesKapitel2B@_PowerShell>

“CodesKapitel2@_ PowerShell> .“Softwareinventar3d.psi

B:
B:
B:
B:
B:
B:
B:
B:
B:
B:
B:

o you want to run software from this untrusted publi

File B:“\Code“Kapitel2B@_PowerShell:sSoftwareinventard. published hy CN=HSchwichtenberg DEMO and
is not trusted on your system. Only run scripts from tr ed publishers.

[U] Never »un [D]1 Do not »un [R]1 Run once [A] Always »un [?]1 Help (default iz "D"D: g

Figure 7.4 Prompt at script start

Letting a Script Sleep

You can pause a WPS script for a while. The time is counted in millisec-
onds or seconds.
To make a script sleep for 10 milliseconds, add the following:

Start-Sleep -m 10
To make a script sleep for 10 seconds, add this:

Start-Sleep -s 10

Errors and Error Treatment

WPS differentiates between errors where the termination of an execution
is mandatory (terminating error) and errors where the execution may be
continued with the next command (nonterminating error). Terminating
errors can be caught with Trap commands. Nonterminating errors, on the
other hand, can be changed into terminating ones.

Trap catches occurring terminating errors and executes the indicated
code (see Table 7.1). In the error handling code, the variable $_ contains
information about the error in the form of an instance of the NET
class System.Management.Automation.ErrorRecord. The subobject

ERRORS AND ERROR TREATMENT 123

$.Exception is the actual error in the form of an instance of an error
class that inherits from System.Exception. Via $_.Exception.
GetType () .FullName, you get the error type. Via $_.Exception.
Message, you display the error text.

With the statements Break or Continue, the error handler is told
whether the script will be continued after the error. The default procedure
is Continue. With Exit, you can cause a definite immediate ending of the
whole script.

™
-
(=]
=
m
=
wv
=
m
=
=
wv
Pal
=
]
-
73

Example

With Listing 7.3, you can test WPS error behavior and experiment with the
different reaction options. The error is resolved by the call Copy-Item
with a wrong path (a nonterminating error) and Get-Dir. (This com-
mandlet does not exist; it’s a terminating error.)

Listing 7.3 Script for Testing the Trap Statement

Example for the testing of error trapping

trap {
Write-Host ("### trapped ERROR: " +
S_ .Exception.Message)
#Write-Error ("Fehler: " + $_.Exception.Message)
#continue
#break
#exit

#throw "test"

"Example for the testing of error trapping
"At first, everything works fine..."

copy ¢g:\Documents\Suppliers c:\temo\Documents
"Then it doesn’t work so fine anymore (false path)"
copy g:\Documents\Suppliers k:\Documents\Suppliers
"And then an unknown commandlet follows"

Get-Dir k:\Documents\Suppliers

"End of Script"

124 CHAPTER 7 POWERSHELL SCRIPTS

Table 7.1 Reaction of WPS to Errors When Trap Is Used

Not existing WPS shows error reports for Copy-Item (“drive does not
exist”) and Get-Dir (“not recognized as a cmdlet, function,
program, or script file”) and continues the execution until the
end of the script.

ATrap_Test.psl
Exanple for the testing of error trapping
fit first, everything works fine...
Then it doesn’t work so fine anymore (false path?

And then an unknown conmandlet follows

End of Script
vE .

Existing, only with In addition to the WPS error report, the Trap block reports
Write-Host its own error text.

& PpowerShell - hs [elevated user]

124

12# .STrap_Test.psi

Exanple for the testing of error trapping

Nt first, euerythlng works fine.

Then it doesn’t work so fine anynore (false path)

And then an unknown commandlet follows
{HHE trapped ERROR: The term ’'Get-Dir’ is not recognized as a cmdlet,., function. o
abhle program. or script file. Uerify the term and try again.

End of Script
it

Existing, with Just the error text from the Trap block displays.
continue

ERRORS AND ERROR TREATMENT 125

14 .~Trap Test.psi

Example for the testing of error trapping
Nt first, everything works fine...
Then it doesn’t work so fine anymore (false path?

And then an unknown commandlet follows

HHHE trapped ERROR: The term ’Get-Dir’ is not recognized as a cmdlet,. function,. oper|
able program. or script file. VUerify the term and try again.

End of Script

Existing, with break ~ The terminating error results first in its own error text,
followed by a WPS error text display. After that, the script is
terminated (i.e., the output “End of Scripts” does not display).

= rpowershell - hs [elevated user] Scriptsh\Error

151

15# .~Trap Test.psi

Example for the testing of error trapping

At first, everything works fine...

Then it doesn’t work so fine anymore (false path>

And then an unknown commandlet follows
HHHE trapped ERROR: The term ’Get-Dir’ is not recognized as a cmdlet,. function,. oper|
ahle program. or script file. Uerify the term and try again.

Existing, with exit The terminating error results first in its own error text. Then
the execution stops immediately.

Scripts\Error

SIrvap_Test.opsi
Example for the testing of error trapping
At first, everything works fine...
Then it doesn’t work so fine anymore (false pathd

fAnd then an unknown commandlet follows
il trapped ERROR: The term ‘Get—Dir’ iz not recognized as a cmdlet. function. opepr|
able program, or script file. Verify the term and try again.

174

Individual Reactions to Errors

The options vary even more because each single commandlet can decide
via the parameter ~ErroraAction (or —ea) how errors will be handled:

~
.
-l
o
=
m
=
w
=X
m
-
-
w
[a}
=
-l
-
wv

126 CHAPTER 7 POWERSHELL SCRIPTS

stop The error is displayed, and the execution is terminated (all
nonterminating errors thus become terminating errors).

Continue The error is displayed, and the execution is continued.
SilentlyContinue The error is not displayed, and the execution
is continued.

Inquire Users are asked whether they want to continue the exe-
cution despite the error.

All the possible combinations of ~ErrorAction and Trap are beyond
the scope of this book. Therefore, this text contains just sample cases (see
Table 7.2).

NOTE The application of ~ErroraAction has an effect only on existing com-
mandlets. The nonexisting commandlet Get-Dir, which is used in the example,

would not be able to react.

Table 7.2 WPS Reaction to Errors When Trap and ~ErrorAction Are Used

Trap

Not existing

221
221

& rowersShell - hs [elevated user] - H:\demo'\WPS\A_Scripts\Error

SIrap_Test.psi
Example for the testing of error trapping
Nt first, everything works fine...
Then it doesn’t work so fine anymore (false path?
Nnd then an unknown commandlet follows

End of Script

ErrorAction Reaction
—-ErrorAction An error report for the path error does
silentlycontinue not appear any longer with Copy-Item.

The problem will be further reported
with Get-Dir.

Existing, with
continue

-ErrorAction A standard WPS error report doesn’t

silentlycontinue appear at all, but only the user-defined
report from the Trap block for the
nonexisting commandlet.

ERRORS AND ERROR TREATMENT 127

ErrorAction

PowerShell - hs [elevated user]

221

228 ~Trap_Test.psi

Example for the testing of error trapping

At first, everything works fine...

Then it doesn’t work so fine anymore (false pathd

And then an unknown commandlet follows

HHil trapped ERROR: The term ’Get-Dir’ is not recognized as a cmdlet,. function, oper|
able program. or script file. Uerify the term and try again.

End of Script

~
.
-l
o
=
m
=
w
=X
m
-
-
w
[a}
=
-l
-
wv

Not existing -ErrorAction stop The execution is terminated with a
WPS error report, directly after the first
nonexecutable Copy command.

Scripts\Error

23 ~Trap_Test.psi

Example for the testing of error trapping

Nt first, everything works fine...

Then it doesn’t work so fine anymore (false path?

Existing, with -ErrorAction stop For both errors, just the error text
continue from the Trap block displays.

SIrap_Test.opsi
Example for the testing of error trapping
At first, everything works fine...
Then it doesn’t work so fine anymore (false pathd
iHHE trapped ERROR: Command execution stopped because the shell variahle "Errorfictio

nPreference" is set to Stop: Cannot find drive. A drive with name ’‘k’ does not exis

And then an unknown commandlet follows

il trapped ERROR: The term ‘Get—Dir’ iz not recognized as a cmdlet. function. opepr|
able program,. or script file. Verify the term and try again.

FEnd of Script

261

Further Options
WPS offers us even more with regard to error treatment:
m Via the global integrated variable $ErrorActionPreference, you

can set the standard reaction ~-ErroraAction for all commandlets.
This is in the standard setting Continue.

128 CHAPTER 7 POWERSHELL SCRIPTS

m S$Error contains the complete history of errors in the form of
objects that belong to error classes (for example, System.
Management.Automation.CommandNotFoundException)

m Trap blocks can be limited to certain error groups by indicating an
error type in square brackets (error class). Therefore, one script can
contain several Trap blocks.

m With Throw, you can create any error of your own within or outside
of Trap blocks. Throw creates a terminating error of the class
System.Management .Automation.RuntimeException. You can
also name another error class in square brackets. The class has to be
a class that derives from System.Exception.

throw "error text"
throw [System.ApplicationException] "error text"

Summary

WPS scripts are text files with the extension . ps1, and you can start a script
in several different ways. And although the default security restrictions in
WPS prevent all scripts from executing, you can use the commandlet set-
Executionpolicy to lower the security settings on the execution policy.
Instead of allowing all scripts to run, you should use WPS modes that
require digitally signed scripts.

The second big topic in this chapter was error treatment, which is
important in scripts. This chapter examined the differences between ter-
minating errors and nonterminating errors. The chapter also provided
numerous examples that showed how to catch an error with the Trap state-
ment and how to configure the error behavior (reaction) of commandlets
with the parameter ErrorAction.

UsING CLASS LIBRARIES

In this chapter:

Using NET Classes 129
Using COM Classes oottt 133
Using WMIClasses 135
Date and Time 145

Microsoft enabled Windows PowerShell (WPS) to access different appli-
cation programming interfaces (APIs)—specifically, class libraries based
on the NET Framework, the Component Object Model (COM), and
Windows Management Instrumentation (WMI). These class libraries
enable you to perform additional functions within WPS. However, they
require at least a basic understanding of object-oriented programming.

NOTE WPS offers a special treatment for WMI (System.Management), ADSI
(System.DirectoryServices), and ADO.NET (System.Data). Objects
from these libraries are shown simplified by the object adapter to the user.
Collaboration data objects (CDOs) for access to Microsoft Exchange are not yet
supported in a special way by WPS 1.0.

Using .NET Classes

With the commandlet New-Object, the administrator can create an
instance of any class from the .NET class library (or a COM class, see the
next chapter).

129

130

CHAPTER 8 USING CLASS LIBRARIES

Creating Instances

The following example creates an instance of the .NET class System.
Net .WebClient and then calls its method DownloadString () (see
Figure 8.1):

Swc = (new-object System.Net.WebClient)
$wc.DownloadString ("http://www.windows-scripting.com")

Hew-0Object System.Management.lMan

“I§ EventQuery ;I

%4 EventWatcherOptions

=F ImpersonationLevel

{} Instrumentation J

“% InvokeMethodOptions

“ig ManagementBaseObject

“t4 ManagementClass

“i ManagementDateTimeConverter
ManagementEventirgs
“i¥ ManagementEventWatcher ;I

Figure 8.1 PowerShell IDE and PowerShellPlus offer IntelliSense-like input

support for .NET class names after New-0Object

Constructors with Parameters

A constructor is a special piece of program code in a class that is called
when a class is instantiated. .NET classes can expect parameters in the
constructors. These can be declared with or without parentheses after the
class name:

$o = New-Object
wSvstem.Directoryservices.DirectoryEntry ("LDAP://E02")

or

$So = new-object System.Directoryservices.DirectoryEntry
w "TDAP://EQ02"

Static Members in .NET Objects/Static .NET Classes

NET classes know the concept of their static members (class members),
which can be called without creating an instance. Some of these classes are

UsSING .NET CLASSES 131

also static classes (that is, they have only static members). Such classes do
not have a constructor. Therefore, the commandlet New-Object is not
applicable to static classes.

This does not work:
(New-Object System.Console) .Beep(100,50)

For this case, WPS has another construct, which asks you to set the
NET class name in square brackets and separate the name of the member
with two colons. The following command uses the static method Beep ()
in the static .NET class System.Console to create a sound:

correct:
[System.Console] : :Beep (100, 50)

Loading Additional Assemblies

You can only instantiate NET classes via New-Object and the notation in
square brackets when the corresponding software component (assembly),
where they are located, has been loaded into memory. Some assemblies
are loaded automatically by WPS. In other cases, you have to request load-
ing of the assembly via the class System.Reflection.Assembly.
Therefore, to display a dialog window, you first have to load System.
Windows.Forms.dll. Because this assembly is located in the so-called
Global Assembly Cache (GAC) of .NET, you do not have to indicate a
path:

©o
:
[—
=
=
@
n
=
=
73
v
=
@
=
>
=
m
[

[System.Reflection.Assembly] : : LoadWithPartialName

w ("System.Windows.Forms")
[System.Windows .Forms .MessageBox] : : Show ("Text", "Heading",
[System.Windows .Forms .MessageBoxCases] : : OK)

TIP Instead of the notation with square brackets, you can also use the inte-
grated WPS type [Typel, which creates a .NET type object based on a
string. Therefore, you can write the preceding example in the following way:

([Type] "System.Reflection.Assembly") ::LoadWithPartialName
w ("System.Windows.Forms")
smsg = [Type] "System.Windows.Forms.MessageBox"

Smsg: :Show("test")

132

CHAPTER 8 USING CLASS LIBRARIES

Object Analysis

With the help of the commandlet Get-Member, which has previously been
used in this book to analyze pipeline contents, you can also analyze the
content of a variable containing an object instance. You have to keep in
mind, however, that the object has to be sent either in a pipeline to
Get-Member (that is, $Variable | Get-Member) or that you have to
use the parameter name -InputObject (Get-Member -InputObject
$variable). Not only for Get -Member, but for most of the commandlets,
it does not matter whether there are a number of objects in the pipeline or
just a single object.

Enumerations

When using some .NET classes (for example, FileSystemRights), you
must combine different flags with a binary or operation. If you repeat the
name of the listing in which the flag is defined with each flag, you're really
overworking your fingertips.

WPS can pick the respective flag values in the enumeration out of a
string with comma separators and link them with a binary or. So, instead of

SRights= [System.Security.AccessControl.FileSystemRights]::
wRead

-bor [System.Security.AccessControl.FileSystemRights]::
wReadExtendedProperties

-bor [System.Security.AccessControl.FileSystemRights]::
wReadProperties

-bor [System.Security.AccessControl.FileSystemRights]::
wReadPermissions

you can use the following abbreviation:
SRights = [System.Security.AccessControl.FileSystemRights]

w 'ReadData, ReadExtendedProperties,
wReadProperties, ReadPermissions"

USING COM CLASSES 133

Using COM Classes

This section examines the basic mechanisms for accessing COM objects.

Create an Instance

The commandlet New-Object is also used for instantiating classes defined
within the Component Object Model (see Figure 8.2). In this case, the
name of the COM class has to be preceded by the parameter —comobject
(short, ~com). The programmatic identifier (ProgID) has to be indicated as
Name. The COM class must be listed in the registry of the local system.
New-Object complies with CreateObject () in Visual Basic/VBScript.

Listing 8.1 shows the call of the method GetTempName () from the
COM class Scripting.FileSystemObiject. This method creates a name
for a temporary file.

Listing 8.1 com.ps1

Sfso = new-object -com "scripting.filesystemobject"
Sfso.GetTempName ()

With Listing 8.2, you open Internet Explorer with a specific website.

©o
:
[—
=
=
@
n
=
=
73
v
(=
@
=
>
=
m
[

Listing 8.2 Creating an Instance of a COM Class

Sie = new-object -com "InternetExplorer.Application"
Sie.Navigate ("http://www.windows-scripting.com")
Sie.visible = S$Strue

NOTE You do not have to load COM components (COM components are not
called assemblies) because the COM infrastructure automatically loads the
appropriate DLLs based on the data stored in the registry when the COM com-
ponent was installed. So, you can access all public classes in all installed COM

components.

134 CHAPTER 8 USING CLASS LIBRARIES

Powershell - hs [elevated user]
Uindows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

H:~deno“UPS

1“hpeu—object —con scripting.filesystemohject | Get—Henmber

TypeNane: Systen._ ConObject#{2aBh?di8-4b87-11d3-a?7a—B0104b365c?f>

HemhePType Deflnltlun
Hethod ing BuildPath (string, string)
Hethod void CopyFile (= ng,. = ng., hool)
Hethod void CopyFolder {(string, ring, bool)
Hethod IFolder CreateFolder (string)
CreateTextFile Hethod ITextStrean CreateTextFile (“trlng, hool, hool)
DeleteFile Hethod void DeleteFile {(string, hoold
DeleteFolder Hethod void DeleteFolder {string, hool)
DriveExists Hethod hool DriveExists {(string)
FileExi: Hethod hool FileExis stringl
FolderExists Hethod hool FolderExists {(string)
GetAhsolutePathNane Hethod string GetAbsolutePathName (string)
GetBaseName Hethod string GetBaczeName (string)
GetDrive Hethod IDrive GetDrive {(string?
GetDriveName Hethod string GetDriveName (string)
GetExtens ionNane Hethod string GetExtensionName (string)
GetFile Hethod IFile GetFile (string)
GetFileName Hethod string GetFileName {(string)
GetFilelersion Hethod string GetFileUerzion {(string)
GetFolder Hethod IFolder GetFolder {(string)
GetParentFolderNane Method string GetParentFolderName {(string)
GetSpecialFolder Hethod IFolder GetSpecialFolder {(SpecialFolderConst)>
GetStandardStrean Hethod ITextStrean GetStandardStrean (StandardStream...
Hethod string GetTempName (2
Hethod void HoveFile (string. stringd
Hethod void HoveFolder {string, string)
Hethod ITextStrean OpenTextFile {(string, I0OMode, hoo...
Property IDriveCollection Drives () {get}

Figure 8.2 Instantiation of a COM object in WPS

Get an Existing Instance

A direct equivalent for GetObject () from VB/VBScript to activate an
existing object is not available in WPS. However, you can load the assem-
bly for Visual Basic .NET and use the method Getobject (), which is
available there for compatibility reasons.

Listing 8.3 shows a document in Microsoft Word on the screen and
writes some text in the document:

Listing 8.3 Getting an Existing Instance of a COM Class

Sdoc = [microsoft.visualbasic.interaction]::
wGetObject ("C: \temp\document.doc")
Sdoc.application.visible = S$true
Sdoc.application.selection. typetext ("You successfully
wcreated an instance of Word!")

USING WMI CLASSES 135

Using COM Objects

After instantiation, accessing COM objects is the same as accessing NET
objects, with two exceptions:

m COM objects do not have constructors with parameters.
m COM objects do not have static members.

Using WMI Classes

The commandlet Get-wmiobject and the integrated WPS types [WMI],
[WMICLASS], and [WMISEARCHER] open the world of mighty Windows
Management Instrumentation (WMI), which offers almost all modules of
modern Windows operating systems in an object-oriented manner.

NOTE This chapter assumes that you have a basic knowledge of WMI.

System.Management

Windows WPS uses the .NET assembly System.Management.d1l with
the namespace System.Management to access WMI. Therein, a meta
object model for access to WMI objects is realized. However, access to
WMI using COM classes is also possible; it is just more cumbersome and
is not covered in this book.

Central classes of the object model (see Figure 8.3) of System.
Management are as follows:

©o
:
[—
=
=
@
n
=
=
73
v
=
@
=
>
=
m
[

m ManagementObject
This class represents a WMI object.

m ManagementClass
This class represents a WMI class. ManagementClass is derived
from ManagementObject.

B ManagementBaseObject
Both classes are derived from ManagementBaseObject. This class
is not abstract, but is also used at different places within the object
model.

136

CHAPTER 8 USING CLASS LIBRARIES

Subclass
of

' Class
Subclass N

of
| MethodData
Methods Collection

Management
ObjectCollection | = === = == ttem| MethodData
Getlnstances()

GetSubClasses ()

Item GetRelatedClasses() Management

BaseObject

. T

InParameters

OutParameters

- Marz)abg_eegenl _______ = PropertyData

) Createlnstance () | Properties Properties |__colection

: s temPropertie SystemProperties
[- Item PropertyData

ManagementPath) <=

Path
ClassPath

ObjectGetOptions
Options
Scope

Figure 8.3 Object model of System.Management

In System.Management.dll, the class ManagementObject serves
as the meta class for all WMI classes (that is, an instance of
ManagementObject is mapped to a WMI object during its creation via a
WMI path and consequently displays this). Unfortunately, this mapping is
not as easy to handle as one would want, because all properties have to be
called via PropertyDataCollection (refer to Figure 8.3) and method
calls must be made cumbersomely via InvokeMethod ().

NOTE In the following sections, you will see that WPS extremely simplifies the
access to COM by providing a WPS object adapter.

WMI Support in WPS

WPS offers the option to access the local WMI repository, and WMI repos-
itories on remote systems, too.
For this purpose, WPS offers the following constructs:

m The commandlet Get-WmiObject (alias gwmi)

m The integrated WPS type indicators [wWMI], [WMICLASS], and
[WMISEARCHER]

m The WPS WMI object adaptor, which simplifies the access to WMI
objects

USING WMI CLASSES 137

Accessing WMI Obijects

To access a WMI object, you have three options:

m Use of the commandlet Get-WmioObject with a filter and option-
ally with the indication of a computer name

m Use of the integrated WPS types [wWMI] and [WMIClass] with
WMI paths

m Direct instantiation of the classes System.Management .
ManagementObject (that is, System.Management .
ManagementClass with respective indication of a WMI path in
the constructor)

TIP Classes, which can have only one instance anyway, can be called without
any filter (see Figure 8.4):

Get-WmiObject Win32_ComputerSystem
Get-WmiObject Win32_OperatingSystem

[windows PowerShell

PS C:sDocunmentsshs? get—wniohject win32_computersysten

©o
b
(—
]
=
@
n
-
>
wv
wv
=
=3
=
>
=
m
el

: IT-Visions.local
YAN Computer Corp
2895
Edi
PrimaryOunerNane : Dr. Holger Schuwichtenbherg [HUP]
TotalPhysicalMenory : 4293177344

PS C:sDocunmentsshs?> get—wuniohject win3d2_operatingsysten

SystemDirectory : G:\UINDOUS system32
Organization :owww.IT-Visions.de

: 3798

: Dr. Holger Schuichtenherg [HUPI]
: 69713-286-8859346-44165

= 5.2.3798

PS8 C:sDocumentsi\hs>

Figure 8.4 win32_computersystem and Win32_OperatingSystem exist
only once in the WMI repository.

Table 8.1 Accessing Single WMI Objects

WMI Object of a
WMI Class with
One Key Property

WMI Object of a
WMI Class with
Two Key
Properties

WMI Object on

a Remote System

WMI Class

Get-WmiObject
with Filter

Get-WmiObject
Win32_LogicalDisk

-Filter "DeviceID='C:'"

Get-WmiObject
Win32_Account
-filter "name='hs'
and domain='itv'"

Get-WmiObject

Win32_LogicalDisk
-Filter
"DeviceID='C:'"

-computer "E02"

Not possible

Integrated

WPS Types

[WMT]
"\\.\root\cimv2:

Win32_LogicalDisk.

DeviceID='C:'"

[WMI]
"\\.\root\cimv2:

Win32_UserAccount.

Domain='ITV',

Name='hs"'"
[WMT]
"\\EO02\root\cimv2:

Win32_UserAccount.

Domain="'ITV',
Name='hs"'"

[WMICLASS] "\\.\root\

cimv2:Win32_
UserAccount"

Direct
Instantiating

New-Object
System.Management.
ManagementObject ("\\.
\root\cimv2:Win32_
LogicalDisk.DeviceID='C:'")

New-Object
System.Management.
ManagementObject ("\\.\root\
cimv2:Win32_UserAccount.
Domain='ITV',Name='hs'")

New-Object
System.Management.
ManagementObject ("\\E02\
root\cimv2:
Win32_UserAccount.
Domain='ITV',Name='hs'")

New-Object
System.Management.
ManagementClass ("\\E01\
root\cimv2:Win32_
UserAccount")

8¢l

S3IRVAGITT SSV1J 9ONISnN 8 ¥§3ldvHI

USING WMI CLASSES 139

NOTE A fundamental difference between Get-imiObject and New-Object
is that Get-WmiObject displays all existing instances of a WMI class (for
example, all processes), whereas New-Object creates a new instance. The
semantics of Get-WmiObject do not apply to COM and .NET obijects
because a central directory for instances does not exist. Instead, WMI has the
WM repository. How to display a list of all instances in COM and .NET classes
depends on the structure of the respective classes and cannot be expressed

generally in WPS.

Type Indicators

When using the type indicators [wMI] and [WMIClass], users often for-

get to set the path name in parentheses when it is a composite name. The

type indicators have a stronger binding than the plus operator (+).
Wrong:

SComputer = "EQ01"
[WMI] "Win32_PingStatus.Address='"+ S$Computer + "‘"

Right:
SComputer = "EQ1"
[WMI] ("Win32_PingStatus.Address='"+ S$Computer + "‘")

The WMI Object Adapter

The normal access to WMI objects via .NET is not really “smooth” because
you always have to cumbersomely call PropertyDataCollection. Here,
WPS offers a simplification based on Extended Type System (ETS); WPS
dynamically creates objects via the integrated WMI object adapter that
comply with the WMI classes. Figure 8.5 shows this complex relationship.

©o
:
[—
=
=
@
n
=
=
73
v
(=
@
=
>
=
m
[

140

CHAPTER 8 USING CLASS LIBRARIES

NOTE To answer the question, why you, as WPS user, have to know this mech-
anism, there are three answers:

1. To be able to transfer code examples that use WSH or .NET to WPS
2. To understand in which documentation you have to look

3. To find the cause if something does not work

WMI is not the only component for which WPS offers such a WPS object

adapter. The access to directory services, databases, and XML documents works
similarly.

Y indotiRonershell Win32_ComputerSystem
Extended Type System Name="Mars'
WMI-Adapter
. Win32_LogicalDisk
. Name='C'
0

Win32_Directory
~ Name='C://'
s,
S
. -
Wrapping . '_x'
Metaobjectmodel ManagementObject
(System.Management) Collection

Win32_LogicalDisk
Name="C'<f==>

CIM-Repository

Win32_Directory,*
Name='C://

Read/Write

v

Resources
—V
| ﬁ

Computer "Mars"

Folder "c:\"

Figure 8.5 Architecture of the WMI in WPS

Analyzing WMI Obijects

You can display all available properties and methods in WMI objects with
Get-Member, just as you can for .NET objects. Although the members of

USING WMI CLASSES 141

a WMI class (for example, win32_videocontroller) are not at the same
time members of the NET meta class that packs the WMI class
(System.Management . ManagementObject), Get-Member nevertheless
lists the members of both abstraction levels.

WPS has its own way to name classes created by the WMI object
adapter. It uses the name of the .NET meta class (System.Management.
ManagementObject) and the path of the WMI class, separated by the
hash sign (#):

System.Management .ManagementObject#root\cimv2\Win32_LogicalDisk

Figure 8.6 shows the commandlet Get-Member displaying such type
names.
& powershell - hs [elevated user’
4t get—uniohject win32_logicaldisk | gnm

TypeName: System.Management.ManagementObjectliroot cinu2\Win32_LogicalDisk

HemberType Definition

Method System.Managenent .ManagementBaseOh
Method System.Management .ManagenentBaseOh
Method Syste anagement .ManagementBaseOh
Property System.UInti6 Acce
Property System.UIntl6 Availahi
Property System.UInt64 BlockSize (get
Property Sy..tem String Caption {get;se
Plnperty
roperty
perty
perty
perty
perty System.String
perty Sy..tem.UInt32 D
perty System.Boolean
perty
perty
Property System.String FileSystem {ge
Property System.UInt64 FreeSpace {get
Property System.String InstallDate {get;set
LastErrorCode Property System.UInt32 LastErrorCode {get;
MaximumComponentLength Property System.UInt32 MaximunComponentLeng
i Property System.UInt32 MediaType {get;set;}
Property System.String Name {get;set;)
Property System.UInt64 NumberOfBlocks {get;
PHNPDevicelD Property System.String PNPDevicelD {get;set
PowerManagementCapabilities Property System.UInti6[] PowerManagementCap
PowerManagementSupported Property System.Boolean PouwerManagementSupp
ProviderName Property System.String ProviderName {get;set;}
Purpose Property System.8tring Purpose {get;set;>
QuotasDisabhled Property System.Boolean QuotasDisabled {get
QuotasIncomplete Property System.Boolean QuotasIncomplete {g
QuotasRebuilding Property System.Boolean QuotasRebuilding {g
Size Property System.UInt64 Size {get;set
Property System.String Status {getiset;}
Property System.UIntl6 StatusInfo {get,..et >
SupportsDiskQuotas Property System.Boolean SupportsDiskQuotas
SupportsFileBasedCompression Property System.Boolean SupportsFileBasedCo
SystemCreationClassMame Property Syste 1-1ng Sy..l:en(h'eatlnncla N
Property Syste|
Property Syste nulean UulumeDlrty {get, el: >
Vo lumeNane Property Systel tring YoluneName {get;set;>
UulumeSerlalNumhel Property Syste tring UolumeSerialNumber {
Property System.String _ CLASS {get:set:)
DERIURTION Property Sy..tem Stringl] DERIUHTION {get;...
Property System.String __] t £:>

©o
(—
2
=
@
[a)
-
>
wv
wv
=
=3
=
>
=
m
el

GENUS Plu])El‘ty System.Int32 GENUS {
NRHESPRCE roperty System.String NRHESPRCE (get;net >
perty System.String __PATH {get;set;>
PROPERT'I _COUNT perty System.Int32 _ PROPERTY_COUNT {get...
REI.P perty "et >
perty g _SE et }
SUPERCLRSS perty System t1-1 SUPERCLRSS {get,cet,)
vailahility, De
Cnnue ronDateT ime SeriptMethod Sy:tem.OhJent ConuvertFromDateTime () ;
ConvertToDateTime ScriptMethod System.Object ConvertToDateTime{);
ScriptMethod System.Ohject Deletec);
ScriptMethod System.Object GetType(d;
ScriptMethod System.Object Put(d;

Figure 8.6 Listing of the pipeline content with Get -Member when there are
WMI obijects in the pipeline

142

CHAPTER 8 USING CLASS LIBRARIES

WARNING The properties and methods displayed by Get-Member are not
members of the .NET class ManagementObject, but of the WMI class
Win32_LogicalDisk. When you search for help information about the
objects in the pipeline, you consequently have to consult the documentation of
the WMI schema [MSDNOS5], not the documentation of System.Management
[MSDNOG].

Accessing WMI Members

You can access the properties and the methods of WMI classes just as you
access members of .NET classes. WPS abstracts from the meta object
model implementation in the .NET class System.Management.
ManagementObject. The complicated access to the property Properties
and the method Invokemethod () is thus not necessary.

Both the access to single objects and to collections, display a long out-
put list. By default, Format-List lists the numerous properties of the dis-
played WMI objects (see Figure 8.7).

An output with the commandlet Format-Table does not help either.
True, it makes the output a bit shorter, but also much broader. It would be
great to “cut down” the resulting object to its interesting properties with
Select-Object:

Get-WmiObject Win32_VideoController |
Select-Object name, installeddisplaydrive

Also, for some WMI classes, there is a definition within the
types.psIxml file that properties are to be displayed. There is no such set-
ting for win32_videocontroller; therefore, all properties display.
Figures 8.8 and 8.9, however, show the effect of the declarations for the
WMI class Win32_CDROMDrive.

USING WMI CLASSES

143

Pous
Copy: 1gl|l: ((:) ZIBE Hicrosoft Corporation. All rights reserved.

H =\ deno“\W/PS

1#f Get—-WmiOhject —class Win32 _Videocontroller —computer EB2

__GENUS
__CLASS
__SUPERCLASS

__DYNASTY
__RELPATH

PROPERT\' COU NT
__DERIVAT

| SERVER
_HAMESPACE
__PATH

ficceleratorCapabilities
fdapterConpatibility
AdapterDACT ype
AdapterRAM
Nuvailahility
CapabilityDescriptions
Caption
ColorTableEntries

Conf igManagerErrorCode
ConfigManagerlUserConfig
reationClassName

2

Win32 _UideoController

CIM_PCUideoController

CIM_ManagedSystenElement
Win32_VideoController.DevicelD="VideoControllerl

59

{CIM_PCVideoController, CIM UideoController. CIM
_Controller,. CIM LogicalDevice

EB2

roothcimv2

SSE@2\rootscimu in32_UideoController.DevicelD=
UideoControlle

8
Uideo Controller <UGA Compatihle)
i

False
Win32_UideoController

CurrentBitsPerPixel
CurrentHorizontalResolution
CurrentNunber0fColors
CurrentNunber0f Colunns
CurrentNunberOf Rows
CurrentRefreshRate
urrentScanMode
GurrentUerticalResolution
Description Uideo Gontroller <UGA Gompatihlel
DevicelD UideoGontrollerl
DeviceSpecificPens
Dltllel-'l'ype
erDate
D iverlUersion
ErrorCleared
ErrorDescription
ICHIntent
ICHMethod
InfFilename
InfSection
InstallDate
InstalledDisplayDrivers
LastErrorCode
HaxMemorySupported
HaxNumherControlled
MaxRefreshRate
MinRefreshRate
Honochrome False
Name Uideo Controller <UGA Compatible)
NumberOf ColorPlanes

NumbherOfUideoPages
PNPDevicelD : PCINUEN_1882&DEV_5144&SUBSYS_081A1802&REV_BBN\4&2

99 CCBFA&BEOBAS

©o
b
(—
]
=
@
[a)
-
>
wv
wv
=
=3
=
>
=
m
el

PoverManagementCapahilities

PouverManagementSupported
rotocolSupported

ReservedSystenPaletteEntries

SpecificationVersion

Status Error

StatusInfo

Figure 8.7 Properties of the class win32_videoController

Powershell - hs [elevated user

Windows Pouw ell
Copyright (C) 2886 Hicrosoft Corporation. All rights reserved.

H:~denosUPS
i#f Get-UniObject Win32_CDROMDrive

Hanufacturer VoluneNane

Caption Drive

HL-DT-ST DUDRAH
QD3204L KXa773F

(Standard CD-ROH.
(Standard CD-ROH.

21

Figure 8.8 Standard output of the command Get-Wmiobject Win32_
CDRomDrive

l “‘I CHAPTER 8 USING CLASS LIBRARIES

<Type>
<Name>System.Management.Managementobject#roothcimv2i\win32_cDROMDrive</Names>
<Members>
<Propertysets>
<Name>PsStatus</Namas
<Referencedrroperties>
<Name>Availability</Name>
<Name>Drive</Name>
<NamezErrorcleared</Name>
<MNamesMediaLoaded</Names
<Name>NeedsCleaning<,/Name>
<Name>Status</Name>
<Names>statusIinfo</Names
</Referencedprroperties>
</Propertyset>
<Memberset>
<NamerPsstandardMembers</Names>
<Memberss>
<Propertysets>
<Name>DefaultDisplayPropertyset<,/Name>
<Referancedrropertiess>
<Name>Caption</Name>
<Name>Drive</Names>
<MamesManufacturer</Name>
<Namez»voTlumeName<,/Names>
</ReferencedPropertiess
</Propertyset>
</Members>
</Membersets>
</Members>
</Type>

Figure 8.9 Setting of the displayed properties for WMI class
Win32_ CDRomDrive

Listing 8.4 shows further examples for the use of Get-wmiobject in
cooperation with commandlets for the pipeline control.

Listing 8.4 Using Get-wmiObject

Name and free bytes on all drives
Get-WmiObject Win32_logicaldisk | Select-Object
wdeviceid, freespace

Name and domain of the user accounts, whose names
wnever become invalid

Get-WmiObject Win32_account | Where-Object

w (S . Passwordexpires -eq 0 } | Select-Object Name,Domain

Static Class Members

In contrast to the handling of .NET objects, WPS does not make any syntactic
differences between static methods and instance methods in WMI (that is, you
always have to use the simple dot operator; in .NET objects, the colon has to be

DATE AND TIME 145

used for static methods). As far as WMI is concerned, the WPS type
[WMIClass] refers only to the WMI path of the WMI class, not to a precise
instance.

For example:

([WMIClass] "Win32_ Product").Install("c:\name.msi")

Date and Time

In WMI, date and time are saved as a string in the form of
yyyymmddHHMMSS . mmmmmms UUU; in this rather self-explanatory short form,
mmmmmm stands for the number of milliseconds, and UUU stands for the
number of minutes. The local time differs from the universal coordinated
time (UTC). uuu is the three-digit offset indicating the number of minutes
that the originating time zone deviates from UTC.

The static method ToDateTime () in the class System.Management.
ManagementDateTimeConverter is available for the conversion of a
WMI date format into a normal date format of WPS (class System.
DateTime):

Listing 8.5 Converting WMI Date Formats to an Instance of System.DateTime

$Scs = Get-WMIObject -Class Win32_OperatingSystem

"Starting time of the system in WMI format: " + $cs.LastBootUpTime
[System.DateTime] S$starting time =

= [System.Management . ManagementDateTimeConverter] : :

wToDateTime (Scs.LastBootUpTime)

"Starting time of the system in normal format: " + S$starting time

With the PowerShell Community Extensions installed, the class
ManagementObject possesses the additional method convertToDate
Time (), which can perform the conversion:

Listing 8.6 Another Option for Converting a WMI Date Format o an Instance of
System.DateTime

$Scs = Get-WMIObject -Class Win32_OperatingSystem -property
LastBootUpTime
Scs.ConvertToDateTime ($Scs.LastBootUpTime)

©o
:
[—
=
=
@
n
=
=
73
v
(=
@
=
>
=
m
[

146

CHAPTER 8 USING CLASS LIBRARIES

Accessing WMI Collections

The use of Get-WmioObject with a WMI class name
Get-WmiObject WMIClassname

displays all instances of the indicated WMI class (if the WMI class exists
on the local system).
For example, the following

Name and drive for all graphic cards in this computer
Get-WmiObject Win32_VideoController

displays all installed video cards.
This is the short form for

Get-WmiObject -class Win32_vVideoController

If the class is not declared in the standard namespace root\cimv2,
you have to indicate the namespace explicitly with the parameter
—Namespace:

Get-WmiObject IISwebserver -Namespace root\microsoftIISv2

You can also access the WMI schema on remote systems with the param-
eter —Computer:

Get-WmiObject -class Win32_VideoController -computer E02

Filtering and Selecting

If you do not want to display all instances, but only selected ones that
adhere to special criteria, you can use these alternative options:

m Use of a filter in the commandlet Get -Wimiobject

m Use of WQL queries with the parameter -Query in the com-
mandlet Get-WmioObject

m Use of WQL queries with the type indicator [WMISEARCHER]

m Use of WQL queries with the .NET class System.Management.
ManagementObjectSearcher

DATE AND TIME 147

Filtering with Get-WmiObject

With the commandlet Get-WmiObject, you can filter objects as soon as
they are called. You have to insert the criteria after the parameter -Filter
in a string.

Consider these examples:

m All user-accounts from the domain ITV
Get-WmiObject Win32_account -filter "domain='itv'"

m All user accounts whose name starts with H from the domain ITV
Get-WmiObject Win32_account -filter "domain='itv' and
name like 'h%'"

WQL Queries

Queries written in WMI Query Language (WQL) can be executed in WPS
with the parameter —Query in the commandlet Get-wmiobject or with
the WPS type indicator [WMISEARCHER] (see Figures 8.10 and 8.11).

The following command selects all network adapters that contain the
number 802 in the network card type:

Get-WmiObject -query "Select * from Win32_Networkadapter
wyhere adaptertype like '%802%'" | select
wadaptertype,description

(-]
:
[—
=
=
@
n
=
=
73
v
=
@
=
=
=
m
[

Alternatively, you can execute this query with the type indicator
[WMISearcher]:

([WmiSearcher] "Select * from Win32_Networkadapter where
wadaptertype like '%802%'") .get() | select
wadaptertype, description

[select Windows PowerShell

PS C:\Documen >
PS C:\Documen >
PS C:\Documen > Get—-UmiObject —query "Select * from Win32_Networkadapter vhere adaptertype like *xz882x”" | select ad,

aptertype,description

adaptertype description

Ethernet 882. 1394 Net Adapter

Ethernet 882. NUIDIA nForce Metworking Controller
Ethernet 882. NUIDIA nForce Networking Controller
Ethernet 882. Uirtual Machine Network Services Driver

Ethernet 8082. Uirtual Machine Network Services Driver

PS C:\Documents~hs> |

Figure 8.10 Execution of a WMI query

148 CHAPTER 8 USING CLASS LIBRARIES

GetRelated()

Venagement | | SoFlaionstis)
ObjectCollection

A
Ma”agm Qualifiers
Obje_il/
PropertyData
| g
Properties. Collection

SystemProperties

Item e PropertyData

Path QualifierData
ClassPath Qualifiers Collection
Get() Put()

CopyTo ()
e (ManagementPath)t
Path

[P (' ObjectGetOptions
Options
ManagementScope
Management Options
ObjectSearcher

> ObjectQuery
Query

Figure 8.11 Object model for searching via [WMISearcher] or
System.Management .ManagementObjectSearcher

QualifierData

A\

Scope

ConnectionOptions

List of All WMI Classes

You can display a list of all available WMI classes on one system with the
parameter -List in the commandlet Get-wmiobject. Here, a class name
may not be indicated.

Get-WmiObject -list

If not indicated otherwise, the namespace "root\cimv2" is used. You can
also indicate a namespace explicitly:

Get-WmiObject -list -Namespace
wroot/cimv2/Anwendungs/microsoftIE

DATE AND TIME 149

You can access the WMI repository of a specific computer because all
classes are dependent on the drive and on the installed applications:

Get-WmiObject -list -Computer EO02

Creating New Instances of WMI Classes

Many WMI classes are structured in such a way that a new instance of a
class has to be instantiated for the creation of a new system element. For
this purpose, static methods with the name Create() are provided on
class level (see Figure 8.12).

WMI CIM Studio o5 &
#[i5[X| |[2 win32 share | <lolulmlam e
&0 [_SystemClass = Propeties | Methods | Associations
1 [E) __SystemSecuity
507 2] OM_ManagedSystemElement 4] The methods tab shows the methods that may be applied to an object.
01) CM_LogicalElement S
i-[] [CIM_System Nare
7 [[F) CIM_SoftwareElement
7 [[CIM_LogicalDevice L
-]) CIM_DperatingSystem || M Delete o
-] [T) CIM_Process | T GetAceessMask
-]) CIM_LogicalFile ™ SetShareinla E
-7 () CIM_SystemResourcs = - Z
- @ Win32_NetworkProtocol — Qualifiers for method Create i 1‘ °
D e pemm it N (e o
 Pags L £
A E % mf{:m”'? ; | £1=] Method qualifiers show the special characteristics of & method. a
oftwareFeature ; .
B il = § § ~
[0) G Fedelnegtioun |=Propagate to instance, C-Propagate to derived class, 0-Dverridable, A=Amended =
{1 [F] Win32_QuickFiEngineering = [Name [Type [[co]A [aign [Vaue ;
- [FJ Wir32_Network=Cliert = Constructor boolean v local |tue 2
L] [T Wind2_Session = [| Description sting v ¥ v |local | The Create methodiniistes st =
0 [E] Wind2 ServerConnection = Implemented boolean v local | tus e
-] [Win32_ServerSession — I I |
O [Wir32_ComponeniCategory = [| Mappingstings anposting v v local | Aiiag]
. CIM_JobDestination =1 [Static boolean .v/ | local | true
1 [[|) Miciosolt_5&_Companent — ValueMap anayol sting |V |V local | gy
EH] [CM_ServiceAccessPaint = Valuss anyolsting |V | v |local | M)
O | CIM_BoolsaP L = { i -
O [FJ Win32_CommandLineAct Il |
0] || CIM_ClusteringSAP L
-] [F] Win32_TCPIPPrinterPort i |
-] [] Wird2_IP4PersistedRiouteTa = Il
-] [Wira2_LoadOrderGroup L
-7 [I) CIM_Service L =
[[Wir32_ShadowProvider L =
[) Win32_Share { v
[[FF) Win32_COMAppication i
L [FJ Win32_Dfshode = 0 || Cancel Apply
I 10 B w\naz_cumu.ml _Ij 7 ;
4 »

Figure 8.12 Methods of the class win32_share

Listing 8.7 shows the creation of a file share with standard rights. The
creation of file share with specific permission is a more complex matter,
and is discussed later in this book.

150 CHAPTER 8 USING CLASS LIBRARIES

Listing 8.7 Creating a New Share with Default Permissions

Create Win32_Share

Sclass = [WMIClass] "ROOT\CIMV2:Win32_Share"

SAccess = S$Null

SR = S$class.Create($pfad, $Sharename, 0, 10, $Comment, "", S$Access)
if (S$R.ReturnValue -ne 0) { Write-Error "Error in creating:

w "+ SR.ReturnValue; Exit}
"Clearance is created!"

Summary

Microsoft does not provide commandlets for all administrative tasks yet.
In this chapter, you have learned how to use classes defined with the

NET Framework class library, with COM components, and with WMI.

NET and COM libraries can be used though the commandlet New-

Object. WMI objects are received accessible via Get-Wimiobject.

Using class libraries is more difficult than using commandlets (espe-
cially because with class libraries you must have knowledge of object-
oriented programming). However, because Microsoft provides only a small
number of commandlets for accessing the Windows infrastructure, in
many cases using a class library is the only way to perform certain actions

within WPS.

In contrast to .NET and COM, the classes in WMI are accessed
through a meta model. This makes the understanding of the modus
operandi of this library a little more difficult. On the other hand, the meta
model provides common approaches for accessing objects, members, and

collections that can be used for all classes.

POWERSHELL TooLs

In this chapter:

PowerShell Console 151
PowerTab 156
PowerShell IDE 156
Windows PowerShellPlus 158
PowerShell Analyzer 164
PrimalScript 165
PowerShell Help 169

This chapter discusses the Windows PowerShell (WPS) console provided
by Microsoft and useful tools from other vendors. So far, Microsoft does
not provide an editor for PowerShell scripts.

NOTE As far as external tools are concerned, keep in mind that most of the
tools implement their own hosting of WPS. Therefore, the tools have the same
functional power as the WPS console, but do not share a common declaration
space. Definitions of aliases, drives, and new scriptbased commandlets are
therefore relevant only for the respective current execution environment.

PowerShell Console

Speculation about a WPS console with IntelliSense did not become reality
because the WPS development team for version 1.0 put their focus strictly
on the WPS infrastructure. They gave very little attention to supporting
tools.

The WPS console offers only a little more input support than the clas-
sic command shell in Windows. Version 1.0 of the WPS console, however,

151

152

CHAPTER 9 POWERSHELL TOOLS

is far from reaching the support level of the development environment in
Visual Studio.

Console Functions

The WPS console offers the following functions:

The size and design of the window can be controlled via the prop-
erties of the console window (see Figure 9.1).

The Windows clipboard is only cumbersomely available via the
menu (see Figure 9.2); that is, via the so-called quick edit mode.
The key combinations Ctrl+C/X/V do not work.

Command and path input and class names and object member can
be completed with the Tab key.

A return to the last 64 commands (number is variable) is possible
(command history).

The last commands are shown using the key F7 (see Figure 9.3).
Callback of the last command can be performed completely with
the key F3 or sign-wise via F1.

The termination of a running command can be performed with the
key combination Ctrl+C.

e+ "Windows PowerShell” Properties 2x

Options I Farit | La}loutl Colorsl

—Cursor Size———————— [~ Display Options
" Smalt & window
€ Medim " Full Screen
" Large =
r— Command Histary r— Edit Options
Buffer Size: 50 3: ™ QuickEdit Made
MNumber of Buffers: 4 3: ¥ Insert Mode
[~ Discard Old Duplicates

Cancel |

Figure 9.1 Window properties for the WPS console

POWERSHELL CONSOLE 153

[l select Windows PowerShell

werShell
2086 Hicrosoft Corporation. All rights reserved.

Restore

Move

Size tsshs> get—childiten
= Minimize
O Maximize : Microsoft.Powerfhell. CoresFileSysten::C:\Docunents\hs
X Close LastWriteT ine Length Hame

o » P TTTTTo oA

erk : B Sti Trace.log

Defaults H Contacts

Properties Easte : Cookies
Select Al]?e..kto

|
Scrall : Start Menu
Find : UserData
i USUehCache

PS8 C:“Docunentsshs> _

DN : CN=EB2,0U0=Domain Controllew: C=IT-Visions,DC=local
GlobalCatalog : True

8 Get—ComputerInfo

HN |B: Get-process

: Get—Service

: Get—ChildIten

H : Get—Service

Connected EINBE [4: Get—Service i=

: Get—DomainController

: Get—ConputerInfo

: Get—Conmputerinfo | select domain | fo
9% Get—ComputerInfo

class PSCustomObjec
{

Domain = ITVY
>

Figure 9.3 Output of the command history with F7

Tab Completion

For commandlets, parameters, and object properties, WPS supplies a
function already common in the classic command-line window. In the
DOS command-line window, you can run through the available files and
subdirectories with the Tab key (called Tab completion in developer talk)
after typing one or several letters. In WPS, this also works with command-
lets, their parameters, and the properties of objects in the pipeline (see
Figures 9.4 through 9.6).

o
)
=)
=
m
=
w
-
=
=
N
o
=]
=]
wv

154

CHAPTER 9 POWERSHELL TOOLS

I windows PowerShell E

PS C:\Documents\hs>

PS C:\Documentsshs>

P8 C:\Documentsv\hs>

PS C:\Documentsshsy

PS C:“\Documents\hs> 5p = get-process outlook
P8 C:“\Docunents“hs> $p.Workin

Figure 9.4 Input of the beginning of a word

B windows PowerShell s

sDocumentsyhs >

“Docunents\hs >

sDocumentsyhs >

“Docunents\hs >

:sDocumentsshs?» $p = get—process outlook
:\Docunentsshs> $p.Uorkin

Figure 9.5 After you press the Tab key, the first alternative appears.

1 windows Powershell i

\Documentsihs >
“\Docunents\hs >

\Documentsi\hs >

“\Docunents\hs >

:“\Docunentsshs}> 5p = get—process outlook
:\Docunentsshs> $p.WorkingSetb4

Figure 9.6 After you press the Tab key again, the second alternative appears.

Command Mode Versus Interpreter Mode

Generally, the console executes all commands immediately after you press
Enter. If, however, an incomplete command had been entered (for exam-
ple, a command ending with the pipeline symbol, |), the WPS console
changes to the so-called interpreter mode, where commands are not exe-
cuted immediately. The interpreter mode is indicated by the prompt >>
(see Figure 9.7). The interpreter mode is valid as long as you make a blank
entry (see Figure 9.8). Then the command is executed.

& powerShell - hs [elevated user]

Windows PowerShell
Copyright (C)> 2086 Microsoft Corporation. All rights reserved.

1#t Get—Process |
;; Select—0bject ID, Name, Workingset64 |

Figure 9.7 The console is in interpreter mode.

POWERSHELL CONSOLE 155

& rowershell - hs [elevated user]

Windows PowerShell
Copyright (C)> 2086 Hicrosoft Corporation. All rights reserved.

1# Get—Process |
>> Select—Object ID, Name. Workingset64d |
;; Fornat-Tahle

1856 BELauncher 4333568
5752 BEReninder 4268032
1148 Bildschirnpausenreninde. .. 16384000 |

Figure 9.8 The interpreter mode has been left via a blank entry.

User Account Control in Windows Vista

WPS, as well as all other applications, is subject to Vista’s user account con-
trol and is therefore started with limited permissions. To start WPS with
full permissions, select Execute as Administrator in the context menu
under the application icon. After that, Vista will ask for confirmation of the
elevation of permissions.

In contrast to the classic Windows shell, WPS thereafter does not indi-
cate in the titles list that it now runs under administrative rights.

TIP To show the elevation status in the titles list of the WPS console and to affect
other adjustments of the display, if applicable (as shown in Figure 9.9), you can
write a WPS profile script. In Chapter 10, “Tips, Tricks, and Troubleshooting,”
you learn how to write such a script (as well as the script used to display the ele-
vation status).

PowerShell - Holger Schwichtenberg (www.IT-Visions.de) - [Running as

ndows PowerShell
Copyright <C> 2086 Microsoft Corporation. Alle Rechte vorbehalten.

1>

/= Admin: PowerShell - Holger Schwichtenberg (www.IT-Visions.de) - [Running as Administrator] - C:\Windows\System32

Windows PowerShell

ad
)
o
=
m
Copyright (C> 2886 Hicrosoft CGorporation. fAlle Rechte vorbehalten. 3,
=
-
[=
-
o
(=]
-
w

Figure 9.9 Two WPS instances with different rights

156 CHAPTER 9 POWERSHELL TOOLS

In addition, you can use the Windows command-line tool whoami.exe
with the option /a1l to check which permission a running console has.

PowerTab

PowerTab extends the WPS console capabilities, proposing possible com-
mands to the user when the user presses the Tab key. PowerTab especially
makes proposals for members of .NET classes.

PowerTab

Vendor Marc van Orsouw (short “MoW”)

Price Free of charge

URL http://thepowershellguy.com/blogs/posh/pages/powertab.aspx

PowerShell IDE

The preliminary version of the PowerShell IDE, which was available at the
time of this writing, offers IntelliSense for commandlets, parameters,
NET classes, and class members.

PowerShell IDE

Vendor ScriptInternals—Dr. Tobias Weltner
Price Beta version free of charge
URL www.powershell.de

PowerShell IDE offers two modes:

m In the interactive mode, all commands are executed immediately,
just like in the WPS console. The advantage of IDE, however, is that
syntax color highlighting and selection lists are available in a sepa-
rate editor. In a separate window, the user can see the current sta-
tus of all variables.

m In the script mode, the user writes, also with IntelliSense-like func-
tions, complex command sequences in WPS language, which can be
saved under the file extension .ps1 and started at a later date.

http://thepowershellguy.com/blogs/posh/pages/powertab.aspx
www.powershell.de

POWERSHELL IDE 157

.psl is the official file extension for WPS scripts, which can also be
understood by the WPS console. The PowerShell IDE user can also
save interactive recordings of interactive sessions in the form of
XML files with the file extension .brain. This format, however, is
understood only by the PowerShell IDE. The user can also save the
content of the output window by clicking the symbol Hardcopy.

m Debugging in script mode is interesting. PowerShell IDE, just like
other modern IDEs, allows users to set breakpoints. Upon stopping,
the Variables window shows the currently valid values.

So far, according to its author, the PowerShell IDE is an “experimen-
tal editor.” The real product will be Windows PowerShell Plus. Many func-
tions in the PowerShell IDE, including help and the intended community
function for the exchange of source code, are not implemented yet.
Sometimes, for example, you get a system crash rather than help.
Nevertheless, working with the PowerShell IDE is clearly easier than
direct input at the WPS console (see Figure 9.10).

T e [st PawerShellIDE - wiw.owershell o - mx]
File = Help = Windows = Commurily | PowerShell
B B Shew [T] Hese10 % & om
o b . 1 =
B @ ResctHont |0 R ES Widh(100 e
Fxecsfion Contred Snippetn Consale Dutpat Cust | Debuggi
&
S [T [hoe | =
t CHAWINDCWS).. =
- CWINDOWS)..
{Nothing)
SeackTracn R
4 LA -t
M trkeractive | HTTP-Downioad st RSS: | a-Dclament ps1* | psl | psi | tetrateit p® X || 4] | 1|
-) : : . =)
2 Write-Host "Aktuelle Nachrichten im webleg von Dr. Helger Schwichtenberg: = o
3 3Url = "hitp: //wew. heise. de/ix/blog/1/blog. rdf" -
5 $blog = [xml](new-object System.met.webilient]. adstring($url) Anrbutes (Lollection} o
= Sblog. select tit first 8 Description =
- StackTrace m
Ootions None i’h
PEDneen Warlahle -
- Fil:Conlaier False m
: ::::: Farsth Microsoft PowershellLal -
& Wrkn-Ouipik PeProvider Microsnlt Powershell.Cal —f
G wrke-Progess Ve al SystemManagemer g
@ Wrike-Verbose -
@ Writn-Warning - v
[+] ;IJ
— —— - - = = = = S

Figure 9.10 PowerShell IDE 1.0 for WPS 1.0

158 CHAPTER 9 POWERSHELL TOOLS

Windows PowerShellPlus

PowerShellPlus is the commercial enhancement of the PowerShell IDE.
PowerShellPlus consists of an improved WPS console (PowerShellPlus
Host) that directly supports IntelliSense and a related editor
(PowerShellPlus Editor).

PowerShellPlus

Vendor
Price
URL

Shell Tools, LL.C
$79

www.powershell.com

Notable functions of PowerShellPlus include the following:

The console is an enhancement of the WPS console and thus under-
stands all commands that are understood by the WPS console deliv-
ered by Microsoft.

In contrast to the classic Windows console, this console supports
copying and inserting via Ctrl+C and Ctrl+V.

The editor and console are integrated. The console and editor are
shown in two separate windows when a script is started, but the
script is shown in the console. A quick change is possible with
Ctrl+W.

IntelliSense exists in the console and in the editor for commandlet
names, commandlet parameters, variable names, path names, NET
class names and .NET class members (see Figures 9.11 through 9.18).
Code editor with syntax highlighting.

Debugging with single-step mode (see Figure 9.19).

Use and administration of reusable code snippets.

Recording of console entries, which can be recalled via hot keys.
Display of current variables and details of their contents (see Figure
9.20).

Transparent display of console window (optional).

Direct edit of WPS profile scripts.

www.powershell.com

WINDOWS POWERSHELL PLUS 159

=101x]

File Edit Wiew Profiles Preferences Help Windows

[Hardcopy ° Transcript | {p} Minirmode | 'e' Run Elevated | ':?Cnde Editor E_;]Snippet Editor

i

[l Get—FPro_
2 Get-Metadata
fGet-MountPolnt
EGet-Netwnrhadaptar
7 Get-PEHeader
57 Get-PFxCertficate
fGet-P\pellnalnFo
fGet-Pmnt\ngDevice
fGet-Priwlege

Get-Processor

ETransparency (:\—@(t\‘ Iy Always On Top 54 Properties |E|| , 1-Click-Edit ‘ |j |

Figure 9.11 IntelliSense for commandlet names

%4 PowerShellPlus Basic [powershell - hs [elevated user] - ocuments'hs] licensed to Beta Tes 3 = Ellﬂ

File Edit VWiew Profiles Preferences Help ‘Windows

Get—!

Get—Processop
Get—Propertylalue
[11 1-3 ¢3-82>1

Transparency (:\—@(t\‘ Iy Always On Top L4 Properties |E|| lﬁ lEI -, 1-Click-Edit ‘ |j |

Figure 9.12 An dlternative IntelliSense for commandlet names

©
o
o
=
m
=
v
x
m
=
-
o
1=}
-
wv

160 CHAPTER 9 POWERSHELL ToOOLS

#+ PowerShellPlus Basic [powershell - hs [elevated user Documentshhs] licensed to Beta =101 x|

File Edit Wiew Profiles Preferences Help Windows

% Hardeopy " Transcript | { | Minimode | '|§"Run Elevated| '_?Cnde Editor |=Z|Snippet Editor

Get—Process —i
= | Debug
El Erroraction
El Errorvariable
ETHEM—
E] nputobject
El Mame
El OutBuffer
[E] outyariable
] verbose

Transparency (=)———— /-!-3| Iy Always On Top 04 Properties ||z|| <y 1-Click-Edit | lj |

Figure 9.13 IntelliSense for commandlet parameters

=10l =]

File Edt View Profiles Preferences Help windows

® Warming: Elevated Privileges Enabled

li## Get—Content H:\demo\PowerShell>
(CH:{demotPover Shell_TODOSEE
(ZH:\demolPowershallacL
(S)H:\demotPowershellBasiskonstrukte
[)H:\demolPowersheliBenutzer
CH:demotPowerShellCommandists
)H:\demotPowershellDateisysterm
(CH:\demotPowershelliDatenbanken
CoH:\demolPowersheliDisnste
H:demolPowershellGLI
(C)H:\dema’Power ShellLeistungsdaten

: Transparency (=) 0(#)| mawaysonTop 3 1-Click-Edit [| " Auto-Buffer| (7] |

Figure 9.14 IntelliSense for path names

WINDOWS POWERSHELL PLUS 161

PowerShellPlus Basic [powershell - hs [elevated user Documents'hs] licensed to Beta =101 x|

File Edit Wiew Profiles Preferences Help ‘Windows

[#1Hardcopy 4° Transcript | L&.l Minimode | '|:"" Run Elevated | ':?Cnde Editor E_;]Snippet Editor

[g [System.Net _NetworkInformation_NetworkInt_

7 [System.Net, NetwarkInFormation, MetworkdddressChangedEventHandler]

_‘[System.Net.Netwnrklnformation.NetworkAvaiIabiI\tyChangadEventHandler]
[System.Net . MetworkInformation. MetworkavailsbiltyEventargs]

j[System.Net.Netwurklnfurmatiun.Netwurkchange]
_‘[System.Net.Netwnrklnformation.Network]nfnrmationnccess]
_h[System.Net.Netwnrklnformation.NetwoanFDrmationException]

j[System.Net.Netwnrklnfnrmatinn.NEtwnrklnFnrmatinnPermissinn]
-[Syste Met, MetworkInformation. NetworkInformationPermissionAttribute]

éTransparency (:\7@(1_-\‘ I Always On Top 428 Properties ||z|| s 1-Click-Edit ‘ i |

Figure 9.15 IntelliSense for .NET class names

=10l

File Edit Wiew Profiles Preferences Help ‘Windows

[Hardcopy ° Transcript | m_, Minimode | 'f:f' Run Elevated | ':?Cnde Editor E_;]Snlppet Editor

[System.Net. MetworkInFarm etworkInterface]::LoopbackInterfaceInde:x
& [System.Net, MetwarkInfarmation MetworkInterface]: :ReferenceEquals

éTransparency (:\7@\%\‘ I Always On Top 428 Properties ||z|| s 1-Click-Edit ‘ [Auto-Buffer| [|

Figure 9.16 IntelliSense for .NET class members

©
o
o
=
m
=
v
x
m
=
-
o
1=}
-
wv

162 CHAPTER 9 POWERSHELL TOOLS

#+ PowerShellPlus Basic [powershell - hs [elevated user] ocuments',hs] licensed to Beta 1 5 =10 x|

File Edit Wiew Profiles Preferences Help Windows

j$pscxdirforcepreference
f$pscxdlrhldesystempreference
i‘?$p5cxeyecandy5criptprefarance
f$pscxF\Iesizeinunitspreference
fi&PschoreCD\or

j $pscxhome

5 $pscxHostTiePreference

5 pscabotDayPreferance
fi&PscxPrDmptBackColor

ransparency (:H—U(fﬂ Iy Always On Top @ 4o Properties ||Z| m " 1-Click-Edit | lj |

Figure 9.17 IntelliSense for variable names

#+ PowerShellPlus Basic [powershell - hs [elevated user] - ocuments',hs] licensed to Beta 5 = Ellil

File Edit Wiew Profiles Preferences Help ‘Windows

#Hardcopy ° Transcript | { i Minimode | 'e' Run Elevated | [Code Editor (5| Srippet Editor

¥ Wamning: Elevated Privileges Enabled x

SHost .CurrentCulture .
Y Calendar
W ClearCachedData
W Clone
fComparaInFo

¥ EnglishMame
WEquals
W GetConsoleFallbackUICulure o

———W{#)| m always On Top o3 Properties || o || 3 1-Click-Edit | i

Figure 9.18 IntelliSense for variable members

WINDOWS POWERSHELL PLUS 163

TIP In the PowerShellPlus Editor, debugging is used not only for error searching,
but also for improving the IntelliSense support. Because a commandlet does not
declare which objects are in the pipeline, and the output of a commandlet can
depend on the context, the editor cannot know the available options as long as
the script has not been run at least once. When you are running the debugger,
the PowerShellPlus Editor remembers the content of the pipelines and the vari-
ables and will provide IntelliSense thereafter.

-7 PawershellPlus Dasic [powershell - hs [elevated user] - C\Documents\hs] licensed to ks Tests

M o (o = Erable Auto-Sten
: il W peietens p
¥ Cortinue {8 Totreak = o
Concel | Mew Bypeansa O
Esentien Ereskpoirs Debugger Cptions
Ediuetied) - E§10YDatabase Commend -

1=l | =

=o'\ Powersne 1 1) Datenbanken) users mab; "

=t davabase connections:®
on -conneccion iConn -aql $I30L -provider Provider

invoke=ScalarbbCommand -co nn ac §20L1 T i iPrav ¥
141 |]

| one. - 2]

Figure 9.19 Debugging with single-step mode

©
o
=)
=
=
=
w
x
m
m
=
-
o
=]
-
(%]

164 CHAPTER 9 POWERSHELL TOOLS

#1 PowershellPlus Basic [powershell - hs [elevated user] - C:\Documents'hs] licensed to Beta Testers 3 o] |

File Edit View Profiles Preferences Help Windows

: (@I Hardcopy 4" Transcript |] Minimods | 9 Run Elevated | (77 Code Editor || Srippet Editor

T

4p = Get—Process <. ,@ |
Name | Walue | Description | ;l
o $MaximumiariableCo... | 4096 The maximum number of variables allowed in a session,
o $MyInyocation {Mathing)
i $MestedPromptievel 1} Dictates what type of prompt should be displayed for the. ..
7 $ntaccount ITVihs pscx variable
i gntidentity (Psobject) pscx variable [|
-7 $ntprincipal (PSObject) pscx variable
e $null {Mathing) References to the null variable always return the null wal ..
o $OutputEncading System, Text,ASCIIEncoding The text encoding used when piping text to & native exe...
e System,Object{]
o $PID 5752 Current process 1D,
i7 $Power TabConfig ({PsObiject) =l
Properties o ox

Ide

instinfo =
ISR Service

Launcher

lsass

Matrox PowerDesk SE

Matrox PowerDesk.FDeskhiet Y
InitializeLFetimeService System. Object InitializeLiFetimeService()
[System.Void K}
Machinehame System, String MachineName {get;}
Maintoduls System. Dlagnostics FrocessModuls MaModdls {gati} |
MainWindowHandle System. IntPtr MainWindowHandle {get;}
MainiwindowTitle Syystem. String MainWindowTitle {get;}
MasxWorkingSet System. IntPkr MaxWorkingSet {get;set;
MinWorkingSet System. IntPtr MinwWorkingSet {gst;set;}
Modules System.Diagnostics. ProcessModuleCollection Modules {get;}
[~ | name Name = Processhlams

Fern. Inb32 Monnaner nrvSize {oek:)

1 quick Edit | S, 1-click-edit [5 Auto-Buffer] [|

MonnanedSwstemb

T(#)| mAbays onTop &3 Properties \\m|m|u

: Transparsncy (=)

Figure 9.20 Display of all current variables and their content

PowerShell Analyzer

The Windows PowerShell Analyzer by Karl Prosser, an owner of Shell
Tools, enables you to display pipeline objects in a table (see Figure 9.21)
or diagram. These are several separated run spaces in which WPS com-
mands can be executed independently. However, two important editor
functions are missing here: IntelliSense for classes and class members (see

Figure 9.21) and a debugger.

PRIMALSCRIPT 165

PowerShell Analyzer

Vendor Shell Tools, LLC
Price $129
URL www.powershellanalyzer.com

< Powershell Analyzer (beta) [1.0.1.0] I =lolx>]
Be ER Sewch Rumpse CodeCorpleton Cuthwd ook Hep Commuaky
NG LBA SN o HiB-@-xm i =2/08@Q
5 rsomcel | nnmace? |
| = | Conaie Ouput | 7ML | [Fiess Coplorer | Provider Evplowes | HTML | Chart Jeotivakngset e 2 |
2 Ireex | Class | Cortrris | 11 15
[—rT— e n2e8) Mt
1 Sytten Manapament dutomason PSObiect @IWekings et=2067200) Werkngiee Ansoa
2 Syt M anagerment. St osation P Obiect @lworkingSet=4206532)
3 il Management it PS byl Slwiorkingel=1 372160}
4 5 Aukomeion, P5Dbiect @ 5]
O Syt Managament Mutoisation P Dbiect @lwackingS et=475136)
& Syt Mgt Audoeatan 5 bt EfwerkingS sl=871 7344}
7 r— Filbiest | @lWorkrgSeiesaTseasl
8 Syt Managament Automation PSDbect @lWakings eteld 19584}
] Syt M anagerment. St osation P Obiect @lwirkingSet=3584000}
1 Syt b " e el
1 Syate Manogsment Automation P5Dbiect @lwakingSet«11006592)
12| SysemMansgsmant Mutomation, PS Obiect @lwokingS et-5124512)
i} il Margrerneei ¥ Tl cabrgf o R Mise
14 Syaiom, PE0bie 7518592
{
PsDoclpat” |
1
§a -
wnl
1 =
) A=
R
. ;[‘I
Juns coia cna |
of woo

Figure 9.21 Windows PowerShell Analyzer 1.0 for WPS 1.0

PrimalScript

The universal editor PrimalScript supports editing WPS scripts starting
with version 4.1 (see Figure 9.22). For further information, refer to the
website of the vendor, Sapien.

©
-
c
=
=
=
wv
=X
=
m
=
-
)
=1
-
(%]

www.powershellanalyzer.com

166 CHAPTER 9 POWERSHELL TOOLS

PrimalScript

Vendor Sapien

Price From $179

URL www.primalscript.com/

Table 9.1 compares PrimalScript 4.5 with PowerShellPlus 1.0 and the
PowerShell IDE, demonstrating on one hand that PowerShellPlus offers
more functions for WPS, but showing on the other hand that PrimalScript
is a universal editor.

Table 9.1 Comparison of PrimalScript 4.5 and PowerShellPlus 1.0
PowerShellPlus PowerShell IDE PrimalScript

1.0 1.0 4.5
Console for interactive Yes No No
input
Script editor Yes Yes Yes
IntelliSense for Yes Yes Yes
commandlets
(see Figure 9.23)
IntelliSense for Yes Yes Yes
parameters (see
Figure 9.24)
IntelliSense for class Yes Yes Yes
names
IntelliSense for .NET Yes No No
class members
IntelliSense for variable Yes No No
names (see Figure 9.25)
IntelliSense for variable Yes No No
members

www.primalscript.com/

PRIMALSCRIPT 167

IntelliSense for
path names
Debugging
Support for

other types
of files

PowerShellPlus PowerShell IDE

1.0 1.0

Yes No
Yes Yes
XML N/A

PrimalScript
4.5

No
Yes

WSH, ActionScript,
AWK, Autolt, Batch,
HTA, Kixtart,
LotusScript, Perl,
Python, Rebol, REXX,
Ruby, SQL, Tcl,
WinBatch, ASP, HTML,
JSP, PHP, XML, XLST,
XSD, C#, C++, VB,
ColdFusion u.a.

- = "
12l] - ADS Domaininto.psl | E] READMEMTM | 2] Extensiondlepartest * |2 Wntaledpsd. . L) ADS S 3 !
[le Domain ecmittels =
5 30 = [Syscem.DireccoryServices.lesiveDirecory. Domain] @ :Gercurrenthomain ()
1 HTAs i
g M 4 slle teve -
£33 Powwershel 5 i
) Corvrrtrwrame g5 . Demainfooe ¥
Extansonsinport il tureBale: * 4 1d.InfrastructureRoleCunes . Name :1
ok W""""-';‘ U “Inhaber der Pdcko. + 4d.PdcRo leCuner . Name i
Gt DkeStze.py). G 3 *Inhaber der PdcRole: * + 3d.Pdcholedvnes.Name 3
Processsummary. psl
et Meggiter el Few grsd
Sthoweexgikerodior g1 11 # Informationsn Ubsr Forsst der sktusllen Domane
Semqeiessiie] 12 4 = dd.Forest:
Shemrserdoes gl 3 “Mame des Forest: * + {2 Neame
1 Serid S 14 "Modus des Forest: * + If ForestMode
)
. o=
VBSero! Exsgntigh Sof Paced Tining | 2=l
vl el Porced T
Sadranced Vi S ot Fob Paced Tigning Name: IT-Visione,local
Pouo w Dosain Mode: Windows2000MIxedDomain
Inkaber der InfrastructureRole: EOZ.IT-Visions.local
ith VTS, Tubaber der one. loenl
Mariging IS with VBS 2t Inhoker der ons. local
? Name des Forest: -local
A HI; Bodus des Forest: S2000FaEeaE
*rr PoverShell Script Iinished, TTT
)
&
New ltema:
Winedow PorerShek TR
D) Scocting IF
Coming Svon:
Vs i haT]
AR 4 »
e 3 = M .

Figure 9.22 Output of a WPS script in PrimalScript 2007

©
-
c
=
=
=
wv
=X
=
m
=
-
)
=1
-
(%]

168

CHAPTER 9 POWERSHELL TOOLS

Gont-grapimeat gn1
et Caiiize. st WREDE
ProcessSimmary oal
Set-Regriteredtice. 51
Shi it tde et
showprecessnic. psl
shemiersiees gl

By Sert Sigrie

‘ Ser-PocxVariable Profilebir [split-path <<<¢ §Mylmvocation.HyCommand.Path -Parent)

&
¥hSongt Expertigh Sof Faced Tranng
lereiae vEiogd ol Paced Tiormsy
Acoorced YBScie Sof Faced Traowa
SelPaced windoss Powertteld Tusnrg
i I3 b VB cred
S Eeleric it
Aude \Eors M1 g oo Wirglous s,
Split-FAth : CANno bind ACQERERL Lo pAEAmELEE
At Line:127 ehae:dl
& Join-Fath : Camnoe bind argument to paramecer 'Parh’ because it ia null.
At line:128 char:di
L + fable le (3 i

PIEN Technologies

TPAER! Becaune 1t im nuall,

<445 §Prodiledir ‘Profile.psi')

ExtersirRiepert il J nbery
Gontiigrapingent g
sl
ol
Set-Aegrterd ter il
Shoss- Rt it pel

[ve]

shompracessetapst
Jresspy

4y Sk Sigre)

Sekertl

gt

YScnp! Kyl Sof Faced Tranng

luereiate vEiogs Seb Paced Tionws
Acooed YBS et Sel Foced Tnaora
SelPoced windoss Powertteld Tusnrg

Harang I weth VBScned

b \Eevpn M1 for wievicurs Sdeen

Split-Fath : C
AE 1ine:127
‘ Ser-PeexVariable Prefilediz [splic
Joim-Path : Camnoe bind argusent ©o parame
At line:128 char:dl

nnot Bind Argument

PYSTH

e [Enapery] <bjectl | Hrputlopeet

uekutaPregaty ¢Stingll|
ArddE et <ol
[Emmteben che
«Eiings | [-Dutariable <Sting: | [-Dutlulier
i)

3]
St | | Ursgued [Lt
| [Meiboce] FDiebu]
chorredesences | [EnciVoriabile

TPAER!

path <<<d §Mylmvocation.HyCommand.Path -Pacent)
ter 'Path’ Desause it is null.

+ isble le [19dn-p

Mew Hema:

DS Scotng TEW

Coming Suon:

<445 §Prodiledir ‘Profile.psi')

Figure 9.24 IntelliSense for parameters

169

POWERSHELL HELP

=i

I

£] READMEHTM. | 2] ExtenaionReportpal *- i) Untitied.pal® %
2§ = e — =
B E Mis 1
R e o
~HEY Powerihel s B
3] ComvertWHITime psL 5 |
ExferssenBiepartpal 7 “if NatorkiChangs 7
c-i-"iﬁ‘\"xul.:l a # Natcrkasbormatoniscass 3
Gl st RS T & T T —— q
Processsummary oal p e el otk e
SetRnghternd fier. 31 S et -
‘]'Jn—«lhqdﬂwdkﬂ.lu'. # 8 Motk ot
BX) showprocessinfo.pst —= "f Networkinberface.
showservins ol 1 # hetmorkdrberfaceComponent
4y Sert Sigrie 4| Maw-Ohdect Syscen.Mer.Hatvorkintormesion et
&
VBt Enpenit Sod Saned Tramng
e Faced Tt
Aubrorced YBS ot Seb Foced Traown
b=

Harang I veth VEScne! ‘

‘gt VErEcros WAL fon Widosen ek

Pazent)

4i0d FMylmvocat don. HyComsand, Path
'Patk’ bemmuse it im null.

able Profiledic [split-path
Camnor bind argusent o paramecer
charzdl

/arinble e | il

<445 §Prodiledir ‘Profile.psi')

Mew Hema:
ireiren Posunithed TEW
ALrE] Scsctoa TEM
Coming Soon:
s Wik Core IF
A] - 4
— K A ok

Figure 9.25 IntelliSense for class names

PowerShell Help

PowerShell Help is a simple tool to show the stored help text for com-
mandlets stored in XML files (see Figure 9.26).

PowerShell Help

Vendor
Price
URL

Sapien
Free
www.primalscript.com/Free_Tools/index.asp

©
-
c
=
=
=
wv
=X
=
m
=
-
)
=1
-
(%]

www.primalscript.com/Free_Tools/index.asp

170 CHAPTER 9 POWERSHELL TOOLS

(2 SAPIEN Technologies, Inc. - PowerShellHelp

i Fle Edt View Help
=N =T=T
- About... A frame : Export-Climml Al
- CmdLets] mandIype : Cmdlet |
Add-Content Derinition : Export-Clisml [-Path] <String> [-Depth <Int32»] -InputObject <PSCbject> |
Add-History ing <String>] [-Verbose] [-Debug] [-ErrorAction <A Preference>] [-Err zbl
Add-Member - riesble <String>] [-OutBuffer <Int32>] [-Whatlf] [-Confirm] ‘
Add-PSsnapin
Clear-Content rarh % =
Clear-Ttzm fajem‘:l"'lﬂ': e s ” 2 2 .
Cheer Skl) jprr : C:\WINDOWS\aasembly\GAC MSIL\Microsoft.PowerShell.Commanda.Utility\1.0.0.0_ 31bf3t
= hell.Commands.Uzilizy.dll |
Clear-yrizble [ielpFile <. FPowerShell.Commands. Urility.dl1-Help.sml I
Compare-Object arametersecs rameterSecs]
ConvertFrom-SecureStrine |implementingType : Microsoft.PowerShell.Commands.ExportClizmlCommand =
Convert-Path Verb : Export v
ConvertTo-Html i 5
ConvertTo-SecureString = =
Copy-Item IRME Al
Copy-TtemProperty Export-Clixml 3
Export-Alizs 8
Export-Clixml [FYNORSTS
Export-Cansole Creates an XML-based representation of an object or chjects and stores it in a file.
Export-Csv o
ForEach-Chject Exporc-Clisml [-path] <strings -inputCbisct <pssbject> [-depth <int»] [-force] [-sncoding <strine
Fammat-Custom hatlf] [-confirm] [<CommonParametersy]
Format-List
Format-Table
Format-Wide DETATLED DESCRIPTION
Get-Ad Creates an XML-based representation of an object or cbjects and stores it in a file. You cam ther
Get-Alias MML cmdlet to recreate the saved object based on the contents of that file.
Get-AuthenticodeSignatur
Get-Childltem
Get-Command [FARAMETERS
Get-Content -path <atring>
Get-Credential v Specifies the path to the file where the XML representation of the chject will be stored. v
Si= i T L — . — | &
tescy 14

Figure 9.26 PowerShell Help for WPS 1.0

Summary

In this chapter, you learned that the WPS console is basically the same as
the classic Windows console, with just a few more features. You can add
input support with the free PowerTab tool. The third-party tool
PowerShellPlus provides full IntelliSense support for the console.
Microsoft does not provide an editor for WPS scripts. For such, you
can choose between the free, albeit incomplete PowerShell IDE and the
commercial products PowerShellPlus Editor and PrimalScript.

CHAPTER 1 0

Tips, TRICKS, AND
TROUBLESHOOTING

In this chapter:

Debuggingand Tracing 171
Commandlet Extensions 174
Command History 186
System and Host Information 187
PowerShell Profiles 189
Graphical User Inferfaces 196

This chapter contains a few tips for your work with Windows PowerShell
(WPS), including debugging, installing commandlet extensions, using pro-
file scripts and the command history, and displaying user interfaces. The
chapter also introduces a few of the available commandlet extensions from
third-party vendors and the open source community.

Debugging and Tracing

Regarding debugging, the commandlets offer a few common parameters:

m With the parameters -verbose and -Debug, the administrator gets
more output than usual.

m With -Confirm, the administrator requests that all actions that make
any changes have to be reconfirmed by the user.

m To be on the safe side, you can simulate actions with -whatIf
before starting the real execution.

171

172

CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

WARNING The parameters —Confirm and -WhatIf are not supported by all
commandlets.

When you use -whatIf with the commandlet stop-Service, WPS
lists in detail which services Windows will really stop, according to existing
service dependencies.

-WhatIf is also very helpful when you use a command with a place-
holder. Figure 10.1 shows which services would be stopped when Stop-
Service a* is executed.

I windows PowerShell E

\Docunents\hs>

:SDocunentsshs >

\Docunents\hs>

sDocunentsshs >

\Docunents\hs>

SDocunentsshs >

:\Docunentsshs> stop-service —name a* —whatif

if: Perforning operat "Stop—Service" Target "Application Experience L

ookup Service (fleLookupSuc)

i i operation "Stop—Service" Target "Alerter {(Alerterd".

operation "Stop—Service" Target "Application Layer Gateuwa

operation "Stop—Service" Target "Application Management (

operation "Stop—Service" Target "Remote Server Manager (a

Perforning operation "Stop—Service" Target "ASP_NET State Service (a
pnet_stated"
if : Perforning operation "Stop—Service" Target "Windows Audio (AudioSrud

\Docunents\hs>
:SDocunentsshs >
\Docunents\hs >
:SDocunentsshs >
z\Docunentsihs >

Figure 10.1 Operations with placeholders can have severe consequences;
-WhatIf demonstrates which services would be affected.

Verbose Execution

Detailed information about a single commandlet can be gathered via the
standard parameter —verbose. If you want to get the same for whole
scripts, use Set-PsDebug -trace 1 or Set-PsDebug -trace 2.
Figure 10.2 shows the output of -trace 1. With -trace 2, the output
would be even more detailed.

DEBUGGING AND TRACING 173

'owershell - hs [elevated user] -

Uindows PowerShell
Copyright (C)> 2886 Hicrosoft Corporation. All rights reserved.

H: ~deno“UPS
1#f Set—PSDebug —trace 1
2# H:sdenosWPSSB_WinNT\Localllser_ Create.psi
DEBUG: 1+ H:sdemo“UPS\B UlnNT\LocaIU“el _Create.psl
DEBUG: 11+ 5Name = "Dr. Holger Schwichtenberg"
DEBUG: 12+ $Rccountnane HSchuichtenberg"
DEBUG: $ ripti 'Ouner of Website powershellZ4.con
DEBUG: - cret+123"
: ocalhost”
17+ "Cleatlng Uzer on Computer $Computer"
User on Conputer localhost
20+ $Conta1nel = [ADSI] "UlnNT //$Conputel"
» $Accountnane)

H created: $Name"
User created: Dr. Holger Schwichtenberyg
3

—_
=)
S
=
-
4’5
=
=
n
=
4’5
>
=
S
=
Ed
=)
c
-]
1~
wv
=
=}
1=}
=
H
@

Figure 10.2 Protocoling a script execution

Single-Step Mode

With the commandlet Set-PsDebug -step, you can execute a script step
by step. WPS not only executes the steps, it also asks after each step
whether you want to continue the execution (see Figure 10.3).

Measuring Execution Time

The commandlet Measure-Command shows, in the form of a TimeSpan
object, how much time a command needs for execution.
For example

Measure-Command { Get-Process Foreach-Object { $_.ws } }

Tracing

You can activate a trace with the commandlet Set-TraceSource, which
displays internal information about each step processed within the WPS
environment. Get-TraceSource lists all traceable sources. By default,
there are 176 sources. This shows the complexity of the matter, which goes

far beyond the scope of this book.

174 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Shccountnam

Figure 10.3 Execution of a script in single steps with confirmation

WARNING When experimenting with Set-TraceSource, you might soon
reach the point where you cannot see the real actions because of all those pro-
tocols displayed. To deactivate the tracing, use Set-TraceSource with the
parameter —RemoveListener.

Commandlet Extensions

WPS does not have a fixed set of commandlets. Additional commandlets
can be added when WPS is started or at any time during its operation.
Additional commandlets are either implemented as WPS script files, which
are added via dot sourcing (see Chapter 8, “Using Class Libraries”) or via
installation of a snap-in (described in the following text).

COMMANDLET EXTENSIONS 175

Adding Snap-Ins

Commandlet extensions are delivered in the form of a snap-in DLL. They
have to be integrated in WPS in two steps:

1. Registering the DLL (alternatively called assembly) that contains
the commandlets
2. Loading the snap-in to the WPS console

DLL Registration

Registration of the DLL is performed with the command-line tool instal-
lutil.exe, which is installed together with the .NET Framework. You will
find the tool in the installation directory of the .NET Framework (usually
c\Windows\Microsoft .NET\Framework\v x.y\). WPS has implemented
this path automatically as a search path for the command.

When using installutil.exe, you must indicate the filename of the
extension DLL, including the path (in case the WPS console does not
already have this exact path as the current path).

installutil.exe
wG: \PowerShell Commandlet_Library\PowerShell_ Commandlets.dll

Figure 10.4 shows how the tool displays the successful installation.
The registration has the effect that the DLL is added to the registry
key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\I\

PowerShellSnapIns.

Loading of Snap-Ins to the PowerShell Console

To load a snap-in, you must use the commandlet Add-PSSnapin in the
WPS console. This commandlet needs the name of the snap-in, not the
name of the DLL. If you do not know the name of a snap-in, see the sec-
tion “Listing Snap-Ins” later in this chapter.

Add-PSSnapin PowerShell_Commandlet_Library

—_
=)
s
=
-4
wv
¥
-
=
n
=
wv
3
>
=
o
-
Ed
=]
c
-]
-
=
wv
x
[=3
(=]
=
=
@

176 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Windows PowerShell !
Copyright <G> 2886 Microsoft Corporation. All rights reserved.

G:“PoverShell_Commandlet_LibraryshinsDebug“PoverShell_Command

-NET Framework Installation utility Version 2.8.58727.832
Copyright <{c? Microsoft Corporation. All rights reserved.

Running a transacted installation.

Beginning the Install phase of the installation.
See the contents of the log file for the G:“Powerfhell Commandlet_LibraryxhinxDe
hug\PouelShell Commandlet_Library.dll assembly’s progress
The file is located at G:“PowerShell Commandlet L1brary\b1n\Dehug\PouelShell Com|
mandlet_Library.Installlog.
Installing assembly *G:“\PowerShell Commandlet_LibraryxhinDebug*PowerShell_Comnal
ndlet_Library.dll’ .
Affected parameters are:

logtoconsole =

assemblypath = G:“Powerfhell Commandlet_LibraryshinsDebug“PowerShell Commandl|
et_Library.dll

logfile = G:“PowerShell Commandlet_LibrarysbhinsDebug“PowerShell Commandlet_Li]
brary.Installlog

The Install phase completed successfully, and the Commit phase is beginning.
See the contents of the log file for the G:“PowerShell Commandlet_Library-hin“De
bug PoverShell Commandlet_Library.dll assembly’s progress.
The file iz located at G:“Powerfhell Commandlet_Library~bhin“Debug-PowerShell_Com
mandlet_Library. IngtallLog
Committing assembly *G:“FowerShell Commandlet_Library-bin“Debhug“FoverShell Commal
ndlet_Library.dll’ .
Affected parameters are:

logtoconsole =

assemblypath = G:“\Powerfhell Commandlet_LibraryshinsDebug“PowerShell Commandl]
et_Library.dll

logfile = G:“Fowerfhell Commandlet_Librarysbhin-Debug \PowerShell Commandlet_Li]
brary.InstallLog

The Commit phasze completed successfully.

%ae transacted install has completed.

Figure 10.4 Output of Tnstallutil.exe

Whereas registration of a DLL is necessary only once, the WPS con-
sole discards a loaded snap-in each time it is terminated. If you want WPS
to always start with certain extensions, you have two options:

m Add the relevant Add-PSsSnapIn commands in your system-wide or
user-specific profile file (Profile.ps1, see “PowerShell Profiles” in
this chapter and Figure 10.5).

m Export a console configuration file with Export-Console (see
Figure 10.6). At first, however, you have to add the snap-in to the
current console, and then you can export this current console. This
creates an XML file with the filename extension .pscl. The PSC
file has to be handed to WPS with the command-line parameter
—-PSConsoleFile when it is started.

COMMANDLET EXTENSIONS 177

2 Profile ps1 1KE Windows Powershel,., 29,07,2007 13:41 &
[Profile.ps1 - Notepad i =] |
File Edit Format Wew Help
add snapIns =]

add-Pssnapin Powershell_Commandlet_Library

=

Powershell.exe

Windows PowerShell
Copyright (C>» 2886 Microsoft Corporation. All rights reserved.

PS5 C:“WINDOWS>» Get—Computername
PS C:\WINDOWS>

—_
=)
S
=
-

\il’
=
=
n
=

\il’
>
=
S
=
Ed
=)
c
-]
1~
wv
=
=}
1=}
=
H
)

Figure 10.5 Loading a snap-in in the profile file

[B HolgersCansole. psc1 1KE P5C1File 29.07.2007 19:46)

X Powershell.exe

Lindows PowerShell
Copyright {C»> 2886 Microsoft Corporation. All rights reserved.

PS C:~WINDOWS> Add-PSSnapin PowerShell _Commandlet_Library

PS C:“UINDOUS> export—conzole G:“Consoles“HolgerszConzole
PS C:~WINDOWS>

E‘ HolgersConsole.pscl - Notepad E = | Dlll

File Edit Format VYiew Help

<7xm] wersion="1.0" encoding="utf-8"7> =]
<PsconsoleFile Consoleschemaversion="1.0">
<PSversionzl. 0</PSversion:
<P53napIns>
<PSsnapIn Name="pPowershell_commandlet_Library” /=
</PS5napInss
</PsConsoleFiles

Figure 10.6 Exporting a console configuration file

The best thing to do is to create a link in your file system with the fol-
lowing destination (see Figure 10.7):

%SystemRoot%\system32\WindowsPowerShell\vl.0\powershell .exe
w_PSConsoleFile "G:\Consoles\HolgersConsole.pscl"

178 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

EHU\gars ‘Windows PowerShell 2ZKB Shortcut
Holgers Windows PowerShell Properties] 21x|
Colors | Compatibility | Security |
General Shortcut | Options I Font | Layout

5 Holgers Windows PowerShel

Target type: Application

Target location: +1.0

Target: | exe Qe Mayem =g G YConsoles‘\HolgersC

Start in: IZHDMEDF\IVEZZHDMEPATH‘Z

Shortcut key: INone

Rur: I Marmal window j

Comment: I

Find Target... | Change con... Advanced... |

’TI Cancel | Apply |

Figure 10.7 Creating a link to the WPS console; the link automatically loads a
certain console configuration file

Listing Snap-Ins

The commandlet Get-PSSnapIn usually lists only those snap-ins that
already have been added to the WPS by using the Add-PSSnapIn. Among
these, there are also the standard commandlet packages, starting with
Microsoft.PowerShell.* (see Figure 10.8).

Get-PSSnapin -registered, however, lists all registered snap-ins,
regardless of whether they are active in the current console. Figure 10.9
shows the snap-in WorldwideWings_PowerShell_Extensions, which is
not active in the console (see Figure 10.9).

COMMANDLET EXTENSIONS 179

: Higrusuft.PuuePShell.Cure

: This Windows PowerShell snap—in contains Windows PowerShell manag
enent cmdlets used to manage components of Windows PowerShell.

: Microsoft.PowerShell. Host
PSVersion 1.8
Description @ Thisz Windows PowerShell snap—in contains cmdlets used by the Wind
ows PowerShell host.

Hane : Microsoft.PowverShell.Hanagenent

PSUersion = 1.8

Description : This Windows PowerShell snap—in contains management cndlets used
to manage Windows components.

Hame : Microsoft.PowerShell Security

PSVersion 1.8

Description : Thisz Windows Powerfhell snap—in contains cmdlets to manage Window
s PowerShell security.

Hane : Microsoft.PowerShell Utility

PSUersion 1.8

Description : This Windows PowerShell snap—in contains utility Cndlets used to
manipulate data.

ONILOOHSI1N0YA] ANV ‘SIDIY] ‘sdi] Q1

Nane H

PSVersion 1.8

Description : PowerShell Community Extensions (PSCE) hase snapin which implemen
ts a general purpose set of cndlets.

Hane : ITVisions_powershell extensions
PSUersion i.8
Description : This is a PowerShell Extension with different Commandlets.

iTgisions_PouerShe11_Extensions
: This is a PowerShell Extension with different Connandlets.
: Psex

i.8

; P&uershell Community Extensions (PSCX> bhase snapin wvhich implenen
ts a general purpose set of cndlets.

: WorldWideWings_PowerShell Extensions
1

: This is a PowerShell Extension with different Commandlets.

Figure 10.9 All commandlets registered on the system

List of Available Commandlets

To get a list of all commandlets in a specific snap-in, you can filter for the
property PSSnapIn in the class cmdletInfo, as follows:

180

CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Get-command | where { $_.pssnapin -like "Pscx" }
or

Get-command | where { $_.pssnapin -like
w"'TTVisions_PowerShell Extensions" }

or

Get-command | where { $_.pssnapin -like
w'"quest.activeroles.admanagement" }

Ambiguous Commandlets

It might happen that you activate different snap-ins that define command-
lets with the same name, because there is no central registry for command-
lets. When you encounter this problem, WPS answers the call of
ambiguous commandlets with an error (see Figure 10.10).

WARNING Note that this error actually occurs during operation, not when the
WPS console is started.

= rowershell - Holger Schwichtenberg {www.IT-¥isions.de) - [Running as Ad

Uindows PowerShell
Copyright (C)> 20886 Hicrosoft Corporation. All rights reserved.

1# Add-PSSnapin PowerShell_Connandlet_Library
2% Get—Computernane

3% ITUizions_PowerShell Extensions\Get—Computernane
E@i

41t

Figure 10.10 A commandlet name has been assigned twice.

To differentiate between the two commandlets with the same name in
different snap-ins, you have to preface the name of the snap-in to the com-
mandlet (separated by a backslash), as follows:

ITVisions_PowerShell_ Extensions\Get-Computername

COMMANDLET EXTENSIONS 181

Available Commandlet Extensions

Important commandlet extensions (some free, some not) include the
following:

PowerShell Community Extensions by Microsoft.

PowerShell Extensions by www.IT-Visions.de.

Quest offers commandlets for Active Directory scripting.

Group policy administration with PowerShell is offered by the com-

pany FullArmor.

m Commandlets for network management with PowerShell are
offered by the company /n Software.

m The company PowerGadget offers, under the same name, a collec-

tion of additional commandlets to display WPS pipeline content.

—
(=]
.
=
<
v
-
=
a
=
\iﬂ
>
=
=]
-
=
(=]
e
w
-
m
wv
=
[=3
(=]
=
=
@

PowerShell Community Extensions

You can find additional commandlets and providers for WPS 1.0 from
Microsoft in Windows PowerShell Community Extensions (PSCX).

Vendor Microsoft/Open Source Community Project
Price Free
URL www.codeplex.com/PowerShell CX

PSCX 1.1.1 contains the following commandlets:

ConvertFrom-Base64
ConvertTo-Baseb64
ConvertTo-MacOs9LineEnding
ConvertTo-UnixLineEnding
ConvertTo-WindowsLineEnding
Convert-Xml
Disconnect-TerminalSession

Export-Bitmap

www.IT-Visions.de
www.codeplex.com/PowerShellCX

CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Format-Byte
Format-Hex
Format-Xml
Get-ADObject
Get-Clipboard
Get-DhcpServer
Get-DomainController
Get fileVersionInfo
Get-ForegroundwWindow
Get-Hash
Get-MountPoint
Get-PEHeader
Get-Privilege
Get-PSSnapinHelp
Get-Random
Get-ReparsePoint
Get-ShortPath
Get-TabExpansion
Get-TerminalSession
Import-Bitmap
Join-String
New-Hardlink
New-Junction
New-Shortcut
New-Symlink

Out-Clipboard
Ping-Host
Remove-MountPoint
Remove-ReparsePoint
Resize-Bitmap
Resolve-Assembly
Resolve-Host
Select-Xml
Send-SmtpMail
Set-Clipboard

Set fileTime
Set-ForegroundWindow
Set-Privilege
Set-VolumeLabel
Split-String
Start-Process
Start-TabExpansion
Stop-TerminalSession
Test-Assembly
Test-Xml
Write-BZip?2
Write-Clipboard
Write-GzZip
Write-Tar

Write-Zip

PSCX commandlets have their own installation routines. During instal-
lation, you are asked whether you want to create a profile file that inte-
grates the PSCX snap-in and creates various variables and functions. When
you do not want to do this (because you already have your own profile file),
you have to integrate PSCX manually in your own profile file or execute the
PSCX snap-in, via the following command, each time you start the console:

Add-PSSnapin PSCX

COMMANDLET EXTENSIONS 183

www.IT-Visions.de PowerShell Extensions

The PowerShell extensions provided for free by the author’s company offer
functions in the areas of

m Directory administration (Get-DirectoryEntry,
Get-DirectoryChildren, Add-DirectoryEntry,
Remove-DirectoryEntry, and so On)

m Hardware information (Get-Processor, Get-Memorydevice,
Get-NetworkAdapter, Get-CDRomDrive,
Get-Videocontroller, Get-USBController, and more)

m Database access (Get-DbTable, Get-DbRow, Set-DbTable,
Invoke-DbCommand, and so forth)

www.IT-Visions.de WPS Extensions

Vendor
Price
URL

www.IT-Visions.de
Free

www.IT-Visions.de/scripting/powershell/
PowerShellcommandletExtensions.aspx

The snap-in has to be installed manually with installutil.exe:
installutil.exe ITVisions_PowerShell Extensions.dll

After that, the extension has to be loaded into the console. (It is best to add
this to Profil .ps1.)

Add-PSSnapin ITVisions_PowerShell_ Extensions

Quest Management Shell for Active Directory

Quest offers commandlets for Active Directory administration and a cus-
tom WPS console (Quest Management Shell for Active Directory).

—
(=]
.
=
<
v
-
=
a
=
v
>
=
=]
-
=
(=]
e
w
-
m
wv
=
[=3
(=]
=
=
@

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de/scripting/powershell/PowerShellcommandletExtensions.aspx
www.IT-Visions.de/scripting/powershell/PowerShellcommandletExtensions.aspx

184 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Quest Management Shell for Active Directory

Vendor Quest
Price Free
URL WWW. quest.com/activeroles—server/arms.aspx

[Posh C:\Documents'hs

?# Get—QADComputer "EB="
Type
computer +0U=Domain Controll
computer =Conputer:

computer =Conpute b
computer =Conpute

188 Get-QADGroup “"Ax"

Type

Adnministrators group CN=Administrators.CN=Builtin,.DC=ITVisions ocal
Account Operators group CN=Account Operators,CN=Builtin.DC=IT-VUis »DC=local

Figure 10.11 Quest Management Shell for Active Directory

Quest commandlets can be integrated into the Quest management
console in the standard WPS via Add-PsSnapin Quest.Activeroles.
AdManagement.

The Quest extensions in the current version, 1.0.4, contain the follow-
ing commandlets:

Add-QADGroupMember New-QADGroup
Connect-QADService New-QADObject
Disconnect-QADService New-QADUser
Get-QADComputer Remove-QADGroupMember
Get-QADGroup Set-QADObject
Get-QADGroupMember Set-QADUser

Get-QADObject
Get-QADUser

Microsoft Exchange Server 2007

Microsoft Exchange Server 2007 is the first Microsoft product using WPS
for administration. The Exchange management shell (a custom version of

www.quest.com/activeroles-server/arms.aspx

COMMANDLET EXTENSIONS 185

the WPS console), delivered together with the Exchange Server, and a num-
ber of commandlets enable you to effectively execute all the administrative
tasks of Exchange Server right from the command line (see Figure 10.12).

ocuments and Settings', Administrator

Welcome to the Exchange Management Shell?

Full list of cmdlets: get—command

Just Exchange cmdlets: get—excommand

Just Monad cmdlets get—mzhcommand

Get general help: help

Get help for a cmdlet: help <{cmdlet-name> or {cmdlet—-name> -7
Show gquickstart guide: gquickstart

Tip of the day #11:

Pushd and popd work the zame way in the Exchange Management Shell as they do in

—
o
b
=
-
©
-
=
n
=
o«
>
=
o
-
Ed
(=]
[
=]
m
£
(=]
m (=]
cnd.exe. Try "pushd {location>". =
=
(3]

[MEH] C:“\Documents and Settings“Administrator>

Figure 10.12 Exchange Server 2007 management shell

Among others, the following commandlets are provided in this snap-in:

Get-ExchangeServer Get-UMMailbox
Enable-Mailcontact New-MailboxDatabase
Enable-Mailbox New-StorageGroup
Disable-Mailbox New-SendConnector
Get-Mailbox Suspend-Queue
Get-MailboxStatistics Resume-Queue
New-SystemMessage Set-RecipientFilterConfig
Get-Recipient New-JournalRule

NOTE For further information, refer to [TNETO1] and [TNETO2].

System Center Virtual Machine Manager 2007

System Center Virtual Machine Manager (SCVMM) 2007 is an adminis-
tration tool for virtual systems based on Microsoft Virtual Server. This

186 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

SCVMM is completely based on WPS commandlets, so all action of the
SCVMM can also be executed via commandlets or script.
Among others, the following commandlets are provided here:

New-VirtualNetworkAdapter
New-VirtualDVDDrive
New-HardwareProfile
Get-VirtualHardDisk
Add-VirtualHardDisk
New-VM

Get-VMHost
Get-FloppyDrive
Get-DVDDrive

Command History

By default, the WPS console saves the last 64 entered commands in a com-
mand history. You can get a list of those saved commands with the com-
mandlet Get-History. Via the parameter Count, you can look at a certain
number of commands (that is, the last n commands will be shown):

Get-History -count 10
You can distinctly call a command via its position:
Invoke-History 9

You can increase the number of the saved commands through the inte-
gnﬁed\VPS\uﬁabkz$MaximumHistoryCount

You can export the command history either as script file or as an XML
file (see Table 10.1). A script file is used when the commands entered will
be executed automatically in the same sequence as entered. The XML file
format is used when the command history of a former session will be
restored without simultaneously executing all the commands.

SYSTEM AND HOST INFORMATION 187

Table 10.1 Export Options for the WPS Command History

Script Files (.ps1) XML Format

Exporting Get-History -Count 10 | Get-History | Export-CliXml
format-table commandline "b:\Scripts\History.xml"
-HideTableHeader | Out-

File "c:\MyScript.psl"
Importing / . "c:\MyScript.psl" Import-CliXml
Executing "b:\Scripts\History.xml" |
Add-History

—
(=]
.
=
<
v
-
=
a
=
v
>
=
=]
-
=
(=]
e
w
-
m
wv
=
[=3
(=]
=
=
@

Clear-Host (alias clear) deletes the display in the WPS console, but
it does not delete the command history.

System and Host Information

The commandlet Get-Host and the integrated variable $Host deliver
information about the current WPS environment. The commandlet and
the variable display the same instance of the class System.Management.
Automation.Internal.Host.InternalHost. InternalHost contains
information and also allows modifications through its subobject UT . RawUT,
as follows:

m $Host.Name Name of the host. (This makes a differentiation of
the environment possible; for example, WPS Plus Host delivers a
different value than the default WPS console.)

m $Host.Version Version number of the host.

m $Host.UI.RawUI.WindowTitle = "Title" Setting the title of
the window.

B SHost.UI.RawUI.ForeGroundColor = [System.
ConsoleColor]::White Setting the foreground text color.

B SHost.UI.RawUI.BackgroundColor = [System.
ConsoleColor] : :DarkBlue Setting the text background color.

Example

Listing 10.1 produces a headline in which not only the name of the current
user is displayed but also whether he is an administrator. The code is

188 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

extremely useful on Windows Vista and should be included in your profile
script.

Listing 10.1 A Profile Script for a Meaningful Title Line

PowerShell Profile Script - Title with Username and Status
Holger Schwichtenberg 2007

o Window Title

SWI [System.Security.Principal.WindowsIdentity]: :GetCurrent ()
SWP = New-Object System.Security.Principal.WindowsPrincipal (Swi)
if (SWP.IsInRole([System.Security.Principal.WindowsBuiltInRole]::
wAdministrator))

{

SStatus = "[elevated user]"
}
else

{

$Status = "[normal User]"

}

SHost .UI.RawUI.WindowTitle = "PowerShell - " +
[System.Environment]: :UserName + " " + S$Status

Get-Culture (or $Host.CurrentCulture) and Get-UICulture
(or S$Host.CurrentUICulture) deliver information about the current
language in the form of single instances of the .NET class System.
Globalization.CultureInfo. Get-Culture refers to the output of
date, time, and currency (compare to regional settings of Windows system
control). Get-UICulture refers to the language of the user interface.
Generally, both settings are similar; a user, however, could set these differ-
ently (see Figure 10.13).

WPS PROFILES 189

& rowershell - hs [elevated user] - H:\demo'\WPS
Uindows PowerShell
Copyright (C)> 20886 Hicrosoft Corporation. All rights reserved.

H: “deno“UPS
1# get—host

: ConsoleHost
i.8.08.8

: 4335e79b-213c—4a3a-bh66—dh2eBhibh8ci2
: System._Management _Automation.Internal_Host.InternalHostUserl
nterface
CurrentCulture : de-DE
CurrentICulture : en—US
PrivateData : Microsoft.PowerShell ConsoleHost+ConzoleColorProxy

—_
=)
S
=
-

4’5
=
=
n
=

4’5
>
=
S
=
Ed
=)
c
-]
1~
wv
=
=}
1=}
=
H
@

Figure 10.13 Execution of Get-Host

PowerShell Profiles

When a WPS console is terminated, it forgets all its settings (for example,
loaded snap-ins, defined aliases, defined functions, integrated WPS
providers, and the command history). With the help of so-called profile
files, you can reinstall WPS console’s memory during startup. Profiles are
WPS scripts with the name Profile and the filename extension .ps1.

A Profile.ps1 can exist on two levels:

m Globally for all users. This file resides within the WPS installation
directory (generally, C:\Windows\System32\WindowsPowerShell\
v1.0).

m User related. This file resides in the file system directory (under
Vista usually in ¢:\User\(Username \documents\Windows PowerShell;
on older systems, under c:\documents and settings\(username)\
documents\WindowsPowerShell).

Figure 10.14 shows storing a profile in Windows Vista.

NOTE The PowerShell Command Extensions (PSCX) create such a user-specific
profile file, with numerous settings during the installation process (see Listing
10.2).

190 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Listing 10.2 Slightly Adapted Version of the Profile File from PSCX

Author: Keith Hill, jachymko

Desc: Simple global profile to get you going with PowerShell.
Date: Nov 18, 2006

Site: http://www.codeplex.com/PowerShellCX

Usage: Copy this file to your Windows PowerShell directory e.g.:

Copy-Item "$Env:PscxHome\Profile\Profile.psl"
(Split-Path $Profile -Parent)

##(########

Adapted by Holger Schwichtenberg, July 2007

$MaximumHistoryCount = 512
SFormatEnumerationLimit = 100

PowerShell Community Extensions preference variables.
= Comment /uncomment
or change to suit your preference.

SPscxTextEditorPreference = "Notepad"

Dirx/dirs/dirt/dird/dirw functions will specify
w_Force with the value of

the following preference variable. Set to S$true
wyill cause normally hidden

items to be returned.

Dirx/dirs/dirt/dird/dirw functions filter out files with
wsvstem properties set.

The performance may suffer on high latency networks or in
wfolders with

POWERSHELL PROFILES 191

many files.

B
SPscxDirHideSystemPreference = S$Strue =~

-
= e 3
Display file sizes in KB, MB, GB multiples =
B g
$PscxFileSizeInUnitsPreference = S$false =

-
B g
The Send-SmtpMail default settings. E
Fommm 3
$PscxSmtpFromPreference = 'john_doelexample.net' %
SPscxSmtpHostPreference = 'smtp.example.net'

SPscxSmtpPortPreference = 25

Uncomment this to create a transcript of the entire
wPowerShell session.

You can modify every aspect of the PSCX prompt appearance by
creating your own eye-candy script.

B
$PscxEyeCandyScriptPreference = '.\EyeCandy.Jachym.psl'
$PscxEyeCandyScriptPreference = '.\EyeCandy.Keith.psl'

B

The following functions are used during processing of the
wDPSCX profile
and are deleted at the end of loading this profile.

!! Do not modify or remove the functions below !!

B
function Set-PscxVariable ($name, S$value)

{

Set-Variable S$name S$value -Scope Global -Option AllScope,ReadOnly
w_Description "PSCX variable"
}

function Set-PscxAlias ($Sname, S$value, S$type = 'cmdlet',
w [switch] $force)

(continues)

192 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Listing 10.2 Slightly Adapted Version of the Profile File from PSCX (continued)

{

Set-Alias S$name S$value -Scope Global -Option AllScope -Force:$force
w_Description "PSCX Stype alias"
}

function Test-PscxPreference ($Sname)

{
if (Test-Path "Variable:Sname")
{
(Get-Variable S$name) .Value
}
else
{
Sfalse
}
}
B
!! Do not modify or remove the functions above !!
B
if (! (Test-Path Variable:_ PscxProfileRanOnce))
{
B

Add-PSSnapin Pscx
Start-TabExpansion

Update-FormatData -PrependPath
"$Env:PscxHome\FormatData\FileSystem.pslxml"

Update-FormatData -PrependPath
"$Env:PscxHome\FormatData\Reflection.pslxml"

Create S$UserProfile to point to the user's non-host specific profile
wscript

POWERSHELL PROFILES 193

Set-PscxVariable ProfileDir (split-path
wSMyInvocation.MyCommand.Path -Parent)

Set-PscxVariable UserProfile (join-path
wSProfileDir 'Profile.psl')

Create PSCX convenience variables, identity variables used by
wEyveCandy.*.psl

Set-PscxVariable PscxHome (Senv:PscxHome)

Set-PscxVariable PscxVersion ([Version] (Get fileVersionInfo
= (Get-PSSnapin Pscx) .ModuleName) . ProductVersion)

Set-PscxVariable Shell (new-object
w_com Shell.Application)

Set-PscxVariable NTIdentity ([Security.Principal.WindowsIdentity]
[ic:ccc[: :GetCurrent ())

Set-PscxVariable NTAccount
(SNTIdentity.User.Translate([Security.Principal .NTAccount]))

Set-PscxVariable NTPrincipal (new-object

—
o
¢
=
<
wv

<
—
=
n
=
wv

<
>
=
S
-
=
o
c
w
-
=
wv
=
(=3
(=]
=
=
@

Security.Principal.WindowsPrincipal S$NTIdentity)

Set-PscxVariable IsAdmin
(SNTPrincipal.IsInRole([Security.Principal .WindowsBuiltInRole]::
wAdministrator))

This should be run every time you want apply changes to
wyour type and format
files.

Update-FormatData
Update-TypeData

PowerShell Community Extensions utility functions and filters.
Comment out or remove any dot sourced functionality that
wyou don't want.

(continues)

194 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Listing 10.2 Slightly Adapted Version of the Profile File from PSCX (continued)

Push-Location (Join-Path $Env:PscxHome 'Profile')
' .\TabExpansion.psl'
'.\GenericAliases.psl'
'.\GenericFilters.psl'

' .\GenericFunctions.psl'
'.\PscxAliases.psl'

' .\Debug.psl'

' .\Environment.VirtualServer.psl'

' .\Environment.VisualStudio2005.psl"
'.\Cd.psl'

".\Dir.psl'

' .\TranscribeSession.psl'
$PscxEyeCandyScriptPreference

Pop-Location

Add PSCX Scripts dir to Path environment variable to allow
wscripts to be executed.

Remove functions only required for the processing of the
wDSCX profile.

Remove-Item Function:Set-PscxAlias
Remove-Item Function:Set-PscxVariable

Keep track of whether or not this profile has run already

wand remove the

temporary functions

Additions from Dr. Holger Schwichtenberg

Snap-Ins laden

POWERSHELL PROFILES 195

Add-PSSnapin ITVisions_PowerShell_ Extensions

Title
SWi = [System.Security.Principal.WindowsIdentity]::GetCurrent ()

Swp = New-Object System.Security.Principal.WindowsPrincipal (Swi)
if (Swp.IsInRole([System.Security.Principal.WindowsBuiltInRole]
w . :Administrator))

{

$Status = "[elevated user]"
}
else
{
$Status = "[normal User]"
}
$PscxWinx
dowTitlePrefix = "PowerShell - " + [System.Environment] ::UserName

w " " 4+ SStatus + " - "

I windowsP:

g |

Organisiersn v | Ansichten v | Offnen v [E-Mal 23 Freigeben

=Dl x|
& [sucren
@

findowsPowerShell

Ordiner « Name + || Anderungsdatum || Tvp || GreBe || |-
)
|, Offentich =l] Profile - Editor
1% Computer Datei Bearbeiten Format Ansicht ?
< Diskettenlaufwerk (4:) F
&L, Lokaler Datentriger (C1) # Author: keith Hill, jachymko
Ji Benutzer # pesc: simple global profile to get you going with Powershell.
Ay # Date: Nov 18, 2006
& Hs I # site: http: /v, codeplex. com/PowerShe11cx
B Bider z # usage: copy this file to your windowspowershell directory e.g.
=] #
1 oeskeop # copy-Item "SEnviPscxHome\Profile\Profile.psi” (split-Path $Profile -Parent)
[E! Dokumente #
| WindowsPowerShel #
angepasst von Holger schwichtenberg, Juli 2007
I Downioad
[E- Favoriten
E]:ST:LZE'ESD'E‘E # configure standard powershell variables to more useful settings
n
P Links Prafile SMaxmumm storycount = 512
[SFormatEnumerationlimit = 100

BB sucwergangs
‘wdgns # Powershell community Extensions preference variables. Comment/uncomment
r change to suit your preference.

). Offentich i z
Profie SpscxTexteditorpreference = “"Notepad”
Windows PowerShell Saript Jai /d Jdird i : 1 P Eoh] 'F
= g # pirx/dirs/dirt/dir irw functions wi SFEC1 ies -Force with the value o
Aderirgeslation 8.07,20070119 the fo ng preference variable. Set to Strue will cause normally hidden

Grofe: 8,23 KB # items to be returned.
Erstelldstum: 0.07.2007 01:18

#
SPscxDirForcepreference = Strue

Dirx/dirs/dirt/dird/dirw functions filter out files with system attr1bute set.
The performance may suffer on high latency networks or in Tolders wit

4

Figure 10.14 Storing the profile file in Windows Vista

—
o
¢
=
<
wv

<
—
=
n
=
wv

<
>
=
S
-
=
o
c
w
-
=
wv
=
(=3
o
=
=
@

196 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Graphical User Interfaces

Microsoft Shell does not possess commandlets for the presentation of
graphical user interfaces. However, there’s no reason why you shouldn’t
use the System.Windows.Forms library (Windows Forms or WinForms)

of NET directly.

NOTE There's no space in this book for a detailed explanation of the Windows
Forms library (some hundred classes!). Nevertheless, two examples will explain
the approach.

Input Dialog

The following script creates an input mask for three values. For the sake of
simplification, input fields are arranged automatically and not positioned
absolutely (flow layout panel, compare HTML) (see Figure 10.15).

¥ Registration Form e (=] 57|

Name:

IDr Holger 5chwichtenberg
E-Mail:

[hs@IT Visions.de
‘wiebsite:

Iwww. ITVisions. de

Register! %

Figure 10.15 An input window created with WPS

The WPS script in Listing 10.3 shows the example, where a form
(Form), a flow layout panel (FlowLayoutPanel), three labels (Label), and
three text boxes (Textbox) are used. It's important that the section fills the
form ([System.Windows.Forms.DockStyle]::Fill) and that you cor-
rectly add the controls to the control tree one after the other in the order
you like them to appear on the screen (Controls.add()).

GRAPHICAL USER INTERFACES

197

Listing 10.3 Show and Evaluate the Input Window

HHfHH R R
PowerShell Script: Display a GUI

(C) Dr. Holger Schwichtenberg

http://www.windows-scripting.com
HHfHHH AR R R

Load Windows Forms Library
[System.Reflection.Assembly] : :LoadWithPartialName
w ("System.windows.forms")

Create Window

Sform = new-object "System.Windows.Forms.Form"
Sform.Size = new-object System.Drawing.Size @(200,200)
Sform. topmost = S$Strue

Sform.text = "Registration Form"

Create Flow Panel

Spanel = new-object "System.Windows.Forms.flowlayoutpanel"
Spanel.Dock = [System.Windows.Forms.DockStyle]::Fill
$form.Controls.Add ($panel)

Create Controls

SL1 = new-object "System.Windows.Forms.Label"
SL2 = new-object "System.Windows.Forms.Label"
SL3 = new-object "System.Windows.Forms.Label"

ST1 = new-object "System.Windows.Forms.Textbox"
ST2 = new-object "System.Windows.Forms.Textbox"
ST3 = new-object "System.Windows.Forms.Textbox"

$Bl = new-object "System.Windows.Forms.Button"

Set labels

SL1.Text = "Name:"
SL2.Text = "E-Mail:"
SL3.Text = "Website:"
$Bl.Text = "Register!"

Set size
ST1.wWidth = 180
ST2.Width = 180

—
o
¢
=
<
wv

<
—
=
n
=
wv

<
>
=
S
-
=
o
c
w
-
=
wv
=
(=3
(=]
=
=
@

(continues)

198 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Listing 10.3 Show and Evaluate the Input Window (continued)

S$ST3.Width = 180

Add controls to Panel
Spanel.Controls.Add (SL1)
Spanel.Controls.Add (ST1)
Spanel.Controls.Add (SL2)
Spanel.Controls.Add (ST2)
Spanel.Controls.Add (SL3)
Spanel.Controls.Add (ST3)
Spanel.Controls.Add (S$B1)
Event Binding
Sreg = S$false
$Bl.add_Click({Sreg = Strue; SForm.close()})

Show window
$form.showdialog ()

Display result

if ($reg)

{

"You have entered: " + S$T1.Text + ";" + $T2.Text + ";" + ST3.Text
}

else

{

"You have canceled the dialog!"

}

Displaying Objects

When you want to display an object with many attributes, the preceding
procedure with the individual creation of Windows Forms elements is
extremely laborious. It is much easier with PropertyGrid, a control
defined in Windows Forms, to which any optional NET object can be con-
nected and which also saves changes to the object (see Figure 10.16 and
Listing 10.4).

GRAPHICAL USER INTERFACES 199

E Misc

BasePricrity 10 —_—

HandleCaunt 988 o°

Id 4032

MainwindowHandle 1380154 s

MainwindowT te _ITV - Microsoft Outlock gl

MaxwiorkingS et 1413120 —

Mirw orkingSet 204800 =

NonpagedSystemiemonySizs 32288 =y

NonpagedSystemMemonSizebd 32288 ﬁ

PagediemonSize 38830080 N

PagediemonSizehid 38830080 ;

PagedS ystemMemonySize 798092 o

Pageds pstemMemonSize4 798032 —]

PeakPagedMemonSize 40620032 g

PeakPagediMemonySizebd 40620032 =

PeakVitualMemarySize 501121024 'E

PeakVitualtemonSizehid 501121024 a

Peakiw/orkingS et B5321024 =

Peakiw/orkingS etbd E5921024 8

F ostEnabled Tiue =
5 H =

PrivateMemarySize Normal @

PrivateMemonySizebd |dle

PrivilegedProcessorTime

ProcessHame RealTime

Frocessaréifinity BelowNormal

Responding AboveMormal

Sessionld 1]

StartTime 05.10.2005 16:06

TotalProcessorTime 00:00:48 A30E250

UserProcessorT ime 00:00:33 2500000

Wirtuald emonySize 4777ETER

Wirtuald emorySizebd 4797TETER

‘wiorkingS et 15108048

“wiorkingS et6d 15106048

PriorityClass
The priarity that the threads in the process run relative to.

Figure 10.16 Display and change of process objects with a Windows Forms
PropertyGrid

Listing 10.4 Display and Change of a Process Object with a Windows Forms
PropertyGrid

Download Windows Forms
[System.Reflection.Assembly] : :LoadWithPartialName
w ("System.windows.forms")

Create window

Sform = new-object "System.Windows.Forms.Form"
Sform.Size = new-object System.Drawing.Size @(700,800)
Sform. topmost = Strue

(continues)

200 CHAPTER 10 TIPS, TRICKS, AND TROUBLESHOOTING

Listing 10.4 Display and Change of a Process Object with a Windows Forms
PropertyGrid (continued)

Create PropertyGrid

SPG = new-object "System.Windows.Forms.PropertyGrid"
SPG.Dock = [System.Windows.Forms.DockStyle]::Fill
Sform.Controls.Add (SPG)

Assign content to PropertyGrid
S$i = Get-process "outlook"
SPG.selectedobject = $i

Display Window
Sform.showdialog ()

Windows Clipboard

For filling and displaying the cache, you have the following commandlets
at hand in PSCX:

Write-Clipboard see Figure 10.17
Set-Clipboard see Figure 10.18
Get-Clipboard

& powerShell - hs [elevated user] p

4% Get—Content H:“deno“powershellsDatenhanken“dataset.psl | write—cliphoard I’
L# Get—Cliphoard —text

Paraneters

sten.Data._SglClient"
Data Source=.“SQLEXPRESS;AttachDbFileNane=H:“deno“\PowerShell\Dat
enhankensusers .mdf ; Integrated Security=True;"

$8QL = "Select * from us

Create Factory
$provider = [System.Data.Common.DbhProviderFactoriesl::GetFactory(5PROVIDER>

Create Connection
Sconn = $provider.CreateConnection()
Sconn.ConnectionString = SCONNSTRING

Figure 10.17 Use of the commandlet write-clipboard

SUMMARY 201

& rowershell - hs [elevated user] - C:\WINDOWS

Windows PowerShell
Copyright (C)> 2086 Hicrosoft Corporation. All rights reserved.

1# Set—Cliphboard —text "www.powershell-doktor.de"
2# Get—Cliphoard -text
wuww . powvershell-doktor.de

Figure 10.18 Use of the commandlet set-clipboard

Summary

In this chapter, you have learned different tips and tricks, including the
following:

Debugging with the parameters verbose, whatif, and confirm
The installation of commandlet extensions (snap-ins) through
installutil.exe and Add-PSSnapIn

Using the command history of WPS with Get-History and
Invoke-History

Getting information about your WPS host from commandlets and
integrated variables

Using WPS profile files (Profile.ps1)

—_
=)
s
=
-

\iﬂ
-
=
n
=

\iﬂ
>
=
oS
-
Ed
(=]
c
-]
-
m
wv
=
[=3
(=]
=
=
@

This page intentionally left blank

PART 11

WINDOWS POWERSHELL IN ACTION

Chapter 11 File Systems 205
Chapter 12 Managing Documents 235
Chapter 13 Registry and Software 253
Chapter 14 Processes and Services 267
Chapter 15 Computers and Hardware 281
Chapter 16 Networking 295
Chapter 17 Directory Services, 313
Chapter 18 User and Group Management in the Active Directory 335
Chapter 19 Searching in the Active Directory 349
Chapter 20 Additional Libraries for Active Directory Administration 361
Chapter 21 Databases 373
Chapter 22 Advanced Database Operations 389
Chapter 23 Security Settings 401

Chapter 24 Advanced Security Administration 413

This page intentionally left blank

CHAPTER 1 1

FILE SYSTEMS

In this chapter:

Available Commandlets for File System Administration 205
Drives . . 206
Directory Content 210
Reading and Writing File Properties 213
Properties of Executables 214
File System Links 216
Compression 220
File Shares 221

Windows PowerShell (WPS) provides access to the Windows file system
through PowerShell Navigation Provider. There are also .NET classes and
WMI classes that support the administration of file systems. Samples in
this chapter include the enumeration of directory content, file system
operations such as copying and deleting, the management of links in the
file systems, file compression, and the creation of file shares.

Available Commandlets for File System Administration

Table 11.1 enumerates the relevant commandlets and their counterparts in
the classic Windows shell and Unix shells.

205

206 CHAPTER 11 FILE SYSTEMS

Table 11.1 Important Commandlets for Working with the Windows File System

Classic
WPS UNIX
Commandlet WPS Alias Shell Description
Clear-Item cli N/A N/A Clear content of a
file
Copy-Item cpi, cpp, cp, copy cp Copy file or folder
Ccopy
Get-Content gc type cat Get the content of
a file
Get-Location gl, pwd pwd pwd Get the current
directory
Move-Item mi, move, mv, mi move mv Move file or folder
New-Item ni, md N/A N/A Create file or
folder
Remove-Item ri, rp, rm, del, rm, Delete file
rmdir, del, rd rmdir or folder
erase, rd
Rename-Item rni, ren rn ren Rename file or
folder
Set-Content sc > > Set file content
Set-TItem si N/A N/A Set file content
Set-Location 81, cd, chdir cd, cd, Set current
chdir chdir directory
Drives

To list all drives, you have four options:

—

Use the commandlet Get-PSDrive (commandlet of WPS 1.0).

2. Use the commandlet Get-Disk (commandlet of the www.
IT-Visions.de extensions).

3. Static method GetDrives () of the .NET class System. IO.

DriveInfo (see Figure 11.1).

www.IT-Visions.de
www.IT-Visions.de

DRIVES 207

4. Display the instances of the WMI class win32_LogicalDisk (see
Figure 11.2).

Get-psDrive lists all WPS drives, including variables and the registry
(see the discussion about navigation providers in Chapter 5, “The
PowerShell Navigation Model”). If you want a list of all file system drives
only, you have to limit Get-PSDrive to the provider file system as follows:

Get-PSDrive -psprovider filesystem

The result consists of objects of the type System.Management.
Automation.PSDriveInfo. One of the attributes of this class is Root,
which contains the root directory of each drive.

WARNING The WPS class PSDriveInfo does not contain any information
about size and free space of the drives, because this is a generic concept for all
kinds of navigable object collections, and such values would not make sense for
some drives (for example, environment variables).

= powerShell - hs [elevated user] -
Windows PowerShell
Copyright (C> 2886 Hicrosoft Corporation. All rights reserved.

H:~denosUPS
it [System.I0.Drivelnfol: :GetDrives ()

VolumeLabel Hame UsedSpace FreeSpace

-
“
“

. A
%
#“
“
“
%

“
%
“
%

2%

Figure 11.1 Use of the method GetDrives ()

—
—
.
-
=
m
v
<
v
-
m
=
©

208 CHAPTER 11 FILE SYSTEMS

Windows PowerShell
Copyright <{C> 2886 Microsoft Corporation. All rights reserved.

H :~demo“WFS
1# Get—lWUmiObject Win32_logicaldisk

18719436888
5288375296

18719436308
2941997856
17682468864

a
1877432328
17284628488
12529737728
11127648256
1437624328

FRYATRYRY] PRERTATT FRTAY)

A:
B:
C:
D:
H:
I:
W
L:
M=
5z
U=
Uz
L=

]
=

Figure 11.2 Use of win32_LogicalDisk. Drive types are 3 = local disk, 4 =
network drive, 5 = CD/DVD.

Free Space

To display the free space of the file system drives, you have the following
options (see Listings 11.1 through 11.6):

m Property TotalFreeSpace in the .NET class System.IO.
DriveInfo

m Property Freespace in the WMI class win32_LogicalDisk

m Use of the commandlet Get-Disk (commandlet of www.
IT-Visions.de), which internally works with WMI

Listing 11.1 Displaying the Free Space of the C: Drive by Using .NET Class
System.IO.DriveInfo

Sdrive = new-object System.IO.DriveInfo("C")
Sdrive.TotalFreeSpace

www.IT-Visions.de
www.IT-Visions.de

DRIVES 209

Listing 11.2 Displaying the Free Space of the C: Drive by Using WMI Class
Win32_LogicalDisk

Get-WmiObject Win32_logicaldisk -Filter "DeviceID = 'c:'" |
wSelect FreeSpace

Listing 11.3 Displaying the Free Space of All Drives by Using WMI Class
Win32_LogicalDisk

Get-WmiObject Win32_logicaldisk | Select-Object
wdeviceid, size, freespace

The script in Listing 11.4 shows one way to display this data in a bet-
ter format.

Listing 11.4 Fetching the Free Space of the Drives

SComputer = "localhost™"

Sdrives = Get-WmiObject Win32_LogicalDisk -computer S$Scomputer
" drive size (MB) free space(MB)"

ForEach ($drive in $drives)

{

" {0} {1,15:n} {2,15:n}" -f $drive.DevicelD,

w (Sdrive.Size/1lmb), $(Sdrive.freespace/lmb)

}

The use of the WMI class win32_LocigalDisk has two advantages:

m You can also call remote systems (see example).
m With the help of a WQL, you may also filter your call explicitly (see
example).

Listing 11.5 Fetching the Free Space of the C: Drive of a Remote Computer by Using WMI
Class Win32_LogicalDisk

Get-WmiObject Win32_logicaldisk -Filter "DeviceID = 'c:'"
w -Computer E02 | Select DeviceID, FreeSpace

‘11

=
=
m
wv
=<
(%)
=
m
=
«

210 CHAPTER 11 FILE SYSTEMS

Listing 11.6 Displaying Drives with Litfle Free Space by Using a WQL Call via the WMI
Class win32_LogicalDisk

([WMISearcher] "Select * from Win32_LogicalDisk where Freespace
w< 1000000000") .Get () | Select DeviceID, FreeSpace

Drive Labels

To fetch and change drive names, you can use VolumeLabel of the class
DriveInfo.

Listing 11.7 Changing Drive Names

Sdrive = new-object System.IO.DriveInfo("C")
"old name:"

Sdrive.VolumeLabel

"new name:"

Sdrive.VolumeLabel = "SYSTEM"
Sdrive.VolumeLabel

Alternatively, you can use the commandlet Set-vVolumelabel from
PSCX (although there does not yet exist the counterpart Get-
VolumeLabel).

Set-VolumeLabel "c:" "Systeml drive"

Network Drives

You can display information about the mapped network drives of the
logged-in user via the WMI class Win32_MappedLogicalDisk:

Get-WmiObject Win32_MappedLogicalDisk | select caption,
providername

Directory Content

You can get the content of a directory listed with Get-ChildItem (alias
dir).

DIRECTORY CONTENT 2‘ 1

Without parameters, Get-ChildItem lists the current path. You can,
however, explicitly indicate a path:

Get-ChildItem c:\temp\Scripts

The resulting volume consists of .NET objects of the types System.I0.
DirectoryInfo (for subdirectories) and System.IO.FileInfo (for
files).

The parameter -Filter limits the output volume to files with a dis-
tinct name pattern:

Get-ChildItem c:\temp\Scripts -filter "*.psl"

Alternatively, you can use —include for filter purposes and indicate vari-
ous file extensions at the same time:

Get-ChildItem c:\temp\Scripts -include *.psl,*.vbs

The commandlet usually works only on the indicated level. It can, however,
also search the subdirectories recursively:

Get-ChildItem c:\temp\Scripts -filter "*.psl" -recurse

With Measure-Object, you can execute calculations regarding an
object volume. The following command shows the number of files in
c\Windows, the total size of all files, the size of the biggest and of the
smallest file, and the average file size:

Get-ChildItem c:\windows | Measure-Object -Property length
w_min -max -average -sum

With the following command, a list of big Word files on drive H and its
subdirectories is created, and a list of the names and sizes, sorted accord-
ing to size, is exported to a CSV file:

Get-ChildItem h:\ -filter *.doc | Where-Object

w{ S .Length -gt 40000 } | Select-Object Name, Length
= | Sort-Object Length | export-csv

wp: \LargeWordDocuments.csv -notype

‘11

-
=
m
wv
-<
v
=
m
=
«

212

CHAPTER 11 FILE SYSTEMS

The -notype at the end prevents the type name of the .NET class
from being exported. If you would export the type name, you could later
re-import the data with Import-csv and process that data as an object
pipeline.

TIP The short name of a file or directory, according to the old 8+3 notation,
can be displayed with the commandlet Get-ShortPath from PSCX.

File System Operations

To copy files and folders, use the commandlet Copy-Item (aliases copy
or cp):

Copy-Item j:\demo\documents\profile.pdf
c:\temp\profile_HSchwichtenberg.pdf

To move file system objects, Move-Item (alias move) is used:

Move-Item j:\demo\documents\profil.pdf
c:\temp\profile_ HSchwichtenberg.pdf

The commandlet Rename-Item (alias Rename) renames a file system
object:

Rename-Item profile.pdf profile_HS.pdf
To delete a file, use the commandlet Remove-Item (alias del):

Remove-Item j:\demo\profile_ HS.pdf

TIP -WhatIf is a useful function for working with Remove-Item, because
you can see the simulated behavior before actually executing the command (see
Figure 11.3).

READING AND WRITING FILE PROPERTIES 2]3

& rowershell - hs [elevated user]

4t remove—item cIvtemph\.

WVhat if: Perforning operation "Remove File" on Target “GC:istempsCreatellser.psi®.
What if: Perforning operation "Remove File" on Target "C:tempimanuskript._doc".

Figure 11.3 Use of —ithatIf with Remove-Item

The following command deletes all files older than 30 days:

Get-ChildItem c:\temp -recurse | where-object {(Snow -
wS . LastWriteTime) .Days -gt 30} | remove-item

Reading and Writing File Properties

Information about a file system object (for example, name, size, last
changes, and properties) is displayed with the commandlet Get-Item:

Get-Item j:\demo\profile_HSchwichtenberg.pdf

—
—
.
-
=
m
v
<
v
-
m
=
w

This will provide an instance of System.I0.FileInfo for a file.
You can get the same effect with the following:

Get-ItemProperty j:\demo\profile HSchwichtenberg.pdf

Single data (for example, length and attributes) can be called as
follows:

Get-ItemProperty Data.txt -name length
Get-ItemProperty Data.txt -name attributes

NOTE Do not get confused about the word attribute. Classes such as
FileInfo have attributes (for example, name and length) that provide
containers for the information that are stored in the classes’ instances. In the
class FileInfo, one of these attributes has the name attributes. The
attributes atiribute contains the information about the file attributes.

214

CHAPTER 11 FILE SYSTEMS

With Set-ItemProperty, you can initiate a change of file properties.
The following command sets the bit flags, stored in Attributes. The
NET class library defines the possible flags in the listing System.I0.
FileAttributes. Itis important that the elements of the listing are called
like static members (that is, with the : : operator) and linked with a binary
exclusive Or (-bxor):

Set-ItemProperty Data.txt -name attributes -value
w ([System.IO.FileAttributes]::ReadOnly -bxor
w [System.IO.FileAttributes]::Archive)

Times

The FileInfo class offers information about the creation date and the
date of the last access of the file:

dir $dir | select name, creationtime, lastaccesstime,
wlastwritetime

With set-FileTime (contained in the PSCX), you can manipulate
this data (for example, if you do not want someone to know how old a file
really is):

Listing 11.8 Setting of All Times of All Files in a Directory to the Current Date and
Current Time

Sdir = "c:\temp"

Stime

[DateTime] : : Now

dir sdir | Set fileTime -Time Stime -SetCreatedTime -SetModifiedTime
dir sdir | select name, creationtime, lastaccesstime, lastwritetime

Properties of Executables

PSCX offers some special commandlets for executable files:

m Test-Assembly Displays true when the file is a NET assembly
(only applicable to DLL files)

PROPERTIES OF EXECUTABLES 215

m Get-FileVersionInfo Displays information about the product
name, manufacturer, and file version

m Get-PEHeader Displays the head information of the Portable
Executable (PE) formats for any executable files

m Get-ExportedType Displays the list of instanceable classes for a
NET assembly

The WPS script in Listing 11.9 displays all executable DLLs created

with .NET in the Windows directory and shows version information about
these DLLs.

Listing 11.9 Search for .NET Assemblies

"Search .NET Assemblieg"

foreach ($d in (Get-ChildItem c:\Windows\ -include "*.dll" -recurse))
{

$a = $d.Fullname | Test-assembly -ErrorAction SilentlyContinue

if ($Sa) { Get fileVersionInfo $d.Fullname }

}

The following example displays the PE header information about the
Windows Editor (see Figure 11.4):

Get-PEHeader C:\windows\system32\notepad.exe

With the commandlet Resolve-Assembly, you can check which ver-
sions of a .NET software component are available or whether a distinct
version exists.

Show all versions of this assembly

Resolve-Assembly System.Windows.Forms

Check, whether version 3.0 is available
Resolve-Assembly System.Windows.Forms -Version 2.0.0.0

‘11

=
=
m
v
=<
(%)
=
m
=
«

216 CHAPTER 11 FILE SYSTEMS

' PowerShell - Holger Schwicht

Windows PowerShell
Copyright <G> 2886 Microsoft Corporation. All rights reserved.

1#t Get—PEHeader C:windows\system32\notepad.exe
: PE32
: 718
OperatingSystemlersion
ImageVersion
Subsystemlersion : 4.8
8 i : 38728
T 43528
: 8
@ 29685
: 48%6
: 36864
: 16777216
: 48%6

Win32Uersionlalue H

S izeOf Image @ 81928

Size0fHeaders : 1824
: 68978

t : Windows
D1l1Characteristics : TerminalServicesAware
S1ge0fstackRe“ex ve H Egg%g‘l

: 1848576
4896

=8
DataDirectories H @, Si= x8, PEDataDirectory,
I} S =8 » PEDataDim ecton 'y, RUA=BxhBAA,
RUA=0x@, Size=0x0

- PEDataDirectory, RUA=B13
- PEDataDuectoly, RUA=8x@, Size=0x@, PEDataDi
. RUA=0x8,. Size=BxB, PEDataDirectory. RUA=BxB, Size-=B
%@, PEDataDi . RUA=Bx18c8, Size=-Bx4@, PEDataDi
ectory, RU 58, fSize=Bxdd, PEDataDirector U
1888, Size=Bx344, PEDatalirectory, RUA=8x8,
PEDataDirectory, RUA=BxB,. Size=0x0. PEDataDlrectorg,
RUA=8xB. Size=0x83

Figure 11.4 Output of PE head information

File System Links

Commandlets for the creation of links in the file system can be found in
the PSCX.

Explorer Links

Starting with Windows 95, Windows Explorer supported links in the file
system with . 1nk files. These .1nk files contain either a file or a directory
as the link destination. They are created in Windows Explorer via the con-
text menu functions Create Link or New, Link. Windows does not show
the filename extension of . 1nk files. Instead, you see the symbol of the tar-
get object with an arrow in Windows Explorer. A double-click directs
Windows Explorer, or a file dialog supporting . 1nk files, to the target.

FILE SYSTEM LINKS 2‘7

These Explorer links are created with the commandlet New-
Shortcut, with the first parameter being the path to the .1nk file to be
created, and the second parameter being the target path:

New-Shortcut "j:\books" "j:\projects\books"

WARNING If the link already exists, it is overwritten without prior warning.

Unfortunately, there are three serious disadvantages regarding
Explorer links based on . 1nk files:

m Windows Explorer does not show links to folders according to the
folder hierarchy on the left side, but sorts them into the file list on
the right side (see Figure 11.5).

m Links do not work at the command-line level (Windows shell).

m Windows does not track the target during renaming/re-moving, but
starts to search only when the target is no longer traceable; as a con-
sequence, the right target is not always finally found.

CE———— IS
Jngdress I\'v 3 j Go .'rl';'
J File Edit Wew Favorites Tools Help
Folders X | Name = | Size | Type
g2 Instal (1) ;I (=) Accounting File Folder
E|-'~' TR A () Customers File Folder
i {2 Accounting [ShProjects File Folder
| 3 Customers _IRECYCLER File: Falder
EHE'I Prajects J __)5ystem Yolume Information File Folder
T Books 1KB Shorteut
@ RECYOLER E] readme. txk OKB Text Document
i D) System Yolume Information
B-(k DVD-RAM Drive {Lt) =
| | _»l_I « | 0
|Locat|on: J:\Projects |150 bytes | :J My Computer 4

Figure 11.5 Windows Explorer displays Explorer links to folders in the file list
but not in the tree view

Hardlinks

Users of UNIX, however, know better kinds of links in the form of
hardlinks and symbolic links (symlinks). Under Windows, the user of the

‘11

=
=
m
wv
=<
(%)
=
m
=
«

218

CHAPTER 11 FILE SYSTEMS

NTFS file system can use similar concepts. The NTF'S supports fixed links
to any kind of files in the form of so-called hardlinks and to folders in the
form of junction points. Unfortunately, both functions are not supported
directly in the Windows Explorer, but only via command-line tools or tools
from other suppliers.

A hardlink is a fixed link to a file. For this purpose, Microsoft provides
in Windows XP and Windows Server 2003 the command-line tool
fsutil.exe. In the WPS extensions, you can find the commandlet New-
Hardlink.

The syntax for the creation of a hardlinks reads as follows:

New-Hardlink <new filename> <existing filename>
For example
New-Hardlink "j:\MyProjects.csv" "j:\projects\content.csv"

Afterward, the file appears in both directories, without a link arrow.
Nevertheless, this is not a copy; both entries in the directory tree point to
the same spot on the drive, and therefore the file can be manipulated at
both places. You will not have any problems with moving the file. The file
content is only lost when both entries in the directory tree have been

deleted.

There are two flaws to be aware of:

m Folder links cannot be created.
m Links can be created only to files on the same drive.

NOTE To delete a hardlink, you have to delete the link file. The target file
remains unaffected:
Remove-Item "j:\MyProjects.csv"

Junction Points

Junction points are the equivalents to hardlinks for folders. In contrast to
hardlinks, junction points also work on other drives. The commandlet you
want to use here is New-Junction, which, however, is available only

FILE SYSTEM LINKS 2‘9

through the additional resource kits of the different Windows versions.
When you use 1inkd. exe, you have to name the source first and then the
target, in contrast, to fsutil.exe.

For example, the command

New-Junction "j:\books" "j:\projects\books\"

consequently creates a link that shows the directory s:\books\ as subdirec-
tory backup in the folder j:\project. Junction points also work on the com-
mand line. Thus, the command

dir j:\books

shows j:\projects\books\.
Windows Explorer places a junction point, just like a folder, in the
folder hierarchy on the left side (see Figure 11.6).

=10l x|
Jngdress I-;o 14 j Go w
J File Edt ‘ew Favorites Tools Help
Folders x | _Name = | Size | Type |
H- [Accounting File Falder
[Install (1) o
o - et (10 _I B bocks File Falder
e g ocuments (1:)
{03 Accounting () Customers File Falder
-2 boo [DProjects File Folder
B Cus&ﬁars J __JRECYCLER File Folder
- Projects __)System Yolume Information File Folder
~{C3) RECYCLER [Ebanks 1KB Shortcut
~{C) System Yolume Information [E] readme. txt 0KB Text Document
+ DWD-RAM Drive (L) =
e | Ll_l | [

M=

|1 objects selected | | :J MMy Computer

Figure 11.6 The junction point books shows on both sides of Windows
Explorer.

You can see the target of a junction point with the commandlet Get-
ShortPath, as follows:

Get-ReparsePoint j:\books
To delete a junction point, use the following:

Remove-ReparsePoint "j:\books"

‘11

=
=
m
v
=<
(%)
=
m
=
«

220 CHAPTER 11 FILE SYSTEMS

WARNING |f the actual target folder is deleted earlier than the junction point,
an orphaned junction point is created. Unfortunately, Windows does not notice
the moving of a file, so that in this case, too, the remaining junction point leads
to the void.

Symbolic Links in Windows Vista

The new symbolic links, which Microsoft introduced with Windows Vista,
can be created with the PSCX commandlet New-Symlink.

Compression

You can find commandlets for the creation of compressed file archives in
PSCX. Here are commandlets for four different compression formats (ZIP,
GZIP, TAR, and BZIP2):

Write-zZip
Write-GZip
Write-Tar

Write-Bzip2

Table 11.2 shows some practical examples that explain the syntax of the
commands. All examples uniformly use the ZIP format. All other formats
work analogically with the relevant commandlet.

FILE SHARES 2

21

Table 11.2 Practical Examples for write-zip

Write-zip Content.csv

Write-zip Content.csv
Content.zip

"Content.csv", "Pricelist.doc",
"Projectguidelines.doc" |
Write-Zip
"Content.csv", "Pricelist.doc",
"Projectguidelines.doc" |
Write-Zip -Outputpath
J:\projects.zip

Write-Zip j:\projects
-Outputpath J:\projects.zip
dir g:\data -Filter *.doc
-Recurse | Write-zip

-Output g:\Data\docs.zip

Compresses the file Content.csv into the
archive Content.csv.zip

Compresses the file content.csv to
Content.zip

Compresses the three indicated files
individually in Content.csv.zip,
Priceliste.doc.zip, and
Projectguidelines.doc.zip

Compresses the three indicated files
together in Clients.zip

Compresses the whole content of the
folder j\projects to Clients.zip
Searches in the folder g\Data and all its
subfolders for Microsoft Word files and
compresses these together in
g\Data\docs.zip

NOTE When the target file already exists, the new files are also integrated in
the archive. Existing files are not deleted.

The compression commandlets have some additional options, includ-

ing the following:

m -RemoveOriginal Deletes the original file after it has been inte-

grated into the archive.

m -Level Compression rate from 1 to 9 (standard is 5).

m -FlattenPaths

File Shares

No path information is stored in the archive.

Access to file shares is affected via the WMI class Win32_Share
Figure 11.7). Important members of this class are as follows:

(see

‘11

=
=
m
v
=<
(%)
=
m
=
«

222 CHAPTER 11 FILE SYSTEMS

Name Name of the file share

path Path in the file system that leads to the file share
Description Description of the files shared

MaximumAllowed Maximum number of simultaneous users
SetShareInfo() Setting the property Description,
MaximumAllowed, and authorizations for file shares
GetAccessMask () Fetching the access control list for the share
m Create() A static method of the class Win32_Share to create
new file shares

WARNING The attribute AccessMask is always empty (see Figure 11.7)
because Microsoft declared it obsolete. The setting and reading of authoriza-
tions is affected via the methods Create (), SetShareInfo(), and
GetAccessMask (). These methods create the respective associations.

WMI Object Browser @
[t . [T =13 4] | e Win2_Shae Name-unden EEEEIE]
= I Win2_Shere Hame= Yunder” e ===
~® (@l WirR2_CornathinShase Dependert [t l
(@ Wind2_PrreerShase Artscedent e — ST
=+ G Winid_SecuSetingdiLogcatihue Seming =]
Ty e =
B a0 Wt 510 “ 1 ™ accestask i cromgty
I W0 SIS 51197 ST S TN SRS AT] B Adowbasimum boclesn Falre
W lement 0] 7K Capien g Ads uniais Funderkoneipondens
cenmt Dcenarm 1TV N HE ™ [| 7% oeserition iy e urme urderkospordan:
e alurtucenradlovend oltng Elomerd "R InstalDale rirerouy re—
] B ssamemasoned i 10
3 (i) W12 LogesthueSeouiSating {78 Hame g
Wil 51D 51051521197 00TR- A0 T 32T RSSO 12T | B pan g 3 \DaerKurden,
(@ W2 Account3ID, Element] K st g k.
Winl2_Ussthccount Domaine 1TV Name="HP ™ Tye -z a
V32 Logeatshustcces Secutyeting & o —T—
Winl2_Logeslihuesecu H
WindZ_S10.$1D-"5-1-5-21-1 97 0007041 601 7411 3272854101110 [] 8 _oenvanion oy of g L
32 MecourtSID Ebmant 0] 3 _ousty itirg OM_ManspsdSyitentlement
=1l Win32_Girou Domaire"1 TV Mare Prochktnersagerere” | = _cenus i 2
(3 Wini2_SharmT olissctiony §hansdf lemant 7| 8 _memesrace froe, e \CIN2
! PATH g NEI ool CINVE Wink?! Sham Names Yunden™
[& _proreary_count R 10
|| 8 _newrath iting WinI2_Share NarmeeKunder
|| 8 _semver gy B0
|| = _sueenniass shrg [p—
T .

Figure 11.7 Depiction of an instance of the class Win32_share in the WMI object
browser

The most complicated parts of file shares are the authorizations, as you
can see from the associations in the WMI object browser.

FILE SHARES 223

Enumerating File Shares

To enumerate files shared, you have to use the instances of the WMI class
Win32_share (see Figure 11.8):

Get-WmiObject Win32_Share

& powerShell - hs [elevated user]

3% Get—WniObject Win32_Share —conputer EB2
Path

C:S\UINDOWSSsysten32hspo... Printer Drivers
DELLFAX.Loca 10nly DELLFAX
Default share

N
DELL,LocalsplOnly
H:s

Default share

Remote IPC

HP LaserJet 2188 PCL6,.L... HP LaserJet 2188 PCL6
svinetpubhuwuroot Used for file share ac...
SUINDOUS Remote Adnin
:\DFS
sAktuellsScan
H Default share
:S\PROGRA™158AVN1ogon Symantec Antilirus

DELL-PS . LocalsplOnly DELL-FS

M Default share

volssysvol Logon server share

volssysvo... Logon server share
nuv Symantec Antilirus

Figure 11.8 Listing of the file share system directories

—
—
.
-
=
m
v
<
v
-
m
=
©

Via the name of the file share, you can distinctly call the file share
(even on a remote system):

Get-WmiObject Win32_Share -Filter "Name='CS$'" -computer E02 |
wSelect Name, Path, Description, MaximumAllows | Format-List

Creating File Shares

The creation of a file share is a more elaborate matter, at least when you
also want to set the access privilege list. Unfortunately, you cannot use a
NET class to grant privileges; you have to use the WMI classes instead.
For didactic reasons, the script in Listing 11.10 creates a share without
explicitly defining access rules. Therefore, the file shares get standard
rights (unrestricted access for everybody). To create a file share, the static
method create () of the class Win32_Share is called. In this case, $null

224 CHAPTER 11 FILE SYSTEMS

is transferred for AccessMask. When starting, the script checks whether a
file share already exists and deletes it if necessary to enable a new creation.
You can see the result in Figure 11.9.

NOTE Create () has several error codes specific to it (for example, 22 =
name of file share already exists, and 21 = false parameters).

Listing 11.10 Creating a File Share with Standard Privileges

FHFH SRR
New-Share (without permissions)

(C) Dr. Holger Schwichtenberg

FHFHEH SRR

Parameters

SComputer = "EQ1"

$ShareName = "customers"

SPath = "j:\customers"

$Comment = "Customer Documents"
before

"Before:"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'"

Get-WmiObject Win32_Share -Filter "Name='S$ShareName'"
w foreach-object { $_.Delete() }

Win32_Share

SMC = [WMIClass] "ROOT\CIMV2:Win32_Share"

SAccess = S$Null

SR = Smc.Create($Path, S$Sharename, 0, 10, $Description, "", S$Access)
if ($R.ReturnValue -ne 0) { Write-Error ("Error: "+ S$R.ReturnValue);
Exit}

"Share has been created!"

after
"After:"
Get-WmiObject Win32_Share -Filter "Name='S$ShareName'"

FILE SHARES 225

customers Properties X '-v 21Xl

General Sharing |Secunly| Wweb Sharingl Cuslumizal

“r'ou can share this folder with other users on your
network. To enable sharing for this folder, click Share this
folder.

" Do not shate this folder
—{* Share this folder ‘

Share name: I Customers d :
Permissions for Customers E 21x|

Comment: ICuslomer Documents

Share Permissions I

User limit: € Maximum allowed

Group of user names:

% Allow this number of users: z

a 10 =
To set permissions for users who access this Permissions |
folder over the network, click Permissions. —

To configure settings for offine access. click Caching |
Caching.

Mew Shi

IR | Add... Bemave |

Permiszions for Everyone Allow Deny
Full Contral O
Change O
0K Cancel Appl, Read O

oK I Cancel Spply

Figure 11.9 A file share created with standard privileges

Setting Permissions on File Shares

To set access control on file shares, you have to correctly assemble a
Windows security descriptor (SD). An SD consists of an access control list
(ACL) with various access control entries (ACEs), with each ACE permit-
ting or refusing a number of privileges for a user (trustee) or a group of
users.

In particular, the following steps are necessary:

1. Receive the security identifier (SID) for each user/each group
intended to receive access (in this case, with the help of the
Windows NT provider of the Active Directory Service Interface,
which, despite its name, also works with Windows systems without
Active Directory).

—
—
.
-
=
m
v
-
wv
=
m
=
w

226 CHAPTER 11 FILE SYSTEMS

ST

. Create an instance of Win32_Trustee for each user/each group

intended to receive access.

Create appropriate ACEs via instancing the class win32_aCE for
each ACE.

Fill the win32_ACE with the win32_Trustee object, the ACL,
and any other properties you want.

Create an instance of Win32_SecurityDescriptor.

Assemble a discretionary access control list (DACL) consisting of
all the ACEs.
FﬂltheVNin32_SecurityDescriptor(ﬂjectwdﬂ]the newﬂy(me—
ated DACL.

Transfer the win32_SecurityDescriptor object to the method
Create () of Win32_ Share

Listing 11.11 and Figure 11.10 show an example. In this case, the
groups Management and Consultants get full access, and the group
Developers gets read access for the a file share named Customers.

Listing 11.11 Creating a New Share with Permissions

HHEFHHAHH R HH SRR

New-Share

Parameters

(with permissions)
(C) Dr. Holger Schwichtenberg
FHF R

SComputer = "EQ1"

$ShareName = "customers"

$Path = "j:\customers"

$Comment = "Customer Documents"

Constants

SSHARE_READ = 1179817
SSHARE_CHANGE = 1245462
$SHARE_FULL = 2032127
SSHARE_NONE = 1

SACETYPE_ACCESS_ALLOWED = 0
SACETYPE_ACCESS_DENIED = 1
SACETYPE_SYSTEM_AUDIT = 2

FILE SHARES 227

SACEFLAG_INHERIT ACE = 2
SACEFLAG_NO_PROPAGATE_INHERIT ACE = 4
SACEFLAG_INHERIT ONLY ACE = 8
SACEFLAG_INHERITED_ACE = 16
SACEFLAG_VALID_INHERIT FLAGS = 31
SACEFLAG_SUCCESSFUL_ACCESS = 64
SACEFLAG_FAILED_ACCESS = 128

Get Trustee
function New-Trustee ($Domain, S$User)

{

SAccount = new-object system.security.principal.ntaccount ("itv\hs")

$SID = $Account.Translate([system.security.principal.securityidentifier])
Suseraccount = [ADSI] ("WinNT://" + $Domain + "/" + S$User)

Smc = [WMIClass] "Win32_ Trustee"

St = S$SMC.CreateInstance()

St.Domain = S$Domain

St.Name = S$User
$t.SID = Suseraccount.Get ("ObjectSID")
return S$t

}

Create ACE

function New-ACE ($Domain, S$User, S$Access, S$Type, S$Flags)
{

Smc = [WMIClass] "Win32_Ace"

$a = SMC.CreateInstance()

Sa.AccessMask = S$Access

-
f—
.
=
—
m
wv
=<
(%)
=
m
=
«

Sa.AceFlags = S$Flags

Sa.AceType = SType
Sa.Trustee = New-Trustee $Domain S$User
return S$a

}

Create SD
function Get-SD
{

Smc = [WMIClass] "Win32_SecurityDescriptor"
$sd = SMC.CreateInstance()

SACEl = New-ACE "ITV" "Developers" S$SHARE_READ
= SACETYPE_ACCESS_ALLOWED SACEFLAG_INHERIT_ ACE

(continues)

228 CHAPTER 11 FILE SYSTEMS

Listing 11.11 Creating a New Share with Permissions (continued)

SACE2 = New-ACE "ITV" "Consultants" S$SHARE_FULL
= SACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT_ACE
SACE3 = New-ACE "ITV" "Management" S$SHARE_FULL
w SACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT_ACE

[System.Management .ManagementObject[]] S$DACL = SACEl , S$SACE2, S$SACE3
$sd.DACL = S$DACL

return $sd

}

before

"Before:"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'"
Get-WmiObject Win32_Share -Filter "Name='S$ShareName'"

w foreach-object { $_.Delete() }

Win32_Share anlegen

SMC = [WMIClass] "ROOT\CIMV2:Win32_Share"

SAccess = Get-SD

SR = Smc.Create($Path, $Sharename, 0, 10, S$Comment, "", S$Access)

if (SR.ReturnValue -ne 0) { Write-Error ("ERROR: "
w+$SR.ReturnvValue) ; Exit}
"Share has been created!"

after
"After:"

Get-WmiObject Win32_Share -Filter "Name='S$ShareName'"
wforeach { $_.GetAccessMask/() } | gm

FILE SHARES 229

Customers Properties E 2x|
General | Shating | Securty | Web Sharing | Customize |

‘You can share this folder with other users on your
network. To enable sharing for this folder, click Share this
folder.

€ Da not share this folder
= Share this folder

Share name: | customers |

e D 203
User limit: ® i Share Permissions |
@ pllow this rumber of sers: [0 =] Group oruses nemes
To set permissions for users who aceess this parmissions 2 il
folder aver the network, click Permissions _I* €3 developers I TVAdevelopers)
Ta configure settings for affine acoess, click | Caching €33 Management [TV anagemeni)
Caching
New Share
Add Remove
Permissians for Consulants Allow Deny
Full Control [m]
oK. Cancel Al Changs [m]
Flead O

T e |

Figure 11.10 Result of the preceding script for the creation of a file share with
explicit access rules

Mass Creation of Shares

You may often want to create a bunch of file shares at once. Figure 11.11
shows an XML file describing different file shares. The WPS script in
Listing 11.12 reads the XML file (see Figure 11.11) and creates the corre-
sponding file shares (see Figures 11.12 and 11.13).

At first, the XML file is read with Get-content. The file content is
then converted to the built-in WPS file type [XML], thus creating a new
instance of the .NET class System.Xml .XmlDocument. With the method
SelectNodes (), you get access to the <Share> nodes contained in the
document. By means of the built-in XML adapter, WPS encapsulates
the single nodes in such a way that the subnodes appear as properties of
the WPS variables (here, $Share). The method Create () of the WMI
class win32_share is then fed with this data, with the tasks (including the
possible earlier deletion of a file share with the same name), being encap-
sulated in a subroutine (New-Share).

—
—
.
-
=
m
v
-
wv
=
m
=
w

230 CHAPTER 11 FILE SYSTEMS

<?xml version="1.0" encoding="utf-8" 7=

- «Shares>
<l--
- <Share>

<Name=Customers</Name>

</Share=
- <Share>
<Path=h:\documents\Projects</Path=
<MName>Projects</Name=>

</Share>
- <Share=>

<MName>Accounting</Name>

</Share=
- «<Share=
<Path=i:\</Path>
<Name=Software </Name=
<Description>Setup Files</Description=
</Share=
</Shares>

<Path=h:\documents\customers</Path=

<Description=Customers Documents</Description=

<Description>Projects Files</Description>

<Path=h:\documents\Accounting</Path=

<Description=Accounting Documents</Description=

Figure 11.11 This XML file describes file shares to be created.

Listing 11.12 Creating a Bunch of Shares with Explicit Access Control

FHAHH R
Create a bunch of shares with permissions

(C) Dr. Holger Schwichtenberg, www.IT-Visions.de

FHEFHHHHH R R

Parameters
SComputer = "."

Subs

Constants

SSHARE_READ = 1179817
$SSHARE_CHANGE = 1245462
SSHARE_FULL = 2032127
SSHARE_NONE = 1

SACETYPE_ACCESS_ALLOWED = 0
SACETYPE_ACCESS_DENIED = 1
SACETYPE_SYSTEM_AUDIT = 2

SACEFLAG_INHERIT ACE = 2
SACEFLAG_NO_PROPAGATE_INHERIT_ACE = 4

FILE SHARES 231

SACEFLAG_INHERIT ONLY ACE = 8
SACEFLAG_INHERITED_ACE = 16
SACEFLAG_VALID_INHERIT FLAGS = 31
SACEFLAG_SUCCESSFUL_ACCESS = 64
SACEFLAG_FAILED_ACCESS = 128

Get Trustee
function New-Trustee ($Domain, S$User)

{

SAccount = new-object system.security.principal.ntaccount ("itv\hs")

$SID = $Account.Translate([system.security.principal.securityidentifier])
Suseraccount = [ADSI] ("WinNT://" + $Domain + "/" + S$User)

Smc = [WMIClass] "Win32_ Trustee"

St = SMC.CreateInstance()

St.Domain = S$Domain

St.Name = S$User
$t.SID = Suseraccount.Get ("ObjectSID")
return S$t

}

Create ACE =
function New-ACE ($Domain, S$User, S$Access, S$Type, S$Flags) 5
{ 2
Smc = [WMIClass] "Win32_Ace" E
$a = SMC.CreateInstance() E
Sa.AccessMask = S$Access

Sa.AceFlags = S$Flags
Sa.AceType SType
Sa.Trustee = New-Trustee $Domain S$User

return Sa

}

Create SD
function Get-SD
{

Smc = [WMIClass] "Win32_SecurityDescriptor"

$sd = SMC.CreateInstance()

$ACEl = New-ACE "ITV" "Management" $SHARE READ

= SACETYPE_ACCESS_ALLOWED SACEFLAG_INHERIT_ ACE

SACE2 = New-ACE "ITV" "Sales" S$SHARE_FULL S$ACETYPE_ ACCESS_ALLOWED
w SACEFLAG_INHERIT ACE

(continues)

232 CHAPTER 11 FILE SYSTEMS

Listing 11.12 Creating a Bunch of Shares with Explicit Access Control (continued)

SACE3 = New-ACE "ITV" "Productmanagement" $SHARE_FULL
w SACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT ACE
[System.Management .ManagementObject[]] S$DACL = SACEl , S$ACE2, S$SACE3

$sd.DACL = S$DACL
return $sd

}

Function New-Share ($Computer, $ShareName, S$Path, $Comment, S$Access)
{

Info

"Creating Share $ShareName for S$Path..."

Delete if exists
Get-WmiObject Win32_Share -ComputerName S$Computer -Filter

"Name="'$ShareName"'" | foreach {

Write-Warning "Deleting existing share $($_.Name)..."
$_.Delete()

}

Create Win32_Share

SMC = [WMIClass] "ROOT\CIMV2:Win32_Share"

SAccess = Get-SD

SR = Smc.Create($Path, $Sharename, 0, 10, S$Comment, "", S$Access)

Result

if (SR.ReturnValue -ne 0) { Write-Error ("Error creating share: " +

SR.ReturnvValue); Exit}
"Share was created!"

Get XML file

$doc = [xml] (Get-Content -Path
h:\demo\powershell\datasystem\shares.xml)
$shares = $doc.SelectNodes("//Share")

Loop

foreach ($share in S$shares)

{

New-Share S$Computer S$share.Name S$share.Path $share.description

}

FILE SHARES 233

Powershell - hs [elevated user

indows PowerfShell
Copyright (C)> 2086 Hicrosoft Corporation. All rights reserved.

H:~deno“UPS

1# h:sdeno“UPS\B_FileSyszten\New—Share-Based-on—Enl._p=i
Creating Share Custoners for h:documents“customers...
Share was created?

Creating Share Projects for h:documents“Projects...
Share was created?

Creating Share fAccounting for h:sdocuments“Accounting...
Share was created?

Creating Share Software for i:n...

Share was created?

24

21

28 h:sdeno“UPS\B_FileSysten“New—Share—Based—-on—Enl.psi
Creating Share Custonmers for h:\documentscustomers...
UARNING: Deleting existing share Customers...

Share was created?

Creating Share Projects for h:documents“Projects.
UARNING: Deleting existing szhare Projects...

Share was created?

Creating Share fAccounting for h:“documents“Accounting...
UARNING: Deleting existing share fAccounting...

Share was created?

Creating Share Software for i:n...

UARNING: Deleting existing share Softuare...

Share was created?

Figure 11.12 Creation of a bunch of shares with standard access control

Kunden Properties 2] x| —
.
General Shaiing | Security | Web Sharing | Custamize | —
(777 “You can share this folder with ather users on your =
network. To enable sharing for this folder, click Share this
folder &
Do pot share this folder ﬁ
e kIET g
Shote name: [Kunden | Share Permissions |
Comment IKur’\dar\dnkumer\te
Group or user names:
User fimit € Maximum allowed €7 Geschifsfiibung (ITV\Geschahsfibung)
(% Allow this number of =
lows this number of users: [10 = €71 Produktmanagement (ITVAProduktmanagemsnt)

€7 Vertiieb (ITV\Wertieb]
To set permissions for users who access s Pamissions
folder over the network, click Permissions =
To configure setlings for offine access, oick | Caching
Caching.
Add.. Remove
Permissions for
Bemove Share| New Share Produkimaragsment Alow Deny

Full Contral [m]
Change [m]
Fiead [m]
(i3 Cancel Al
oK Cancel Eppl

Figure 11.13 Result of access control

234 CHAPTER 11 FILE SYSTEMS

Summary

In this chapter, you learned about using WPS to administer file systems.
WPS contains many commandlets for standard operations such as copying
files (Copy-Item), moving files (Move-Item), deleting files (Remove-
Item) and enumerating the content of folders (Get-ChildItem). Also, file
properties can be accessed through the commandlets Get-ItemProperty
and set-ItemProperty. However, there are operations that require
WML, that is, the management of file shares. The PowerShell Community
Extensions provide additional commandlets for file compression and the
management of file system links.

CHAPTER 1 2

MANAGING DOCUMENTS

In this chapter:

TextFiles 235
Binary Files 238
CSV Files 239
XML Files 241
HTML Files 251

This chapter discusses the creation and use of different document types: text
files, binary files, CSV files, and XML files. Examples in this chapter include
searching in files, importing and exporting data in the CSV format, as well
as reading, changing, transforming, and formatting XML documents.

Text Files

For reading files, Windows PowerShell (WPS) provides the commandlet
Get-Content. By default, Get-Content reads the complete file.

Listing 12.1 demonstrates the entering of a text file and the row-by-
row output using the commandlet Foreach-Object.

Listing 12.1 Row-wise Entering of a Text File

$file = Get-Content j:\documents\protocol.csv

Sa = 0

$file | Foreach-Object { Sa++; "Row" + Sa + ": " + $_ }
"Total number of rows: " + Sa

235

236 CHAPTER 12 MANAGING DOCUMENTS

If you are interested in displaying only the number of rows, you can get
this information in a much shorter way:

Get-Content j:\documents\protocol.csv | Measure-Object

Writing Files

Writing to a text file in the file system is possible with a few commandlets,
especially Set-Content and Add-Content. Set-Content exchanges the
content, Add-Content adds contents (see Listing 12.2).

Listing 12.2 Creation of and Adding to a Text File

$file = "j:\documents\protocol.txt"
"Start of new protocol file " | Set-Content S$file

"New entry " | Add-content S$file
"New entry " | Add-content S$file
"New entry " | Add-content S$file

"Content of file is now:"
Get-content $file

Clear-Content deletes the content of a file, but leaves the empty file
in the file system.
Another option to create a text file is to use New-Item:

New-Item . -name data.txt -type "file" -value "This is the
wcontent!" —-force

In this case, however, there is only the option to create the file as a new one
(without —force) or to overwrite an already existing file (with -force).
A third option to write 1a file is the commandlet out-File, as follows:

Get-Process | Out-File c:\temp\processesl.txt
Get-Process | Set-Content c:\temp\processes2.txt

TEXT FILES 237

As you can see in Figures 12.1 and 12.2, there is a difference between
using Out-File and Set-Content: Out-File will use the standard
formatting that you would also see in the WPS console, whereas
Set-Content just calls ToString () on each object in the pipeline.

[P processesl.tut - Notepad > _|EI 5[
Ele Edt Faormat Yiew Help
-
Handles nNPM(K]) PMCKD WS (KD wm(m) cPU(s) Id ProcessnName I
58 2 2384 4300 36 5.651,30 4308 BBLauncher
194 [} 17116 22856 101 3.327,05 1216 Bildschirmpausenreminderdienst
143 3 2204 1384 37 2,13 5340 cidaemon
165 4 11384 G464 62 160, 50 5392 cidaemon
194 4 2776 1116 48 116, 36 5472 cidaemon
435 3 4384 4240 47 82,098 1248 cisvec
1356 11 2456 7036 37 342,80 486 csrss
86 3 608 5372 19 2,47 344 ctfmon
82 3 1208 4032 31 0,13 1872 daemon
79 3 792 3016 27 0,02 7900 davcdata
417 11 11800 27476 110 143,75 4128 DAVSRV
46 2 544 2340 19 0,03 1268 pefwatch
249 4 2500 7356 47 8, 64 2082 dlpsp
150 17 1532 3340 31 0,20 2188 dlpwdnt
(1] 2 688 2268 18 0,95 1288 dlsdbnt
115 126 6728 6420 318 0,03 2268 exmgmt
1434 40 61752 8700 267 561, 09 472 explorer
273 10 16432 27064 B& 2.658,00 476 Foldershare -
112 4 2008 8244 45 4,091 2872 GrooveMonitor
264 7 8576 15708 122 0,08 7128 hh
o] 0 0 28 0 0 1dle
1227 106 1296812 52564 353 182,86 3848 jexplore
=8 64 17424 17148 117 2,23 6256 inetinfo
65 3 540 2154 17 &1, 59 1408 ISrRservice
59 2 906 4428 30 0,13 3016 Launcher
ols5 27 13192 15344 63 71,30 584 Isass
689 4 3676 8068 36 0,38 2584 matrox.Powerbesk SE
316 10 25280 24108 159 2,33 3000 matrox.Powerpesk.PDesknet
35 1 300 1784 14 1,56 1440 matrox.Powerbesk.services
35 1 300 1776 14 1,44 1460 Matrox.Powerbesk.Services
133 3 1136 4128 30 0,28 1472 mdm
330 11 12584 3772 85 1,05 4696 mmc
215 7 BOB8 2564 61 4,05 6864 mmc
261 11 9568 3580 71 1,14 7380 mmc
263] 3628 440 46 1,38 2740 MOMHOST
414 7 23136 356 7E 3,44 3152 MOMHOST
G903 11 G628 12484 71 70,08 1512 mMoMservice
269 253 5060 8472 48 1,27 2452 mosvc
287 14 16320 7680 234 87,186 4076 MSACCESS
162 26 1892 4760 25 0,03 1100 msdtc
323 7 5392 12064 80 3,14 224 msnmsgr
280 8 8228 5252 179 1,91 5868 MSPVIEW LI

Figure 12.1 Result of using out-File

Searching

The searching of text files is possible with the commandlet select-
string. The following command displays the information about which
script files of a directory hierarchy contain the word Where:

Get-ChildItem j:\Scripts -Filter *.psl -Recurse |
wSelect-String "Where"

—
)
5
=
5
=
>
@
=
e
=/
(=3
[a)
=
=
m
=
=
wv

238 CHAPTER 12 MANAGING DOCUMENTS

[processes2.tut - Notepad

Elle Edit Format Wiew Help

System.Diagnostics.Process (BBLauncher) -
System.Diagnostics.Process (511dschigmpausenreminderdiEmst)

System.Diagnostics.Process {cidaemon
System.Diagnostics.pProcess (cidaemon)
System.Diagnostics.pProcess (cidaemon)
System.Diagnostics.Process (cisvc)
System.Diagnostics.Process (Csrss)
System.Diagnostics.pProcess (ctfmon)
System.Diagnostics.pProcess (daemon)
System.Diagnostics.pProcess (davcdata)
System.Diagnostics.pProcess (DAVSRV)
System.Diagnostics.Process (Defwatch)
System.Diagnostics.Process (dlpsp)

System.biagnostics. Process (dlpwdnt)
system.biagnostics.process (disdbnt)
system.Dbiagnostics.Process (Exm?mt)
system.Dbiagnostics.process (explorer)
System.Diagnostics.Process (Foldershare)
System.Diagnostics.Process (GrooveMonitor)
System.Diagnostics.pProcess (hh)
System.Diagnostics.Process (Idle)
System.Diagnostics.pProcess (iexplore)
System.Diagnostics.pProcess (inetinfo)
System.Diagnostics.Process (ISRService)
System.Diagnostics.pProcess (Launcher)
System.Diagnostics.Process (lsass)
System.Diagnostics.Process (Matrox.PowerDesk SE)
System.Diagnostics.pProcess (Matrox.PowerDesk.PDeskMet)
System.Diagnostics.Process (Matrox.Powerbesk.services)
System.Diagnostics.Process (Matrox.Powerbesk.services)
System.Diagnostics.Process (mdm)

System.biagnostics. Procass (mmo)
System.Dbiagnostics.Process (mmc)
system.Dbiagnostics.Procass (mmc)
system.Dbiagnostics.procass (MOMHOST)
System.Diagnostics.Procass (MOMHOST)
System.Diagnostics.Process (MOMService)
System.Diagnostics.Process (mgswc
System.Diagnostics.pProcess (MSACCESS)
System.Diagnostics.Process (msdtc)
System.Diagnostics.pProcess (msnmsgr)
System.Diagnostics.Process (MSPVIEW)
System.Diagnostics.Process (mstsc)
System.Diagnostics.pProcess (notepad)
System.Diagnostics.Process (NwMixerTray) |

=lofx|

Figure 12.2 Result of using set-Content

Binary Files

Binary files can also be read with Get-Content and written with
Set-Content or Add-Content. The parameter to be added, respectively,
is —encoding Byte (see Listing 12.3).

Listing 12.3 Fetching and Writing a Binary File

--- Read binary file
$a = Get-Content H:\images\www.IT-Visions.de_Logo.jpg -encoding byte

--- Write binary file
$a | Set-Content "g:\Data\Logo.jpg" -encoding byte

CSV FILES 239

CSV Files

To enable the import and export of files in CSV (comma-separated value)
format, WPS offers the commandlets Export-Csv and Import-Csv.

CSV Export

There are two alternatives for exporting. You can create a common CSV
file without meta data (see Figure 12.3):

Get-Service | Where-Object {$_.status -eqg "running"} |
Export-Csv j:\administration\services.csv -NoTypeInformation

=101 x|

E services.csy - Notepad
File Edit Format View Help

Mame, CanPauseandContinue, Canshutdown, Canstop, Displayhame, DependentServices,Machinename, Servicename, Servi a
cespependedon, Servicerandle, status, ServiceType, site,Container

6to4,False,False, True, "IPvE Helper

service”, system. serwiceprocess. serwicecontroller [], ., 6tod, System. servicerrocess. servicecontraller [], safe
serviceHandle, Running,win32sharerrocess, ,

AeLooku 5vc,Fa1se,Fa?se,Fa1se,"App1icatﬁon Experience Lookup

service", System.ServiceProcess, servicecController[], ., AeLookupsvc, System. ServiceProcess. Servicecontroller
[1,safeservicedandle, Running, Wwin32shareProcess, ,

Appmgmt, False,False, True, "Application

Management , System. ServiceProcess. Servicecontroller [1, ., AppMgmt, System. ServiceProcess. ServiceController [
1.5 eServ1ceHandWe Runn1ng wins2shareprocess,,

Aud1osrv False, FaTse True, "windows

Audio”, system. serviceprocess. servicecontroller[], ., audiosrv, system. serviceprocess. servicecantroller[],sa
feSerViceHandWe,Runnin .win32shareProcess, ,
BiWdschﬁrmpausen—REminger—Dienst,Fa1se,True,True,811dschirmpausen—Reminder—Dienst,System.serviceprucess. :J

Figure 12.3 Exporting without type information

Alternatively, you can create a CSV file in which persisted object types
are indicated in the first rows after the hash symbol (see Figure 12.4):

Get-Service | Where-Object {$_.status -eqg "running"} |
wExport-Csv j:\administration\services.csv

B services.csv - Notepad ; ;lﬂlﬂ

File Edit Format View Halp

i -
Name canPauseAn-CDnt1nue cans utdown, CanStUp DisplayName, Dependentservices,MachineName, Servicename, servi :i
cesDependedon ServwceHand1e status, ServwceType site, Container
6to4,FaTse,FaTse,True, 'IPvE Helper
Service",System.Serviceprocess.Servicecontr071er[],.,6t04,System.serviceprocess.Servicecontro11er[],5afe
serviceHandle, Runnwn? wﬁnzzshareprocess,,
AeLookupsvc, False,False,False, "Application Experience Lookup
service”, system.serwicerrocess. serwicecontroller [], ., AeLookupsve, System. serviceprocess. servicecontroller
[1. Safeserv1ceHandTe Runn1ng win32sharepProcess,,
AppMomt , Fa1se False,True, "Application
Management ,System Serviceprocess. servicecontroller [1, ., AppMgmt, System. ServiceProcess. ServiceController [
].safeserviceHandle, Runn1ng win32shareProcess,,
Aldiosrv, False, False, True, "windows
Audio”, System. ServiceProcess. serviceController[], ., audiosrv, System. ServiceProcess. Servicecontraoller[], sa
Feserv1ceHandWE Runn1ng win3zshareProcess,
Binschﬁrmpausen—Remﬁn er—Dienst,Fa1se,True,True,Bi1dschirmpausen—Remﬁnder—Dienst,System.serviceprucess. _J

-

—
N
.
=
>
=
>
@
=
(=}
o
o
Pal
c
=
m
=
=
wv

Figure 12.4 Exporting with type information

240

CHAPTER 12 MANAGING DOCUMENTS

CSV Import
When a CSV file is imported with

Import-Csv j:\administration\services.csv | where
w{ $.Status -eqg "Running" }

the type information decides which object type will be constructed. With
type information, the respective type is then created. Without type infor-
mation, instances of the class System.Management.Automation.
PSCustomObject are created (see Figures 12.5 and 12.6).

Powershell - hs [elevated user]

Windo PouwerShell B
Copyright (C> 2886 Hicrosoft Corporation. All rights reserved.

H:~denosUPS

1#t Get-Service ! Where—Object {%_.status —eq "running"? ! export—csv j:sadninist
rationservices.csv —NoTypelnformation

2# Import—Csv j:“administration“services.csv | gnm

TypeName: Systemn.Management.futomation.PSCustombbject
Definition

Hethod Systemn.Boolean Equals<{0hject ohj>
GetHashCode Hethod Systen.Int32 GetHashCode()
GetType Hethod Systen.Type GetType()
ToString Hethod Systen.String ToString()
CanPausefAndContinue NoteProperty System.String CanPausefindContinue=False
HoteProperty Systen.String CanShutdown=False
HoteProperty System.String CanStop=True
HoteProperty Systen.String Container=
- HoteProperty System.String DependentServices=System.Serv...
HoteProperty Systen.String DisplayName=IPv6 Helper Service
HachineName NHoteProperty System.String MachineName=.
Hame HoteProperty System.String Name=6tod
ServiceHandle System.String 5 iceHandle=SafeServiceHandle
ServiceName H Systen.String § iceNane=6tod
System.String 5 icesDependedOn=System.Ser...
HoteProperty Systen.String ServiceType=Uin328hareProcess
HoteProperty System.String Site=
HoteProperty System.String Status=Running

Figure 12.5 Pipeline content after importing a CSV file without type information

XML FILES 241

'owershell - hs [elevated user]

3t Get—Service | Where—-Object {$__status —eq "running"?} | export-csv j:\adninist
rationsservices.csv
4% Import—Cszv j:“administrationcervices.csu | gnm

TypeNane: CSU:System.ServiceProcess.ServiceController

HenberT ype Definition

Hethod .Boolean Equals{Ohject ohj>

Hethod -Int32 GetHashCode()

Hethod .Type GetType(>

Hethod _String ToString()
CanPausefindContinue NHoteProperty .8tring CanPausefindContinue=False
CanShutdoun HoteProperty .String CanShutdown=False
CanStop HoteProperty .8tring CanStop= e
Container HoteProperty .S8tring Container=
DependentServices HoteProperty .8tring DependentServices=Systen.Serv...
DizplayName HoteProperty _String DiszplayName=IPué Helper Service
HachineNane HoteProperty .8tring HachineNane=.
Hame HoteProperty _String Hame=6tod
ServiceHandle HoteProperty .8tring ServiceHandle=SafeServiceHandle
ServiceName HoteProperty String ServiceName=6to4
ServicesDependedOn HNoteProperty .8tring ServicesDependedOn=System.Ser...
Servicel ype HoteProperty String ServiceType=Win328hareProcess
Site HoteProperty .String Site=
Status HoteProperty System._String Status=Running

13

Figure 12.6 Pipeline content after importing a CSV file with type information

XML Files

WPS offers a very easy option to read XML documents through the WPS
XML adapter.

Reading XML Documents

XML element names can be accessed just like the attributes of .NET
objects. When $doc contains the XML document shown in Figure 12.7,
$doc.Websites.Website displays the volume of XML nodes named
<Website>.

—
N
.
=
>
=
>
=
=
(3]
o
(=3
Pal
[~
=
m
=
=
v

242 CHAPTER 12 MANAGING DOCUMENTS

1 <?¥ml verszion="1.0" encoding="ucf-gm">>
Zig <Wehsites>

34 <Wehsite ID="17>

4 <URL>WWW. Sams . com</ TRL>

5 <Description>Publisher</Descriptions
6 - </Websitex

TE <Wehsite ID="aZ™>

=l <URL>www. IT-Visions.de</URL>

=)

<Description>Website of the huthors Consulting Company</Description>
10 | </Website>

117 <Website ID="3">

1z <URL>www.powershellz4, com</URL>

13 <Description>Companion website for this book</Descriptions

14 </Wehsitex

157 <Wehsite ID="4">

18 <URL>www.microsoft.com/vwindovsserverZ003/ technologies/management/ povershell/default.mspx</URL>
17 <Descriptiun>ﬂicrusbft5 PowerShell Website</Descriptions

18- </Wehsitex

19iL </Wehsites>

Figure 12.7 Example for an XML document

The preceding document can be evaluated as shown in Listing 12.4
and Figure 12.8.

Listing 12.4 Fetching of an XML file

Sdoc = [xml] (Get-Content -Path j:\documents\websites.xml)
$Sites = S$doc.Websites.Website
$Sites | select URL, description

NOTE To use the special XML support of WPS, WPS needs to know which vari-
ables an XML document contains. Therefore, the type conversion with [xm1] in
the first row is of great importance.

Checking XML Documents

If you try to convert an invalid XML document (which lacks, for instance,
a closing tag) into the type [Xml], you will get an error report from WPS
(see Figure 12.9).

XML FILES 243

Powershell - hs [elevated user]

Windows PowerShell
Copyright (C)> 2086 Hicrosoft Corporation. All rights reserved.

H: “deno~UPS
i# $doc = [HML] (Get—Content —path H:“demo“WPS\B_XML\Webhsites.en.xml)
2# 5doc.Websites.Website | select URL, Description

sulting Co...
.povershell24. con Companion wehsite for th hook
vwuu . nicrosoft._conswindovsserver2B@l/. .. Microsofts PowerShell We

k13

Figure 12.9 Error report, when a closing tag is missing

You can check in advance whether a document is valid with the com-
mandlet Test-xml (from PSCX). Test-Xml displays True or False.

Test-Xml h:\demo\powershell\xml\websites_invalid.xml

By default, Test-xml checks only XML well formedness. As an
option, it is possible to validate against an XML schema (for example,
Figure 12.10). Here, after -SchemaPath, you have to indicate the path to
the XML schema file (.xsd). Alternatively, you can also indicate an array
with several paths.

Test-Xml h:\demo\powershell\xml\websites.xml -SchemaPath
wh: \demo\powershell\xml\websites.xsd

—
N
.
=
>
=
>
=
=
@
o
(=3
Pal
[~
=
m
=
=
v

244

CHAPTER 12 MANAGING DOCUMENTS

W'ehsites.ﬂsdﬂ -
11 <?xml version="1.0" encoding="utf-8"72>
2i <xsischema attributeFormbefault="ungqualified” elementFormbefault="gualified” xmlns:
Hxs="http://www. w3 .org/ 2001/ XNLSchema™>
3F <xs:element nawe="Websites">
45 <xs:icowmplexType:
5iF <X3:3Jequencer
3= <xs:ielement maxCOccurs="unbounded” nawe="Website">
TiH <xs:complexTypexr
G <XS:Sequencer
9 <xs:element name="URL" type="xs:string"” />
10 <x3:element nawme="Beschreibung" type="wxs:string™ />
11i - </x3:sequence>
1z <xs:attribute name="ID" type="xs:unsignedByte" use="reguired" />
13 </xs:icomplexTypes>
14 </xs:ielement>
15+ </xs:sequencesr
16 </x3:complexType>
17 </xs:elements>
18: L </ x5 schemas
. . 3
Figure 12.10 XML schema for the Websites file

Formatting

XML documents do not have to be formatted (that is, insertions of the
XML elements according to the respective level are not necessary). In
PSCX, there is the possibility to display nonformatted XML documents as
formatted, or to adapt the formatting to the output with the commandlet
Format-Xml.

The following command displays a formatted output of an XML docu-

ment, where each level is inserted with a dot and four spaces (see Figure
12.11).

Format-Xml h:\demo\powershell\xml\websites.xml -IndentString
b" . n

XPath

For searching in XML documents with the help of XPath (XPath is a W3C
standard; see [W3CO1]) the class XmlDocument supports the methods
SelectNodes () and SelectSingleNode (). In PSCX, there is the com-
mandlet Select-xml (see Table 12.1).

XML FILES 245

demo~\WPS\B_KML\Webhsites.en.xml —IndentString *.
" encoding="utf-8"?>

ams . com{ /URL>
ption>Publisher</Description’

- <De
{llehsite?
{Website 1

ions .de<{/URL>

- ite of the Authors Consulting Company{/Description>
<{Aleh
<We.

< Aleh:

microsoft.con/windo! erver2B@B@3/technologi
- <De on>Microsofts Powe ell Website{/Descrip
- {A\llehsite>
[<{Alebsites>

Figure 12.11 Use of Format-xml

WARNING SelectNodes () and SelectSingleNode () display instances
of the classes System.Xml .XmlElement and System.Xml.
XmlAttribute. Select-Xml, however, displays instances of MS.
Internal.Xml.Cache.XPathDocumentNavigator. Therefore, the output
is very different. To receive the same output with both commands, you must

send the result of Select-Xxml fo Select-Object Innerxml (see

Figure 12.12).

= [xml] {Get—Content —path H:“demo:WPS:\B_KML\Wehsites.en.xml>
B# %doc.selectnodes<"//URL">

Element
Element
Element
Element L . mi oft.com/windo
i management/pouershel
1/default .mspx<{ URL>

18# Select—Xnl H:“demo“WPS\B_KML-Webhsites.en.xml —EPath “//URL" | select innerxml

Inneriml

powershell24.com
microsoft.cons/windowsserver2@dl technologies/managenent/powershell/default....

Figure 12.12 Comparing the output of SelectNodes () and Select-xml

—
N
.
=
>
=
>
=
=
(3]
o
(=3
Pal
[~
=
m
=
=
v

246

CHAPTER 12 MANAGING DOCUMENTS

Table12.1 Examples for the Use of XPath

or

$doc.SelectNodes ("//URL") Displays all <URL> elements

select-Xml h:\demo\powershell\xml\
websites.xml -XPath "//URL" |
select innerxml

Sdoc.SelectNodes (" //Website/@ID")

or

select-Xml h:\demo\powershell\ [Hsphysaﬂl[)aﬂrﬁnﬁesofaﬂ
xml\websites.xml -XPath <Website> elements
"//Website/@ID" | select innerxml

Sdoc.SelectSingleNode
("//Website[@ID=3]/URL")

or

select-Xml h:\demo\powershell\ Displays the <URL>-element of the
xml\websites.xml -XPath <Website> elements with the
"//Website[@ID=3]/URL" | attribute value 3 in the attribute ID

select innerxml

TIP Select-xml has the advantage that easy-to-use support of XML name-
spaces is offered. The following command fetches the names of all bound C#
source code files from a Visual Studio project file. Thereby, reference is made to
the respective namespace of the command-line tool MSBuild.exe, which is
responsible for the translation of the projects (see Figure 12.13).

Select-Xml "H:\demo\PowerShell_own
wCommandlets\PowerShell_Commandlet_Library\

wPowerShell_ Commandlet_Library.csproj" -Namespace

w 'dns=http://schemas.microsoft.com/developer/msbuild/2003"
w_XPath "//dns:Compile/@Include"

Modifying XML Documents

Listing 12.5 adds an entry to an XML file by using the methods
CreateElement () and AppendcChild().

This example shows that even in WPS there are some areas that can be
somewhat more complicated. Because the subelements of an XML node

XML FILES 247

can be presented as attributes of a .NET class processed by WPS, the
attributes of the meta class System.Xml.Node (that is, classes derived
therefrom) cannot be presented directly, to avoid name conflicts. These
attributes are available only via their getters and setters. Therefore, with
the WPS script, you cannot set the content of a node via $node.
Innertext = ‘"xyz";instead, you must call $node._set_Innertext
("xyz").

¢Project DefaultTargets="Build" =mln=s=="http:<~schema=s. microsoft.com’/developersmsbuild-2003">

< ItemGroup»
¢Conpile Include="Test-Dauer.cs" ~»
¢Conpile Include="Get-Disk3.cs" 7>
¢Conpile Include="Get-Comnputernamne.cs" #»
¢Hone Include="Get-Disk2 . cs" »»
¢Hone Include="Get-Diskl.cs" ~»
¢Conpile Include="PropertieshA=semblyInfo.cs" #»
¢Conpile Include="PS5Snapin.c="»

<SubTypeComponent ¢ ~SubType»

¢sCompile»

</ TtenGroup>

¢ Project:»

Figure 12.13 This fragment from a Visual Studio project file shows the elements
to be selected and their namespace declaration.

Listing 12.5 Completion of an XML file

"Previously"

Sdoc = [xml] (Get-Content -Path j:\administration\websites.xml)
$doc.Websites.Website | select URL,Description

"After"

$site = S$doc.CreateElement ("Website")

Surl = S$doc.CreateElement ("URL")
Surl.set_Innertext ("www.windows-scripting.com")
Sdescription = $doc.CreateElement ("description")
Sdescription.set_Innertext ("Community-Website for PowerShell")
Ssite.AppendChild(Surl)
Ssite.AppendChild($description
Sdoc.Websites.AppendChild($Ssite)
Sdoc.Websites.Website | select URL,description
Sdoc.Save ("h:\demo\buch\websites_neu.xml")
"Document saved!"

—
)
5
=
5
=
>
@
=
e
=/
(=3
[a)
=
=
m
=
=
wv

248

CHAPTER 12 MANAGING DOCUMENTS

Exporting Pipeline Objects to XML

WPS uses its own XML format (CLIXML) to persist (serialize) the object
pipeline in XML form (via Export-C1iXml), so that it can be restored at
a later point. The following command saves the object list of the current
system services. Figure 12.14 shows the results.

Get-Service | Where-Object {$_.status -eqg "running"} |
wExport-CliXml j:\administration\services.xml

- <0bjs Version="1.1" zmlns="http://schemas.microsoft.com/powershell/2004/04">
+ «<Obj Refld="Refld-0">
+ <0bj Refld="Refld-0">
+ «Obj Refld="Refld-0">
+ <0bj Refld="Refld-0">
+ «Obj Refld="Refld-0">
- <0Obj rRefld="RefId-0">
<THNRef Refld="Refld-0" />
- <Props>
<B N="CanPauseAndContinue">false
<B N="CanShutdown">true</B=
<B N="CanStop">true
<5 N="DisplayName"=Background Intelligent Transfer Service</S>
- «0Obj N="DependentServices" Refld="Refld-1">
<THNRef Refld="Refld-1" />
<LST />
</0bj=
<5 N="MachineName">.</S>
<5 N="ServiceName"=BITS</5>
<0bj N="ServicesDependedOn" Refld="Refld-2">
<THNRef Refld="Refld-1" />
- <LET>»
- <0bj refld="Refld-3">
<THRef Refld="Refld-0" />
- <Propss
<B N="CanPauseAndContinue">false
<B M="CanShutdown">false
<B N="CanStop">true
<5 N="DisplayName"=COM+ Event System</S=
<0bj N="DependentServices" Refld="Refld-4">
«<THNRef Refld="Refld-1" />
- <LET=
<S=System.ServiceProcess.ServiceController</S>
<5>8ystem.ServiceProcess.ServiceController</S:>
<S=System.ServiceProcess.ServiceController</S>
<S>8ystem.ServiceProcess.ServiceController</s:>
</LST>
=/0bi=

Figure 12.14 Clipping from a serialization of a WPS pipeline

The equivalent to restoring the pipeline is Import-clixml (see
Figure 12.15).

Import-CliXml j:\administration\services.xml | Get-Member

XML FILES 249

WARNING After the deserialization of the objects, all attributes of the objects
can again be used, but not the methods of the objects!

= rowershell - hs [elevated user] -

Windows PowerShell
Copyright (C)> 2886 Microsoft Corporation. All rights reserved.

H:“deno“UPS

1#t Get—Service | Where—Object {5_.status —eq "running™? | Export-CliEml j:“admin
istration“services.xm

2% Import—Cli¥ml j:“administration‘services.xml | gm

TypeNane: Deserialized.System.ServiceProcess.ServiceController
HemberType Definition

CanPausefindContinue Property Systen.Boolean {get
CanShutdoun Property System.Boolean {get
Property Systen.Boolean {get;s
Property {get;set;>
s Property Systen.Managenent .fAutonation.PS0Object {get;set;>
Property Systen.String {get;set;>

Property System.String {getjiset;>
ServiceHandle Property System.Management .Autonation.PS0bject {get;set;}
ServiceMame Property System.String {get;set;>
ServicesDependedOn FProperty System.Management .Autonation.PS0bject H

>
H
Servicelype Property Systen.Managenent.fAutonation.PS0bject {ge t3y
Site Property {get;set;>

Status Property Systen.Managenent.fAutonation.PS0Object {get;set;>

3 _

Figure 12.15 Pipeline content after serialization and deserialization with
Export-CliXml and Import-CliXml

Transforming XML Documents

In PSCX, the commandlet Convert-xml is provided for the application of
the W3C standard XSLT (XML Stylesheet Transformations). Alternatively,
you can use the NET class System.xml.Xsl.Xs1lCompiledTransform.
The following example demonstrates how the XML file websites.xml
can be converted into an XHTML file with the help of the XSLT file, shown
in Figure 12.16. The result is saved as Wwebsites.html (see Figure 12.17).

Convert-Xml j:\administration\websites.xml -XsltPath
= :\administration\WebsitesToHTML.xslt |
wSet-content j:\administration\websites.html

TIP You can get help for developing and testing XSLT files within Studio
2005/2008.

—
N
.
=
>
=
>
=
=
@
o
(=3
Pal
[~
=
m
=
=
v

250

CHAPTER 12 MANAGING DOCUMENTS

17 <?xml version="1.0" 2>

2@ <xsl:istylesheet xmlns:xsl="http://wvw.wl3.org/1999/XSL/ Transform™ wversion="1.0">
3 <!-— Transformation —->

4 <=sl:template match="Wehsites">

5iH <HTHL>

G <hody>

7 <hZ>Wehsites</hz>

(k= <uls

=l <xsl:for-each select="/lebsites/Website">
103 <lix

11 <xsl:value—of select='Description'/>
129 <hr>

13- <a>

14 <xsl:attribute name="href">

15 <xsl:value-of select="URL"/>

16 </xslrattribute>

17 <xzl:value-of select="URL"/>

18

19i </bhr>
20i - </ 1ix
Z1ik </%sl:for-each>
22+ </ulx
23 <hrx</hrx
24 Converted from XML
25 </body>
26 </HTHL>
27iF </xsl:itemplate>
zib </xsl:istylesheet>

Figure 12.16 XSLT file

h:demo\ WPS' .| ndows Internet Explorer

% - ITEH:'l,demo'l,WPS'l,B_XML\,websites.en.html j |E| |z| Ioriantation towards

JEIIe Edt Wiew Favortes Tools Help

e b @h:'l,demo\,WPS'l,B_XML'I,websitas.en.html | Page - @Tguls =

Websites

» Publisher
WWW.sams. com

s Website of the Authors Consulting Company
www.IT-Visions.de

« Companion website for this book
www.powershell24 com

s Microsofts PowerShell Website

www.microsoft com‘windowsserver2003/technologies/management/powershell/defamlt mspx

|»

Converted from XML

| ([o

[% 100%

N

Figure 12.17 This HTML file was generated from the XML file.

HTML FILES 251

HTML Files

The commandlet Convert-Html converts the objects of the pipeline into
an HTML table.

The following command saves the list of the Windows system services
as an HTML file (see Figure 12.18).

Get-Service | ConvertTo-Html name,status -title
w'Servicelist" -body "List of services" |
wSet-Content j:\administration\services.htm

12 5crvictat - windons intemes exgorer IS
(56~ [Bipdrmmamnsmracesin =] 42| %[(2]
| Ble Edt vew Favortes Tods Help

TR @ | %8 e Gk - @ @ 7
List of services

name status

6tod Running

AeLookupSve Running

Alerter Stopped

ALG Stopped

ANTSProfiler Stopped

AppMgmt Running

aspnet_state Stopped

AudioSrv Running

Bildschirmpausen-Reminder Dienst Running

BITS Running

Browser Running

CiSve Running

ClipSrv Stopped

ch_optimization_v2.0.50727_32 Stopped

COMSysApp Stopped

CryptSve Running

DecomLaunch Running

DefWatch Running

Dfs Stopped

Dhep Running

DLPWD Running

DLSDB Running

dmadmin Stopped

dmserver Running

Dnscache Running

TR S Rrnnine |
[C T T T T [y Computer ESCR

Figure 12.18 Result of converting into an HTML table

—
N
.
=
>
=
>
@
=
(=}
o
o
A
c
=
m
=
=1
wv

252 CHAPTER 12 MANAGING DOCUMENTS

Summary

In this chapter, we looked at the handling of different document types:
unstructured text files and binary files as well as three structured text file
types (CSV, XML, and HTML).

WPS provides at lot of helpful commandlets such as Get-Content,
Set-Content, Export-Csv, and Import-Csv. In addition, there is good
support for access to XML files through the XML WPS object adapter,
which allows direct access to XML nodes as if they were properties of a
.NET class. You can find additional commandlets for XML handling within
the PSCX (for example, Select-xml, Format-Xml, and Convert-xml).

CHAPTER 1 3

REGISTRY AND SOFTWARE

In this chapter:

Registry . . . 253
Software Administration 259

This chapter covers accessing the registry and the administration of MSI-
based and non-MSI-based installations. Examples in this chapter include

m Reading keys and values

m Creating and deleting keys and values

m Enumeration of installed software

m Installation and uninstallation of software

Registry

For accessing and manipulation of the Windows registry, Windows
PowerShell (WPS) provides a PowerShell Provider. This means that the
navigation commandlets (Set-Location, Get-ChildItem, New-Item,
Get-ItemProperty, and so on) are available in the registry.

Reading Keys

The subkeys of a registry key are as follows (alias dir hklm:\software):

Get-ChildItem hklm:\software

253

254 CHAPTER 13 REGISTRY AND SOFTWARE

You can also move the current path to the registry
Set-Location hklm:\software

(alias cd hklm:\software), and start the listing of the content of that reg-
istry key with Get-ChildItem.
You get access to a single registry key with

Get-Item www.it-visions.de
or with the absolute path:
Get-Item hklm:\software\www.it-visions.de

This results in .NET objects of the type Microsoft.win32.
RegistryKey. Get-Item always delivers a single instance of this class.
Get-ChildItem delivers either no, one, or several instances.

Creating and Deleting Keys

A key in the registry is created with

New-Item -path hklm:\software -name "www.IT-visions.de"
or

md -path hklm:\software\www.IT-visions.de

NOTE New-Item is also available as md. md; however, it is not an alias but a
built-in function.

You can also copy whole keys with Copy-Item:

Copy-Item hklm:\software\www.it-visions.de
whklm: \software\www.IT-Visions.de_Backup

You can delete a registry key together with all its values as follows:

Remove-Item "hklm:\software\www.it-visions.de" -Recurse

REGISTRY 255

Defining Drives

By defining a new WPS drive, you can also define a shortcut to have
quicker access to the keys:

New-PSDrive -Name ITV -PSProvider Registry -Root
whklm: \software\www.it-visions.de

instead of

Get-Item hklm:\software\www.it-visions.de
You can then type the following:

Get-Item itv:

Two such shortcuts are already predefined (see Table 13.1).

Table 13.1 Defined Shortcuts for Registry Main Keys
HKLM HKEY_LOCAL_MACHINE
HKCU HKEY_CURRENT_USER

Reading Values

Entries and their values in a registry key are listed with the following:
Get-ItemProperty -Path "hklm:\software\www.it-visions.de"
You get the content of a single entry with

(Get-Item "hklm:\software\www.it-visions.de").
wGetValue ("owner")

or

(Get-ItemProperty "hklm:/software/www.it-visions.de") .owner

—
s.n’
=
m
@
7]
—
=
=<
>
=
o
wv
(=)
-
=
=
=
m

256

CHAPTER 13 REGISTRY AND SOFTWARE

Creating and Deleting Values

You can create new entries (for example, a new string value) with the
following:

New-Itemproperty -path "hklm:\software\www.it-visions.de"
w_name "Owner" -value "Dr. Holger Schwichtenberg"
w_type string

A numeric value is created with this:

New-Itemproperty -path "hklm:\software\www.it-visions.de" -name
"Foundation" -value 1996 -type DWord

A multistring to a key is created with the following:

SWebsites = "www.IT-Visions.de", "www.IT-Visionen.de",
w'hs . IT-Visions.de"

new-itemproperty -path "www.IT-visions.de" -name

w 'Websites" -value $Websites -type multistring

A binary value to a key is created with this:

S$SValues = Get-Content H:\demo\PowerShell\Registry\
wyww. IT-Visions.de_Logo.jpg -encoding byte
new-itemproperty -path "www.IT-visions.de" -name
w"T,0go" -value $Values -type binary

Figure 13.1 shows the result of all the previous registry operations.

£ Registry Editor = =101 x|
Eile Edit Vew Favorites Help

(] visioneer =] | name | Type | Data I
WEE.DE E"J(DeFault) REG_SZ (value nat set)

WEBDE Fuundatmn REG_DWORD 0x000007cc (1996)

viebsites [@#Logo REG_RINARY FF ol FF &0 00 10 4a 46 49 46 00 01 01 01 01 2c 01 2c 00 00 FFdb 0043 0001 ...
& Owner REG_SZ Dr. Holger Schwichtenberg
T Qv E"]Wehsites REG_MULTI_SZ wan, IT-Visions, de v, IT-Visionen.de hs.IT-Visions.de IT-Visions.de

{21 zeon
B-{] SYSTEM

{1 HKEY_USERS C|

: -7 HKFY (1 IRRFjT CONFIG L'LI

|My ComputeriHKEY _LOCAL_MACHINE| SOFTWARE \www IT-visions.de 7

Figure 13.1 Result of registry operations

REGISTRY 257

Table 13.2 shows all kinds of possible data types and their use in WPS.

Table 13.2 Data Types in the Registry

Registry Data Processing in
Type Meaning Type Indicator WPS
REG_BINARY Array of byte Binary Byte][]
REG_DWORD Number DWord Int
REG_EXPAND_SZ String with Multistring String]]
placeholders
REG_MULTI_SZ Several strings ExpandString String
REG_SZ Simple string String String

You can change an existing value with set-ItemProperty:

change value

SWebsites = "www.IT-Visions.de", "www.IT-Visionen.de",
w"hs.IT-Visions.de", "IT-Visions.de"

Set-Itemproperty -path "www.IT-visions.de" -name
w"lebsites" -value SWebsites -type multistring

To delete a value of a registry key, use the commandlet Remove-
ITtemProperty:

Remove-ItemProperty -path "hklm:\software\www.it-visions.de"

w_-name "owner"

Example

Listing 13.1 stores data of multiple website configurations in the registry.
The input data is shown in Figure 13.2, and the result in Figure 13.3.

[P webserver.txt - Notepad L 1o x|

File Edit Faormat Miew Help

powershell-doktor.de;192.168.1.13;80; g:\websites\wps
aspnetdev,de;192.168.1.14; 80; g:\websites\asp
dotnet-lexikon.de;192.168.1.15; 80; g:\websites\lex
windowsscriptinghost.de;192.168.1.16; 80; g:\websitesiwsh

B
A

Figure 13.2 Parameters

_—
s.n’
=
m
@
7]
-
=
=
>
=
o
wv
(=)
=
=
=
=
m

258 CHAPTER 13 REGISTRY AND SOFTWARE

&' Reqgistry Editor
File Edit WVew Favorites Help

=101 x|

EI-D_ Websites | [Name Type | Data

[aspretdev.de Eh:](Default) REG_S5Z (value nat set)
{20 dotnetframawork.de [REG_SZ 192,168.1.14

0 dotnet-iexikon.de [3B]Pfad REG_SZ gilwebsites\wps
= el-doktor, de] Port REG_DWORD 0x00000053 (83)
[0 windows-Seripting. de !

(2] windowsscriptinghost, de LI

[My Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Websites\powershell-doktor .de

Figure 13.3 Result (created website keys in the Registry)

Listing 13.1 Storing Values from a CSV File in the Registry Software Installations

Create a registry key from CSV-data
$Path = "hklm:/software/Websites"

if (Test-Path $Path) { del $Path -recurse -force }
if (! (Test-Path $Path)) { md $Path }

SWebsiteliste = Get-Content "j:\administration\webserver.txt"

foreach ($Website in S$WebsiteListe)

{

SWebsiteData = $Website.Split(";")

md ($Path + "\" + SWebsiteDatal[0])

New-Itemproperty -path ($Path + "\" + SWebsiteData[0])
w_name "IP" -value S$WebsiteData[l] -type String
New-Itemproperty -path ($Path + "\" + SWebsiteData[0])
w_name "Port" -value S$WebsiteData[2] -type dword
New-Itemproperty -path ($Path + "\" + SWebsiteData[0])
w_name "Path" -value S$WebsiteData[3] -type String
SWebsiteData[0] + " created!"

}

SOFTWARE ADMINISTRATION 259

Software Administration

Software administration requires the following:

m Inventory of all installed applications
m Installation of new applications
m Uninstallation of installed applications

WPS does not offer special commandlets for software administration;

therefore, you have to use WMI.
The WMI class win32 Product contains information about the

installed Windows Installer (alias Microsoft Installer; short, MSI) packages.

WARNING This WMI class is available only if the WMI Provider for Windows
Installer has been installed. Under some versions of Windows, this provider is an
installation option of Windows and not part of the standard installation.

Also, Win32_Product is valid only in applications that have been installed
with Windows Installer. All applications you can see in system control can be
accessed via the registry key HKLM:\SOFTWARE\Microsoff\Windows\
CurrentVersion\Uninstall.

Software Inventory
The class win32_product delivers the installed MSI packages:

Get-Wmiobject Win32_Product

Of course, you can filter. The following command lists only those MSI
packages whose names start with the letter A:

Get-Wmiobject Win32_Product | where-object { $_.name
w_-J]ike "a*" }

The second filter extracts all MSI packages with Microsoft as producer:

Get-Wmiobject Win32_Product | where-object { $_.vendor
w-_like "microsoft*" }

_—
s.n’
=
m
@
7]
=
=
=<
>
=
o
wv
(=)
=
=
=
=
m

260 CHAPTER 13 REGISTRY AND SOFTWARE

You can also find out whether a certain application has been installed:

Listing 13.2 Checking Whether QuickTime Version 7.2.0.240 Is Installed on a Specific
Computer

HHAHAH S H R HAH S HHAHH AR HSAH SRS S

The PowerShell script checks if a certain software is installed
(C) Dr. Holger Schwichtenberg

HHAHAH S HHHHAH A HAHH AR H SRS H SRS S

function Get-IsInstall ($SApplication, S$Computer, $Version)
{

Sa = (Get-WmiObject -Class Win32_Product -Filter

w "Name="'$Application' and Version='SVersion'"
w_computername $Computer)

return ($a -ne $null)

}

Se = Get-IsInstall "QuickTime" "EO1" "7.2.0.240"

if ($e) { "Software is installed!" }
else { "Software 1is not installed!" }

In a pipeline command, you can also write a complete inventory res-
olution, which consecutively, according to a list in a text file, calls several
computers and then exports the found applications to a CSV file:

get-content "computername.txt" |

foreach { get-wmiobject win32_product -computername $_ } |
where { $_.vendor -like "*Microsoft*" } |

export-csv "Softwareinventory.csv" -notypeinformation

You can even refine the inventory resolution by checking, before
accessing the computer, with a ping whether it is even accessible to pre-
vent the long timeout of WMI.

Because a pipelining command is not sufficient for this task and you
need a script, you can instead parameterize the solution directly (see
Listing 13.3).

SOFTWARE ADMINISTRATION 261

Listing 13.3 Software Inventory via WPS Script

HHfHHH AR R R
The PowerShell script inventories the installed software

of a producer on n computer systems ;
(C) Dr. Holger Schwichtenberg E
iR E R R SRS R R R R ki g

=
SProducer = "*Microsoft*" &
SEntryfilename = "computernames.txt" §
SOutputfilename = "Softwareinventory.csv" g

Import of computer names

SComputernames = Get-Content "computernames.txt"
$Computernames | foreach {

if (Ping($_))

{

"

Write-Host "Inventorize software for computer $_
Fetching of installed MSI packages on all computers
$Software = foreach { get-wmiobject win32_product
w_computername $_ } | where { $_.vendor -like $Producer }

Export in CSV

$Software | export-csv "Softwareinventar.csv" -notypeinformation
}

else

{

Write-Error "Computer not accessible!"

}

}

Execute Ping
function Ping

{
Sstatus = Get-WmiObject Win32_PingStatus -filter
w'Address='$args[0]'" | select StatusCode

return $status.Statuscode -eq 0
}

262

CHAPTER 13 REGISTRY AND SOFTWARE

Additional Information about Software

You get a list of all installed software updates (patches, hotfixes) with the
following:

Get-Wmiobject Win32_Quickfixengineering
You can view the installed audio-/video codecs with this:

Get-Wmiobject Win32_CodecFile | select group,name

Non-MSI Applications

Win32_Product is valid only for applications that have been installed with
Windows Installer. All applications that you can see in the system control
can be displayed only via the registry key HKLMASOFTWARE\Microsoft\
Windows\CurrentVersion\Uninstall:

Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\
wUninstall

The access can be simplified by defining a new WPS drive:

New-PSDrive -Name Software -PSProvider RegistrierungsDatabank
w_Root HKLM:\SOFTWARE\Microsoft\Windows\
wCyurrentVersion\Uninstall

Thereafter, you only have to write the following:

Get-ChildItem Software:

When filtering, you have to keep in mind that the properties (for exam-
ple, DisplayName, Comments, and UninstallString) are not properties
of the object of the type Microsoft.Win32.RegistryKey, but subele-
ments of this object (see Figure 13.4). Thus, Getvalue () has to be used
for the access to this data:

Get-ChildItem Software: | Where-Object -FilterScript

w{ $_ .GetValue("DisplayName") -like "a*"} |
wForEach-Object -Process {$_.GetValue("DisplayName") ,

wS . GetValue("Comments"), $_.GetValue("UninstallString") }

SOFTWARE ADMINISTRATION 263

dows PowerShell

12> New—PSDrive —-Name Software —-PSProvider Registry —Root HKLM:\SOFTWARE\Microsoft\Windows\CurrentUersio
n\l.lnln_.tall
Name Provider CurrentLocation

Sof tware

Get—ChildItem Softuare: | Where—-Object —FilterScript ¢ $_.GetUalue('DisplayName'> —Liki
{%_.GetVUalue("DisplayName'> . $__GetUalue{"Comments"), $__GetUalue("UninstallString"),

lnglammFlleq\HH ProN\Uninstall.exe" “C:\ProgramnnFiles\AM Pro\install.log"

Hdnhe Flash Player 9 Active
C: \UINDOUS\;y;tEmZ’IZ\HaBlnmed\Flagh\l.lnln_.tFl exe —q

Adobe Reader 7.0.8 — Deutsch
MsiExec.exe /I<{AC?6BAB6-7AD7-1031-7B44-N70’ 082>

ADS Documentation

MsiExec.exe /1{D14933BB-EECE-4FCB-B7?75-8984C903BAD2>

PS C:\Documents\hs> _

Figure 13.4 Listing of installed software starting with the letter A

Avutostart Applications

Programs that start automatically when the operating system is started can
be found in the instances of the WMI class win32_StartupCommand:

Get-Wmiobject Win32_StartupCommand

Installing Software

A script-based installation is possible for many applications; the processing,
however, depends on the installation technology used. Microsoft in WMI
supplies installation support for installation packages based on MSI.
WMI permits the call of Microsoft Installer to install any MSI package
(see Listing 13.4). The class win32_product offers the method
Install() for this purpose. The method expects three parameters:

m The path to the MSI package

m Command-line parameters that are to be transferred to the package

m Whether an application will be installed for all users (True) or for
the logged-in user only (False)

Keep in mind, however, that the Install () method is a static method
of the WMI class win32_Product. A remote installation is possible.

_—
s.n’
=
m
@
7]
-
=
=
>
=
o
wv
(=)
=
=
=
=
m

264 CHAPTER 13 REGISTRY AND SOFTWARE

Listing 13.4 Installation of an MSI package

SApplication = "H:\demo\PS\Setup_for_HelloWorld VBNET.msi"

"Install application..." + S$Application

(Get-WmiObject -ComputerName EO1 -List | Where-Object -FilterScript
w (S . Name -eqg "Win32_Product"}).Install (SApplication)

"Finished!"

Uninstalling Software

The WMI class Win32_ Product also offers an Uninstall () method for
uninstalling MSI packages.

Note that to identify the application to be uninstalled, you don’t have
to write the name of the installation package, just the application name
(Name or Caption) or the GUID (IdentifyingNumber). In the case of
Setup_for_HelloWorld VBNET.msi, the name is Hello World VB.NET
(see Listing 13.5).

Listing 13.5 Uninstallation of an MSI Package

$Name = "Hello World VB.NET"

"Start Uninstallation..."

SResult = (Get-WmiObject -Class Win32_Product -Filter

w "Name="'$Name'" -ComputerName EO1) .Uninstall () .Returnvalue

if (SResult -ne 0) { Write-Error "Uninstallation Error: S$Result";
wExit }
"Uninstallation finished!"

For each application, a so-called uninstall string is implemented in the
registry. This uninstall string tells you what to execute to uninstall the
application. This also works for non-MSI-based applications.

The following command lists the uninstall commands for all applica-
tions whose name starts with the letter A:

Get-ChildItem -Path HKLM:\SOFTWARE\Microsoft\Windows\
wCurrentVersion\Uninstall

| Where-Object -FilterScript { $_.GetValue("DisplayName")
w-like "a*"} | ForEach-Object -Process

{$_.GetValue ("DisplayName") ,

wS .GetValue("UninstallString") }

SOFTWARE ADMINISTRATION 265

Testing Installations

For a test, Listing 13.6 installs an application and then immediately unin-
stalls it. At the beginning, after the installation, and at the end, there will
be checks whether the application has been installed (see Figure 13.5).

Windows PowerShell
Copyright (C> 2886 Microsoft Corporation. All rights reserved.

H = ~demo“~WPE
1#f h:~demo~WPS~B_Sof tvare~Software_TestInstallation.psl

e
.hi
=
m
=
7]
-
=
=
>
=
o
w
(=]
=
=
=
=
m

In p Fa
Starting Installation of h::demo“WPS“B_Software~Setup_for_ HellolWorld UBMET.msi

Installation completed?

Status: the application installed?: True
stallation...
ion completed?
the application installed?: False

Figure13.5 Output of the scripts

Listing 13.6 Testing Software Install and Uninstall

function Get-IsInstall ($SApplication, S$Computer)

{

Sa = (Get-WmiObject -Class Win32_Product -Filter
w "Name="'$Application'" -Computer S$Computer)
return ($a -ne S$Snull)

}

SName = "Hello World VB.NET"

SComputer = "EQ1"

SPaket = "H:\demo\PowerShell\Software and

Processes\Setup_for HelloWorld_ VBNET.msi"

"Initial condition: Installed?: " + (Get-IsInstall S$Name S$Computer)

"Start installation of the package " + S$Package
(continues)

266 CHAPTER 13 REGISTRY AND SOFTWARE

Listing 13.6 Testing Software Install and Uninstall (continued)

SResult = ([WMIClass] "Win32_Product").Install ($Paket) .Returnvalue
if (SResult -ne 0) { Write-Error "Installation error:

wSResult"; Exit }

"Installation finished!"

"Intermediate result: Installed?: " + (Get-IsInstall $Name S$Computer)

"Start uninstallation..."

SResult = (Get-WmiObject -Class Win32_Product -Filter

= "Name="'$Name'" -ComputerName EO1) .Uninstall () .Returnvalue

if (SResult -ne 0) { Write-Error "Uninstallation error: S$Result";
wExit }

"Uninstallation finished!"

"Final condition: Installed?: " + (Get-IsInstall S$Name S$Computer)

Summary

This chapter covered two topics: the registry and software.

The Windows registry is one of the data stores that are by default
included in the navigation concept of WPS. In this chapter, you learned
that you can access the registry like a file system, using well-known com-

mands from the DOS age (for example, cd, md, and rd).

WPS provides commandlets for reading and writing keys and values:
Get-Item, Get-ItemProperty, Set-ItemProperty, and Remove-

ItemProperty.

In this chapter, you also learned that the administration of software
installations in WPS is possible through the use of the WMI class win32_
product. First, you have to make sure the class is available on your oper-
ating system because the WMI MSI Provider is not installed by default on

all operating systems.

You saw how to create an inventory of the installed software on your
local machine and on remote systems. In addition, you learned how to

install and uninstall MSI packages.

Software that is not installed through MST is listed in the registry and
can be accessing using the command you learned in the first part of this

chapter.

CHAPTER 1 4

PROCESSES AND SERVICES

In this chapter:

Processes 267
Windows Serviceso 271

This chapter covers the management of process and covers the adminis-
tration of Windows services (also known as Windows NT services).
Examples in the chapter include the enumeration of process and services,
starting and stopping process and services, installation of services, and
changing service configuration.

Processes

The commandlet Get-Process (alias ps or gps) has already been used
quite often in this book. This chapter discusses Get-Process in more
depth and examines complementary commandlets.

Enumerating Processes

You get a list of all processes with the following:
Get-Process

Get-Process gets instances of the NET classes System.Diagnostics.
Process.

If the list is long, it is a good idea to group the output with the param-
eter groupby in the Format-Table commandlet:

gps | Format-Table -GroupBy Name

267

268 CHAPTER 14 PROCESSES AND SERVICES

Figure 14.1 shows the results.

X PowerShell - hs [elevated user] - M\ demo\WPS

Figure 14.1 Grouped list of processes

Filtering

The following command delivers information all instances of a specific
process:

Get-Process iexplore

You receive a list of all processes whose names start with the letter I as
follows:

Get-Process i*
You can also address a process by its process I1D:

Get-Process —-id 7012

PROCESSES 269

Starting Processes

When you call a commandlet or a command-line application in Windows
PowerShell (WPS), it will start a process in WPS. When you call a
Windows application (for example, Notepad.exe), it starts in its own
process. In any case, the external process runs under the same user
account as the called process.

With the commandlet Start-Process from PSCX, you have more
control over the process behavior. You can, for instance, transfer an object
of the type PsCredential with different login information via the param-
eter —-Credential. You get an object of the type PSCredential via
Get-Credential.

To start a second WPS window under another user account, you thus
have to enter the following:

Start-Process powershell.exe -Credential (Get-Credential)

This is documented in Figures 14.2 and 14.3.

X PowerShell - hp [normal User] -

Windows PowerShell
Copyright <C)> 2806 Microsoft Corporation. All rights reserved.

[P8 C:“WINDOWS> [System.Environnent]l::UserName
i

hp
[PS C:\WINDOWS> Add-PSSnapin pscx
[PS C:\WINDOWS> Start—Process powershell.exe —Credential {Get—Credentiald

cmdlet Get—Credential at_command pipeline position 1
Supply walues for the following parameters:
Credential

www.IT-Visions.de

Windows PowerShell Cred;

=

Please enter your credentisls.

User name: [b J

aK Cancel

Password:

Figure 14.2 Call of start-pProcess by a regular user

—
=
)
=
(=
~
m
wv
wv
m
wv
>
H
=]
wv
m
=
=
ral
m
wv

270 CHAPTER 14 PROCESSES AND SERVICES

/X powerShell - hp [normal User] - e :

Mindows PouwerShell
Copyright <G> 28086 Microsoft Corporation. All rights »r

PS C:\WINDOWS> [System.Environment]::UserName

thp
PS C:“\WINDOWS> Add-PSSnapin PSCR
PS C:“WINDOUS> Start—Process powershell.exe —Credential {Get—Credentiall

cmdlet Get—Credential at command pipeline position 1
Supply values for the following parameters:
Credential

PHCKY USCK> UMCHD

iz8 668

PS C:\UINDOUS >

= powershell - hs [elevated usel

Windows PowerShell
Copyright (C> 2886 Microsoft Corporation. ALl pights peserved.

1# [System.Environment]::UserName
hs

24

Figure 14.3 After typing the login information, you get a second WPS window for
user who belongs to the Administrators group

Further parameters of start-process include the following:

m -WorkingDirectory Setting of the working directory of the new
process
m -Priority Setting of a priority class for the process

Ending Processes

To end a process, you have two options. You can call the Ki11 () of the
Process class method:

Get-Process | Where-Object { $_.name -eq "iexplore" } |
wEForeach-Object { $_.Kill() }

WINDOWS SERVICES 271

Or, even more concise, you can use the commandlet Stop-Process:
Stop-Process -name iexplore

Stop-Process usually expects the process number to be a parameter. If
you want to indicate the process name, you have to use the parameter
—name.

Other examples include the following:

m End all processes whose names start with the letter P

Get-Process p* | Stop-Process

m End all processes that need more than 10MB of RAM

Get-Process | where { $_.WS -gt 10MB } | stop-
process

Waiting for Process Ending

The following commands make WPS wait for the closing of Microsoft
Outlook.

Listing 14.1 Waiting for the End of a Process

—
P
n
=
=3
~
=
wv
wv
n
wv
>
=
o
wv
"
=
=
n
m
wv

$Sp = Get-Process outlook

if (sp)

{

Sp.WaitForExit ()

"Outlook has been ended!"

}

else

{

"Outlook has not been started!"
}

Windows Services

This section covers the administration of Windows System Services (also
known as Windows NT services).

272

CHAPTER 14 PROCESSES AND SERVICES

Enumerating Services

Alist of system services in the form of instances of the .NET class System.
ServiceProcess.ServiceController is displayed by the commandlet
Get-Service (alias gsv).

You get a list of the running system services with the following:

Get-Service | Where-Object {$_.status -eq "running"}
Thus, a list of the ended services is delivered by the following:
Get-Service | Where-Object {$_.status -eq "stopped"}

If you want the output to be grouped by status (see Figure 14.4), you first
have to sort by status:

Get-Service | sort Status | Format-Table -GroupBy Status

You can check in each script whether a service is installed (see
Listing 14.2).

[PowerShed - hs [elevabed weer] - B
7 Statu

Figure 14.4 List of services grouped by status

WINDOWS SERVICES 273

Listing 14.2 Checking Whether IIS Is Installed

$service = Get-Service -name iisadmin

if (! $service) { "IIS is not installed on this computer." }
else

{ "SQL Server 1s " + S$service.Status }

Unfortunately, the remote query of another system with Get-
Service, as well as with the other built-in commandlets of WPS, is not
possible. This might be regarded as one of the greatest limitations of WPS
1.0. Only the detour via Windows Management Instrumentation (WMI)
enables access to other systems. For this procedure, the commandlet Get-
Wmiobject is available. The following command fetches the running
system services of the computer named ServerEssen04:

Get-WmiObject Win32_Service -computer ServerEssen(04
w_filter "State='running'"

Remember that the result of the operation now no longer
contains instances of the .NET class System.ServiceProcess.
ServiceController, but instead instances of the WMI class
root\cimv2\Win32_Service, which have been packed into the .NET
class System.Management .ManagementObject. The commandlet Get-
Member shows this complex type as follows:

—
P
]
=
°
n
a
wv
w
A
wv
>
=
o
w
"
)
=
n
m
wv

"System.Management .ManagementObject#root\cimv2\Win32_Service"

Get-WmiObject has another filter syntax (here, the equals sign [=] has
to be used rather than —eq), and furthermore, the status of a service in the
WMI class is indicated in the property State and not, as in the NET class
in status. Beginners easily get confused here.

Figures 14.5 and 14.6 show where in the MSDN documentation you
can find information about these two classes.

274

CHAPTER 14 PROCESSES AND SERVICES

Dependent Services

If you want to display the dependent services of a service, you have to
access the attribute DependentServices of the .NET object
System.ServiceProcess.ServiceController:

get-service iisadmin | % { $_.DependentServices }
Welcome | Sign In Add LIVE SEARCH to your Browser! | United States - English ~ | Microsoft.com «
den, .NET Framework Developer (

& Printer Friendly Version 9F Add To Favorites (1 Send

oot | swport|_conmenty |

Community Content

Click to Rate and Give Feedback

LI ServiceAccount ENUMmeraton
ServiceBase Class ServiceController Class
Bl cericeconroler G
[ServiceContraller Members
ServiceController Constructor

[Collapse Al |v| Language Filter : Al

[ServiceController Methods ServiceController Class
[Close Methad This page is specific to
[Continue Method Represents a Windows service and allows you | .NET Framework 3.0
I et to connect to a running or stopped service,
Ao S manipulate it, or get information about it. Other versions are also L
ecuteCommand Methol
e: System.ServicePro available for the following:
GetDevices Method Assembly: System.ServiceProcess (in + Microsoft Visual Studio
[GetServices Method system.serviceprocess.di) 2003/.NET Framework 1.1
[Pause Method Synt « Microsoft Visual Studio
[Refresh Method Bl Syntax 2005/.NET Framework 2.0
Start Method jistaliasil(bnciaiaton) - Microsoft Visual Studio
[1 Stop Method Public Class servicecontroller Codename Orcas

[#] WaitForStatus Method

| ServiceContraller Properties

Inherits component

[canPauseAndContinue Prop Visual Basic (Usage)

[canshutdown Property Dim instance As servicecontroller

[canStop Property

[Dependentservices Prapert: cz

[DisplayName Property public class servicecontroller : Component
[MachineName Property

[0 ServiceHandle Property C++

[ServiceName Property
[ServicesDependedOn Prope
[ServiceType Property 32

[status Property
[ServiceContraller Events
ServiceControllerPermission Clas IScript
[serviceControllerPermissionAcces
ServiceControllerPermissionAttri

public ref class ServiceController : public Component

public class ServiceController extends Component

public class ServiceController extends Component

Figure 14.5 Documentation for the .NET class System. ServiceProcess.
ServiceController in the .NET Framework class library documentation
[MSDNOT]

275

WINDOWS SERVICES

Add LIVE SEARCH to your Browser! | United States - English w | Microsoft.com +

Welcome | Sign In

Microsoft Developer Network

%% Printer Friendly Version 5° Add To Favorites () Send @8 Add Content...

Click to Rate and Give Feedback

LI WINS 2 SECUny SeTngurLogIcalie
[J win32_securi OfLogi nar on and
[0 win32_SecuritySettingOfObject
[] win32_securitySettingOwner
Win32_SelfRegModuleAction

[Win32_SerialPort

[J win32_SerialPortConfiguration

b Windows Management Instrumentation + J

WMIReference » WMIClasses » Win32Classes » Win32_Service »

\v] Language Filter : All

[Win32_SerialPortSetting
[J win32_ServerConnection
[J Win32_ServerSession

Win32_Service Class

The Win32_Service WMI class represents a service on a computer
system running Windows. A service application conforms to the

Em interface rules of the Service Control Manager (SCM), and can be

started by a user automatically at system start through the Services
control panel utility, or by an application that uses the service functions
included in the Windows API. Services can start when there are no
users logged on to the computer.

[change Method of the Win32_Servi
[J ChangestartMode Method of the Wi
[0 Create Methad of the Win32_Servic
[] Delete Methed of the Win32_servic
[GetSecurityDescriptor Method of th
[InterrogateService Method of the W
[J PauseService Methad of the Win32_
[ResumeService Method of the Win3
[J SetSecurityDescriptor Method of th:
[J startService Method of the Win32_¢
[J StopService Method of the Win32_s
[userControlService Method of the ¥
[J win32_serviceContral
Win32_ServiceSpecification

A user connecting from a remate computer must have the
SC_MANAGER_CONNECT privilege enabled to be able to enumerate
this class. For more infarmation, see Service Security and Access
Rights.

The following syntax is simplified from Managed Object Format (MOF)

code and indudes all of the inherited properties. Properties and
methods are in alphabetic order, not MOF order.

class win3z_service : win3z_Baseservice

[win32_servicespecificationservice g
boolean AcceptPause;
[J Win32_Session boolean AcceptStop;
[Win32_SessionConnection string caption;
[J Win32_SessionProcess uint32 checkPoint;
[0 Win32_SettingCheck string CreationClassName;
[Win32_shadawsy string Description;
boolean DesktopInteract;
[J Win32_shadowContext S O STy
Win32_shadowCopy = string Erraorcontrol; =
d [

Figure 14.6 Documentation for the WMI class win32_service in the WMI
schema class reference [MSDNO5]

—_
P
]
=
°
n
a
wv
w
A
wv
>
=
o
w
)
=
n
m
wv

The result for Windows Server 2003 Release 2 is shown in Figure 14.7.

Windows PowerShell .

PS8 C:\Documents\hs>

C:\Documentsshs> -

PS
PS C:\Documents~hs> get—service iisadmin | 2 { %_.dependentservices }

Name DisplayName

World Wide Weh Publishing Service
Sinple Mail Transfer Protocol <SMIP)
FTP Publishing Service

Windows Remote Management <WS—Manag...

HTTP SSL

w3asuc
SMTPSUC

Figure 14.7 The dependent services of IISAdmin

276

CHAPTER 14 PROCESSES AND SERVICES

The dependent services of a system service can alternatively be
displayed in WMI, via the method GetRelated() in the class
ManagementObject in the .NET class library. The following command
displays the services that depend on the service IISAdmin:

(get-wmiObject win32_service -filter "Name =
w'jisadmin'") .PSBase.GetRelated ("Win32_Service")
= | select name

The same object volume can be displayed via a WQL query with rela-
tion to the fixed expression AssocClass (see Figure 14.8):

([wmiSearcher] "Associators of {Win32_Service.Name='iisadmin'}
where AssocClass=Win32_DependentService
wRole=Antecedent") .get ()

& PowerShell - hs [elevated user] - H:\demo'\WPS

Windows PowerShell
Copyright (C> 2886 Hicrosoft Corporation. All rights reserved.

H:~demno~UPS
1#t (get—wmilObhject win32_service —filter "Mame = ’'iisadmin’").PS5Base.GetRelated("|
Win32_Service™) | select nane

Figure 14.8 Displaying the dependent services

Starting and Stopping Services

If you want to change the service status, you can use the following com-
mandlets:

Suspend-Service Start-Service
Resume-Service Restart-Service

Stop-Service

WINDOWS SERVICES 277

Here, the service names have to be indicated as parameters.
The following command also starts the service IISAdmin:

Start-Service IISADMIN

If you want to stop system services with dependent services, you have to
add the parameter -force (see Figure 14.9):

Stop-Service IISADMIN -force

= rowershell - hs [elevated user] - H:\demo'\WPS

Windows PowerShell
Copyright (C)> 2886 Microsoft Corporation. All rights reserved.

H:“deno“UPS
1 Stop—Service IIS5Admin

Figure 14.9 Stop-Service without —force will not work if the service has
dependent services.

Because the commandlet Start-Service is valid only for the local
computer, you have to get back to the WMI class win32_Service to start
a service on a remote system. The following command starts a system serv-
ice on another computer:

Get-WmiObject -computer E02 Win32_Service -Filter
= "Name='Alerter'" | Start-Service

TIP The commandlet Restart-Service executes the reboot of a service (end
first, then start). If the service hasn't been started before, it will get started now.

-
=~
)
=
(=
el
m
wv
73
m
[
>
=
o
wv
m
=
=
ra)
m
v

278

CHAPTER 14 PROCESSES AND SERVICES

Changing Service Attributes
You can influence the attributes of services, such as its booting, with set-

Service:

Set-Service IISADMIN -startuptype "manual"

Installation of New Windows Services

Executables that implement Windows services can be registered on your
system by using the commandlet New-Service, as follows:

New-Service -Name "WWWAppServer"

-binaryPathName j:\software\wcf_server.exe
-Description "Application Server for World Wide
-DisplayName "World Wide Wings Application Server"

The execution of this command will create a new entry in the registry:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

After that, the service will be visible in the Service Manager in the Control
Panel. Then, you can start the service using Start-Service:

Start-Service WWWAppServer

Change Service Configuration

As with many other WMI classes, the properties of a Win32_sService
objects are read-only. To change the configuration, you need to call the
Change () method. Figure 14.10 shows the available parameters, and
Figure 14.11 shows an example.

You don'’t need to pass values for all parameters; if you want a property
to stay unchanged, just pass $null (see Listing 14.3).

Listing 14.3 Change Service Configuration

"Before:"

Get-WmiObject Win32_Service -filter "name='WWWAppServer'"

wselect startname, startmode

WINDOWS SERVICES 279

Sservice = Get-WmiObject Win32_Service -filter "name='WWWAppServer'"
Sservice.change ($null, $null, Snull, $null, "Manual", $null, "itv\hs",
w"'secret+123")

"After:"
Get-WmiObject Win32_Service -filter "name='WWWAppServer'"
->| select startname, startmode

Change Method of the Win32_Service Class

The Change WMI class method modifies a Win32 Service. The Win32 LoadOrderGroup parameter
represents 3 group of system services that define execution dependencies. The services must be initiated
in the order specified by the Load Order Group because the services depend on each other. These
dependent services reguire the presence of the antecedent services to function correctly.

This topic uses Managed Object Format (MOF) syntax. For more information about using this method, see
Calling a Method.

uint32 Change(
[in] string D7splayName,
[in] string PathName,
[in] wuint32 ServiceType,
[in] wuint32 Errorcontral,
[in] string StartMode,
[in] boolean DesktopInteract,
[in] string StartName,
[in] string Startrfassword,
[in] string LeoadorderGroup,
[in] string LoadorderGrouplependencies,
[in] string Servicelependencies

Figure 14.10 Description of the Change () method in the Win32_service
class

—_
&~
)
=
[=
A
=]
v
wv
m
wv
>
=
S
v
]
=
a
m
wv

s PowerShell
Copyright (C> 2886 Hicrosoft Corporation. All rights reserved.

H:~deno~UPS
1# H:sdeno“UPS\B_Service~ChangeServiceConfiguration.psl
Before:

t

Auto

LELTTERE

Figure 14.11 Changing a Windows service from Localsystem and Auto to a
specific account and manual start

280 CHAPTER 14 PROCESSES AND SERVICES

Summary

The administration of processes and services is one of the core tasks of
Windows administration. WPS provides easy-to-use commandlets for both
tasks, including the following:

Get-Process

Stop-Process

Start-Process (from PowerShell Community Extensions, PSCX)
Set-Service

Suspend-Service

Resume-Service

Stop-Service

Start-Service

Restart-Service

Set-Service

CHAPTER 15

COMPUTERS AND HARDWARE

In this chapter:

Computer Settings 281
Hardware 284
Eventlogs 290

Performance Counters

This chapter covers computer settings (for example, operating system ver-
sions, BIOS settings, boot configuration, environment variables), installed
hardware, the management of print jobs, Windows event logs, and per-
formance counters. Examples in the chapter include:

Read computer settings

Enumerate hardware devices and their properties
Enumerate the available event logs

Read event log entries

Read data from performance counters

Enumerate printers

Administration of print jobs (pause, resume, cancel)

Computer Settings

There is no special commandlet for the displaying of information about the
computer. You can get important information about the computer and the
installed software with the WMI classes Win32 Computersystem and
Win32_OperatingSystem:

281

282

CHAPTER 15 COMPUTERS AND HARDWARE

Get-WmiObject Win32_Computersystem
Get-WmiObject Win32_OperatingSystem

The serial number of the computer is displayed with the following:
Get-WmiObject Win32_OperatingSystem | select serialnumber

You can get the version number of the software with the property
Version in the WMI class Win32_OperatingSystem or with the NET
class System.Environment:

Get-WmiObject Win32_OperatingSystem | select Version
System.Environment] : :OSVersion

The WMI class win32_Bios delivers information about BIOS:
Get-WmiObject win32_Bios

The boot configuration can be found in the WMI class win32_
BootConfiguration:

Get-WmiObject Win32_BootConfiguration

The Windows system directory is again in the .NET class System.
Environment:

"System Directory: "+ [System.Environment]::SystemDirectory

You will find the status of the Windows product activation in the
following:

Get-WmiObject Win32_WindowsProductActivation

COMPUTER SETTINGS 283

There is also data about the selected recovery options of the Windows
software:

Get-WmiObject Win32_OSRecoveryConfiguration

You can display the environment variables via the Windows
PowerShell (WPS) drive env (see Figure 15.1):

dir env:

Information about a single environment variable can be fetched by
adding the name of the environment variable to the path, as follows:

dir env:/Path

If you want to know only the content of an environment variable, you
can use Get-Content:

Get-Content env:/Path

The value fetched by Get-Content can be saved in a variable and then
used by this; for example, for splitting a path string with the help of the
Ssplit () method from the NET class System. String:

SPathe = Get-Content env:/Path
$Pathe.Split(";")

If you want to find out how many files there are in the search paths of
Windows, the following command is available:

(Get-Content env:/Path).Split(";") | Get-ChildItem |
wmeasure-object

—
v
.
mn
(=)
=
]
c
=
m
=
(23
=
=
o
=
>
=
g
>
=
m

284 CHAPTER 15 COMPUTERS AND HARDWARE

2 PowerShell - hs [elevated use

Windo PowerShell
Copyright <G> 2086 Microsoft Gorporation. All rights reserved.

1# dir enu:

Name Ualue
HOMEPATH “Documentsshs
ICOMPUTERNAME Efd
ProgramnFiles\US8\Common?\Tools\
ogrannFiles\USB8\Common7\IDE\
C:\ProgrammnFiles\US8
x86 Family 15 Model 5 Stepping 18, AuthenticAMD
3581’1 ogranmFiles\US?5\SDK\vl .1NincludeN;C:\Pro.
B50a
OM; . ERE; . BA MD; .UBS; .UBE; .JS;.JSE; .WSF;....
HINDOWS\Micr £t _NEI\Framewor k\
WINDOWSTEMP
WINDOWS\TEMP
\P1nglammFlleF\USB\SDK\l& as
: grannFiles\US?\SDK vl _15Lib%;C:\Progran. .
IT UISIONS LOCAL
ITU

C:\ProgranmFiles\Conmon\Microsoft Shared\MODI.
15

ProgramnFiles\Exchsrurshintmaildsmx.d.
ogranmFiles\Visual Studio 2885 SDN\ZEB?

rhcluster. 1o
USBUCSAtIMEc \Libs C:N\HINDOUS . . .
ProgrammFiles\US?\Common7~Tools™
C:“\ProgranmFiles

ProgramFiles
[FP_NO_HOST_CHECK

windir
INUMBER_OF_PROCESSORS
SystemRoot NDOUS

ISESST ONNRNE

UCInstallDir B ogl -ammFiles\USB\UC
LOGONSERUVER S\EB2

USERPROFILE C:\Documents~hs

Frameworklersion 2.8.58727

HOMEDRIVE H

ICLASSPATH ProgramnnFiles\Comnmon\Compuware
USERNAME

APFDATA
[PROCESSOR_ARCHITECTURE
08

NO
g:\HINDOW’S

DocumentsshssApplication Data

T

S\systemd2icnd.exe
ProgrammFiles\FowerShell Connunity Extensions

RLLUSERSPROFILE C:\Documents~All Users

28

Figure 15.1 Listing of environment variables

Hardware

WPS 1.0 does not offer any commandlets for accessing hardware informa-
tion. Nevertheless, you can still refer to WMI. Alternatively, you can access
some functions via the www.IT-Visions.de PowerShell Extensions (These
were introduced Chapter 10, “Tips, Tricks, and Troubleshooting.”)

Within WPS, you can get information about installed hardware via
WMI (that is, by using the commandlet Get -wmiobject together with the
respective WMI class; see Table 15.1).

www.IT-Visions.de

HARDWARE

285

Hardware

Module

Processors

Main memory
Video controller
Sound device
Disks

Tape drives
CD/DVD drives
Network adapters
USB controller
Keyboard

Pointing device

Table 15.1 Call of Hardware Information in WPS

WPS Command
(Standard)

Get-WmiObject
Win32_Processor
Get-WmiObject
Win32_MemoryDevice
Get-WmiObject
Win32_VideoController
Get-WmiObject
Win32_SoundDevice
Get-WmiObject
Win32_Diskdrive
Get-WmiObject
Win32_Tapedrive
Get-WmiObject
Win32_CDRomdrive
Get-WmiObject
Win32_NetworkAdapter
Get-WmiObject
Win32_USBController
Get-WmiObject
Win32_Keyboard
Get-WmiObject
Win32_PointingDevice

www.IT-Visions.de
PowerShell Extensions

Get-Processor

Get-MemoryDevice

Get-Videocontroller

Get-SoundDevice

Get-Disk

Get-Tapedrive

Get-CDRomdrive

Get-Networkadapter

Get-USBController

Get-Keyboard

Get-PointingDevice

The number of processors on one system can also be obtained via the

.NET class System.Environment:

"Number of processors: " +

w [System.Environment] ::ProcessorCount

—
y'l
mn
(=)
=
~
c
=
m
=
(23
=
=
=
=
=
=
2
>
=
m

www.IT-Visions.de

286

CHAPTER 15 COMPUTERS AND HARDWARE

Printers and Print Jobs

The command
Get-WmiObject Win32_Printer

displays a list of all available printers on the local system. You can use the
—computername parameter to access a remote computer (see Figure
15.2). Printers that are mapped through a terminal services session have
the text “from... in session...” in their name.

[PawerShell - hs [elevated user] - Hdema\Wis

reting Dacunent

=|

Figure 15.2 Listing of all installed printers from a remote computer

If you want to check the status of a printer, you should read printer-
status and detectederrorstate:

Get-WmiObject win32_printer | select name,
wprinterstatus, detectederrorstate

HARDWARE 287

In Figure 15.3, we have the following values: 3 = ready, 1 = other, 5 = low
toner.

Windows PowerShell
Copyright (C) 2886 Microszoft Corporation. All rights reserved.

H : \.demo“UPS
i#t get—wmiohject win3d2_printer | select name, printerstatus, detectederrorstate

printerstatu detectederrorstate

a
a
a
a
a
a
5
5
5

Figure 15.3 Checking the printer status

Printer Connections
If you want to install a network printer, you can use the static method

AddPrinterConnection () in the Win32 Printer class:

Sprinter = [WMIClass]"\\.\root\cimv2:Win32_Printer"
Sprinter.AddPrinterConnection ("\\E02\Dell")

The method will return the value of 0 if the installation is successful.

Print Jobs

To transfer information to the printer, you use the commandlet out-
Printer (alias 1p)in WPS. This commandlet has already been discussed
in this book (see Chapter 3, “Pipelining”).

With

Get-WmiObject Win32_Printjob

you get all current print jobs on your local system (see Figure 15.4). Of
course, you can use the —computer parameter to query a remote system.

—
}h
(o)
(=)
=
~
c
=1
m
=
w
>
=
=
=
>
=
2
>
=
m

288 CHAPTER 15 COMPUTERS AND HARDWARE

Figure 15.4 Using the print job script

You can pause all print jobs for a distinct printer with the following
command:

Get-WmiObject Win32_Printjob -Filter
w'Drivername='Dell 3115'" | Foreach-Object { $_.Pause() }

You can resume them later by calling the method Resume ().

To cancel all jobs, you have to call the Delete () method (see Listing
15.1).

Listing 15.1 Canceling All Print Jobs for a Certain Printer on a Specific Print Server

"-—— Print Jobs before:"
Get-WmiObject Win32_Printjob -computer EO01 -Filter
w "Drivername='Dell MFP Laser 3115cn PCL6'"

"-—-- Canceling all Print Jobs..."

HARDWARE 289

Get-WmiObject Win32_Printjob -computer E01 -Filter "Drivername='Dell
w MFP Laser 3115cn PCL6'" | Foreach-Object { $_.Delete() }

"-—- Print Jobs after:"
Get-WmiObject Win32_Printjob -computer E01 -Filter
w 'Drivername='Dell MFP Laser 3115cn PCL6'"

TIP You could also call the CancelallJobs () method of the Win32
Printer object.

MORE INFORMATION For additional information about printer administra-
tion, look at the WMI classes with the word Printer in their name (see
Figure 15.5).

C elallobs Method of the Win

G-k reaoh. sone =142 fivns aooe 21 Gocge [0
I

wégl-|e x|l e | |68 8- ew- G- @@

Add LIVE SEARCH 1o yous Bromses! | Umited Shates - gl » | Mosofl.com »

inter Class (Windows) - Windows Internct Explorer

Microsoft Developer Network

m

% printer Friendly versicn i Add To Faworites (3 Send BN add Contert... Click to Rate and Give Feadback L ririririd
I Win32_POTEModem 5| |
[Win32_PoTSMedemToSerislPan o ¥ b Win32and ' e * 7l
[win32_PewertanagementEvent Wrdows Management brbumentation ¢ WM Reference + WHE Classes +
[l win32_printer
[AddPrimerConnection Method of the Wind2_Printer
B Cancelalllobs Method of the Wind2_Frinter Class v| Langusge Fiter : &Il
[GetSecurityDescriptor Method of the Wind2_Printe
[Pause Method of the Wind2_Printer Class
[FrintTestPage Method of the WindZ_Frinter Class

Wl Ceses W32 Pl b CameclAlebs Method of the Win32_P...

CancelAlllobs Method of the Win32_Printer Class

L RenamePrinter Method of the Wind2_Printer Class The CancelAlllobs WM class method removes ol iobs, including the ene currently

[Resume Method of the Wind2_Printer Class prinking from the queue.

[SetDefaultPrinter Method of the Wind2_Printer Cla " "

" . This tepic uses Managed Object Farmat (MOF) syntax. For mare infarmation about

[SerSecurityDescriptor Method of the Wind2_Printes uting this methad, sas Calling 3 Method.
[win32_prinserConfiguration -
[win32_printerController
[wind2_PrinterDriver uinTaz cancelalllons();

[AddprirterDriver Method of the Win32_printerDirive
[StartService Methad of the WinX2_printerDriver CI

[StapService Method of the Wind2_PrinterDiriver €1 Paramelers
[win32_printerDriverOll
[win32_printarSetting This methed has fe parametes.

[wina2_printershare
B winaz_printich
) Pause Method of the Wind2_printiob Clase Returns one of the values listed in the following table, or any other value ta indicate
[] Resume Methed of the Wind2_Printich Class an errar.
[winaa_privilegesseatus

Return Valus

[wina2_process Retum code Description

[winda_procassar o SuUCCEss

[win3a_frocessSanTrace

[winda_processStanug 5 Access Densed

o] ooessSiopTrace
[T T - =
Al | d_‘ ﬂd"

Figure 15.5 “Printer” classes in WMI documentation

j—
v
b
n
=)
=
-
c
=
m
-4
wv
=
=
S
=
>
=
g
>
=
m

290 CHAPTER 15 COMPUTERS AND HARDWARE

Event Logs

Information about existing event logs and the entries in the event logs are
provided by the commandlet Get-EventLog.

Event Log Names

A list of all event logs available on the local system is delivered via the fol-
lowing (see Figure 15.6):

Get-EventLog -list

The result contains instances of the class System.Diagnostics.
EventLog.

PowerShell - hs [elevated user]

lindows PowerShell
Copyright (C) 2086 Microsoft Corporation. All rights reserved.

H:“deno“UPS
1# Get—Eventlog -list

Hax{K> Retain OverflowAction Entries

OveruritefisNeeded & fipplication
OveruritefisNeeded File Replication Service
OveruritefisNeeded Forvarded Events
itefisNeeded Harduvare Events

t Explorer

ft Office Diagnostics
OveruritefisNeeded - i ft Office Sessions
OveruritefisNeeded . Poverfhell
OveruritefisNeeded Security
itefisNeeded Systen

writefAsNeeded 8 Windows PowerShell

OveruriteOlder UWings

a
a
a
a0
7
a
a
a
a
a0
a
7

Figure 15.6 List of available event logs

Event Log Entries

However, if you call the commandlet Get-EventLog without the parame-
ter -1ist but with the name of an event log instead, the commandlet dis-
plays all entries in form of objects of the type System.Diagnostics.
EventLogEntry.

Get-EventLog Application

EVENT LOGS 291

In this case, a limitation makes sense, because the operation would other-
wise take too long. The commandlet Get-EventLog has a built-in filter
function:

Get-EventLog Application -newest 30

With a little help routine, it’s possible to limit the protocol entries to the
entries of the present day:

Listing 15.2 Protocol Entries of Today

function isToday ([datetime]$date)
{[datetime] : :Now.Date -eq S$date.Date}

Get-EventLog Application -newest 2048 | where {isToday $_.TimeWritten}

Or you can fetch all entries of the past three days:

Listing 15.3 Protocol Entries of the Past Three Days

function isWithin([int]$days, [datetime]S$Date)

{
[DateTime] : :Now.AddDays ($Sdays) .Date -le S$Date.Date

Get-EventLog Application | where {isWithin -3 $_.TimeWritten}

It might be of interest to group the entries according to the event iden-
tifier to identify recurring problems (see Figure 15.7):

Get-EventLog Application | Group-Object eventid |
wSort-Object Count

NOTE To access event logs on remote computer, you need to use the WMI
class Win32_NTLogEvent. The following command enumerates all reboot
events (event code 6009) from Server “EQ2":

Get-WmiObject -Query "select TimeWritten from

Win32_NTLogEvent where Logfile = 'System' and
SourceName = 'EventLog' and EventCode = '6009'" -computer E02

—
v
.
mn
(=)
=
~
c
=
m
=
(23
=
=
o
=
>
=
g
>
=
m

292 CHAPTER 15 COMPUTERS AND HARDWARE

2# Get—EventLog Application | Group—Object eventid ! Sort-Object Count -desc

Group

E@1.
{E@1. E@1,
{EB1, E@1.
{E@1. E@1,
{E@1, EB1.
{E@1. EB1,
{E@B1, EB1.
{E@1. EB1,
{E@1, EB1.
{E@1. E@1,
{E@B1, EB1.
{E@1. E@1,
{E@1, EB1.
{E@1. E@1,
{E@1, EB1.
{E@1. E@1,
{E@B1, E@1.
{E@1. E@1,
{E@1, E@1.
{E@1. E@1,
{E@B1, E@1.
{E@1. E@1,
{E@B1, EB1.
{E@1. E@1,
{E@1, E@1.
{E@1. E@1,
{E@1, EB1.
{E@1. E@1,
{E@B1, EB1.
{E@1. E@1,
{E@1, E@1.
{E@1. E@1,
{E@B1, EB1.
{E@1. E@1,
{E@B1, EB1.
{E@1. E@1,

E@1.

EB1L

Figure 15.7 The vast majority of events in this log have the event ID 6 (which is
a warning from the installed virus scanner).

Performance Counters

WMI enables access to performance data of the Windows system via the
WMI Performance Counters Provider. The classes start with the string
Win32_PerfRawData.

TIP If you don't find these classes, start the WMI service manually at the com-
mand line with Winmgmt /resyncperf.

Information about the used memory of running processes is displayed

by the following:

SUMMARY 293

Get-WmiObject Win32_PerfRawData_PerfProc_Process |
wselect Name,Workingset

Data about the available main memory is available here:
Get-WmiObject Win32_PerfRawData_PerfOS_Memory
The performance of a processor can be fetched with the following:

Get-WmiObject Win32_PerfRawData_PerfOS_Processor

WARNING Wwin32_PerfRawData is the abstract base class for all perform-
ance data classes. However, you want to refrain from the command

Get-WmiObject Win32_PerfRawData

because otherwise you just get a heap of objects.

Summary

In this chapter, you learned about a few interesting areas of administration.
The available hardware can be queried thought WMI classes such as
Win32_Processor, Win32_DiskDrive and Win32_SoundDevice. WMI
also provides classes for managing printers (Win32_printer) and print
jobs (Win32_pPrintjob). The WPS commandlets Get-EventLog provides
access through the local event log and WMI for remote event logs (Wwin32_
NTLogEvent). WMI provides classes for performance counters.

—
v
.
mn
(=)
=
]
c
=
m
=
(23
=
=
o
=
>
=
2
>
=
m

This page intentionally left blank

CHAPTER 1 6

NETWORKING

In this chapter:

Pinging Computers 295
Network Configuration 296
Name Resolution 299
Retrieving Files from an HTTP Server 300
EMail o 302
Microsoft Exchange Server 2007 302
Internet Information Services 305

This chapter covers networking administrative tasks, including network
configuration, name resolution, and the use of application-level network-
ing protocols such as HTTP and SMTP.

This chapter also covers the administration of Exchange Server 2007
and Internet Information Server.

Pinging Computers

You can use the WMI class Win32_pingStatus to check the accessibility
of a computer on your local network or the Internet:

Get-WmiObject Win32_PingStatus -filter "Address='www.Windows

wScripting.de'" | select protocoladdress, statuscode,
wresponsetime

295

296 CHAPTER 16 NETWORKING

PowerShell Community Extensions (PSCX) also offer a commandlet,
ping-Host, that displays a data structure of the type Pscx.Commands.
Net .PingHostStatistics (see Figure 16.1):

Ping-Host 'www.Windows Scripting.de'

28

78 ping—-host wwu.windous—scripting.de

Pinging www.windows—scripting.de with 32 hytes of data:
Reply from 82.165.74.20 hyte TT 4
Reply from 82.165.74.20 hyte
Reply from 82.165.74.20 hyte
Reply from 82.165.74.20 bhytes=32 tine=18ms

Ping statistics for wwu.windows—scripting.de:
ackets: Sent 4 Received = 4 (B,
Approximate round trip time: min = 18ns, max = 1%ms, avg = 18ms

8# ping—host u -windows—scripting.de | gm

Pinging wuw.windows—scripti with 32
Reply from o 2 tim
Reply from (] B 2 tim
Reply from 82.16 2 tim
Reply from 82.165.74. 2B bytes—32 tim

TypeName : Pscx.Commands.Net.PingHostStatistics
MemberType Def 1n1t10n

Hethod Syatem.Boolean Equals<{0Obhject ohj>
Method System.Int32 GetHashCode(>
System.Type GetType(d
System.Int64 get_AverageTime>
System.Double get_Loss
System.Int32 get_Lost{)
get_MaximumTime Method System.Int64 get_MaximumTime ()
get H1n1mumT1me Method System.Int64d get MinimumTime<>
Method System.Int32 get_Received{)
Method System.Int32 get_Sent(d
Hethod System.String ToString(>
Property System.Intbd Averagelime {get;>
Property System._String Host {get;set;}
Property System.Double Loss {get;>
Property System.Int32 Lost {get:>
Property System.Int6d MaximunTime {get;>
Property System.Int64 MinimumIime {get;>
Property System.Int32 Received {get;>
Property System.Collections.Generic.List 1 [[System.Net.NetworkInformation.Ping...
Property System.Int32 Sent {get;}

Figure 16.1 Use of Ping-Host

Network Configuration

WMI provides access to the network configuration through the class
Win32_NetworkAdapterConfiguration. In Win32 NetworkAdapter
Configuration, the IP addresses are saved as arrays in IPAddress:

NETWORK CONFIGURATION 2;’7

Get-WmiObject Win32_NetworkAdapterConfiguration -Filter
w " TPEnabled=true" | select Description, IPAddress

The WMI class Win32_NetworkAdapterConfiguration enables numer-
ous settings for network devices.

The Windows PowerShell (WPS) script in Listing 16.1 changes a net-
work device from a static IP address to a dynamic one (DHCP). Figure
16.2 shows the output.

—_
o
§
=
m
=]
=
S
)
=
=
)

Listing 16.1 Change of Network Configuration

HHAHHH R RS H A H AR
PowerShell Script

Switch between static and dynamic IP
(C) Dr. Holger Schwichtenberg

http://www.windows-scripting.com
HFHAHHHEH SR H A H AR RS

—-- Subroutines

function PrintStatus

{

$ada = Get-WmiObject Win32_Networkadapter | where

w¢$ DeviceID -eq $ADAPTERINDEX }

"Adapter: " + Sada.Caption

"Index: " + S$ADAPTERINDEX

$config = Get-WmiObject Win32_Networkadapterconfiguration | where
w{ ¢ .index -eq SADAPTERINDEX }

"Description: " + S$Config.Description
"IP active: " + S$Config.ipenabled
"DHCP Status: " + $Config.dhcpenabled
"IP addresses: " + S$Config.IPAddress

#Get-WmiObject Win32_Networkadapterconfiguration | where
w{ ¢ .index -eqg SADAPTERINDEX } | select ip
}

--- Parameters
SADAPTERINDEX = 1

$COMPUTER = "." (continues)

298

CHAPTER 16 NETWORKING

Listing 16.1 Change of Network Configuration (continued)

[array] S$IP = "192.168.1.15"

[array] S$SUBNET = "255.255.255.0"

[array] SGATEWAYS = "192.168.1.16"

[array] SMETRIC = 1

--- Script

PrintStatus

Sconfig Get-WmiObject Win32_Networkadapterconfiguration

= | where { $_.index -eq $ADAPTERINDEX }

if (!$Config.dhcpenabled)

{

"--> Activate DHCP..."
$Config.EnableDHCP () | Select-Object returnvalue | format-list

}

else

{

"--> Activate Static IP Address..."

$Config.EnableStatic ($ip, S$subnet) | Select-Object returnvalue
= | format-list
$Config. SetGateways ($Gateways, $Metric) | Select-Object
w returnvalue | format-list
}
PrintStatus

WARNING The WMI method EnableStatic () works only when the network
device is activated.

You can display the current DHCP server with the commandlet Get-
DHCPServer from PSCX.

NAME RESOLUTION 299

2 PowerShell

Windows PowerShell
Copyright <C> 2886 Microsoft Corporation. Alle Rechte worbehalten.

H \demu\llPS
S\Demo“WPS\B_NetworksSwitsch DHCP_StaticIP.psi
[B@AAAAA1]1 Broadcom NetXtreme Gigahit Et]lernet
: Broadcom NetRtreme Gigabit Ethernet — Uirtual Machine Netuwork Serv

ue

Tr

192 168.1.1008
——> Rntluate Static IP Address...

returnvalue : @

returnvalue : @

ONINYOMLIN ‘9]

[ABABABA1 1 Broadcom NetXtreme Gigahit Ethernet

Broadcom NetXtreme Gigabit Ethernet — Uirtual Machine Network Seru

False
192.168.1.15
21 H \Demn\llPS\H _HNetwork\Switsch_DHCP_StaticIP.ps1l
BBABAAA11 Broadcom NetXtreme Gigahit Et]\el‘net
: Broadcom NetXtreme Gigahit Ethernet — Uirtual Machine Network Serv

ue

False
192.168.1.15
[H

Figure 16.2 Output of the example when called twice

Name Resolution

In PSCX, the commandlet Resolve-Host supports name resolution. The
result is an instance of the .NET class System.Net.IPHostEntry. You
can see the result of the following three examples in Figure 16.3:

Resolve-Host EO02
Resolve-Host E02 | fl

Resolve-Host www.IT-Visions.de

www.IT-Visions.de

300 CHAPTER 16 NETWORKING

Windows PouwerShell
Copyright (C> 20886 Hicrosoft Corporation. All rights reserved.

1# Resolve—Host EB2

Aliases

EB2.IT-Visions.local - -1.26, 192.168...

2%t Resolve—Host EB2 | f1

: EB2.IT-Visions.local
nddressList : {192.168.1.26, 192.168.1.208, 192.168.1.25>

3# Resolve—Host wuww.IT-Visions.de
HostNane

www.it—visions.de {195.234.228 .60

41t

Figure 16.3 Use of Resolve-Host

Retrieving Files from an HTTP Server

Listing 16.2 shows how an HTML page can be retrieved from a web server.
For this purpose, the class System.Net.WebClient from the NET class
library is used. This class offers a method that displays the content of the
indicated URL in a string: DownloadString (). With the help of the com-
mandlet Set-Content, the string is then stored in the local file system.
The last four rows contain the error processing, which is responsible for
issuing a report in the script whenever an error occurs.

Listing 16.2 Downloading of a File via HTTP

--- Parameters

Surl = "http://www.windows-scripting.com"
Starget = "c:\temp\page.htm"

--- Script

Write-Host "Downloading Webpage " Surl "..."

Shtml = (new-object System.Net.WebClient) .DownloadString ($Url)
$html | Set-Content -Path $target

Write-host "Downloaded page stored under " Starget

RETRIEVING FILES FROM AN HTTP SERVER 301

trap [System.Exception]

{
Write-host "Error downloading URL: “"Surl '"" 'n

exit

The next example demonstrates how you can retrieve the titles of the
most recent eight news stories from an RSS feed (see Listing 16.3 and
Figure 16.4). In this case, too, the script uses DownloadString() from
the class System.Net.WebClient. Because the content is in XML form,
you can use the WPS XML adapter to access the content (see Chapter 12,
“Managing Documents”).

<7uml version="1.0" encoding="utf-8" 7>
- <rdf:RDF xmins:rdf="http://vsww.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins="http://my.netscape.com/rdf/simple/0.9/">
- «<channel>
<title>iX Blog - Der Dotnet-Doktor</title=
<link=http:/ /www.heise.de/ix/blog/1/ </link=>
<description>Aktuelle Artikel im iX-Blog</description=
</channel=
- <itemz
<title=Fachbiicher zu ASP.NET 2.0 erschienen</title>
<link=http:/ /vsww. heise.de/ix/blog/artikel /77803 ffrom/rss09</link>
<description=Mein Buch zu ASP.NET 2.0 gibt es jetzt sowohl in einer ¥ariante
mit Visual Basic 2005 als auch C# 2005.</description:
<fitem=
- <iterms>
<title>Release Candidate 1 fiir Windows Vista und das .NET Framework
3.0</title=
<link=http:/ /vww.heise.de/ix/blog/artikel /77660 /from/rss09=/link>
<description=Microsoft hat einen "Release Candidate" fiir das neue
Betriebssystem Yista und fiir das Microsoft .NET Framework 3.0
verdffentlicht.</description>
</item=
- <item=
<title=¥isual Studio 2005 fiir .NET 1.1 nutzen mit MSBee</title>
<link=http:/ /veww.heise.de/ix/blog/artikel /77534 /from/rss09</link=
<description=Mit dem kostenlosen Add-0n MSBuild Extras — Toolkit for .NET
1.1 {MSBee) kann man mit Yisual Studio 2005 Projekte auch in .NET-1.1-
Code iibersetzen lassen.</description:
</item=

Figure 16.4 Example of an RSS document

Listing 16.3 Downloading and Filtering of RSS Feeds

Write-Host "Weblog of Dr. Holger Schwichtenberg:"

$Url = "http://www.heise.de/ix/blog/1l/blog.rdf"

Sblog = [xml] (new-object System.Net.WebClient) .DownloadString ($Url)
$blog.RDF.item | select title -first 8

—
o
§
=
m
o
=
S
)
=
=
)

302 CHAPTER 16 NETWORKING

E-Mail

To send an e-mail via Simple Mail Transfer Protocol (SMTP), you can use
the .NET classes System.Net.Mail.MailMessage and System.Net.
Mail.SmtpClient or, even simpler, the commandlet Send-sSmtpMail

from PSCX:

Listing 16.4 Using the Commandlet send-smtpMail

--- Parameters

SSubject = "PowerShell Script"

SBody = "Your daily script executed successfully!"
SFrom = "script@EO1l.Fbi.net"

STo = "hs@EOLl.Fbi.net"

SMailHost = "EOl.Fbi.net"

--- Send Mail

Send-SmtpMail -SmtpHost S$MailHost -To $To -From S$from
w_Subject $subject -Body S$body

TIP When an authentication at the SMTP server is necessary, you can refrieve
this with the parameter -Credential and the commandlet Get-Credential.
If you do this, however, Windows always asks for a user account via a login dia-
log box; an interactive execution is no longer possible.

Microsoft Exchange Server 2007

As mentioned in Chapter 10, “Tips, Tricks, and Troubleshooting,”
Microsoft Exchange Server 2007 has its own set of commandlets and a spe-
cial version of the WPS shell called the Exchange Management Shell.

Basic Operations
After the start of the Exchange Management Shell, the command
Get-ExCommand

displays a list of Exchange Server—specific commandlets.

MICROSOFT EXCHANGE SERVER 2007 303

Reading Information

You get a list of all mailboxes with the following:
Get-Mailbox
The list of all databases is displayed as follows:

Get-Mailboxdatabase

—_
o
§
=
m
o
=
S
)
=
=
)

And the storage groups are delivered with the following:

Get-Storagegroup

You can test the functionality of an Exchange Server with this:

Test-ServiceHealth

Managing Mailboxes

A storage group can be created with the following command. The com-
mand creates a new storage group named "AuthorsStorageGroup" on
server "E12":

New-Storagegroup "AuthorsStorageGroup" -server "E12"

You can create a database for mailboxes as follows. The commandlet
New-MailboxDatabase needs the name for the database as well as the
name of an existing storage group:

New-MailboxDatabase "AuthorsMailboxDatabase"
w _storagegroup "AuthorsStorageGroup"

To create a mailbox, you can use the following command:

New-Mailbox -alias "HSchwichtenberg" -name
HolgerSchwichtenberg -userprincipalname HS@IT-Visions.de
-database "El2\AuthorsStorageGroup\
AuthorsMailboxDatabase" -org users

304

CHAPTER 16 NETWORKING

Should the user already exist in the Active Directory, the command is
shorter:

Enable-Mailbox hs@IT-Visions.de -database
w "E12\AuthorsStorageGroup \AuthorsMailboxDatabase"

After creating the mailbox, you can access its attributes with Get-
Mailbox or Set-Mailbox. If you later add a new e-mail address, the new
setting works with the attribute EMailaddresses with regard to the for-
mer addresses:

Set-Mailbox HS@IT-Visions.de -EmailAddresses
= ((get-Mailbox hs@IT-Visions.de) .EmailAddresses

w + "HSchwichtenberg@IT-Visions.de ")

You can add the mailbox to a distribution list by mentioning the name
of a list and an email address:

Add-DistributionGroupMember "Authors" -Member
w "hg@IT-Visions.de"

You can move the mailbox to another database:

Move-Mailbox hs@IT-Visions.de -targetdatabase
w "aguthorsmailboxdatabase"

Or you can limit the disk space consumption:
Get-Mailbox hs@IT-Visions.de | Set-Mailbox
w _UseDatabaseQuotaDefaults:$false
w -ProhibitSendReceiveQuota 100MB
w -ProhibitSendQuota 90MB -IssueWarningQuota 80MB
You can also limit the size of incoming e-mails for a distribution list:
Set-DistributionGroup "Authors" -MaxReceiveSize 5000KB

There is also a commandlet for deactivating a mailbox:

Disable-Mailbox "hs@IT-Visions.de"

INTERNET INFORMATION SERVICES 305

Managing Public Folders
A database for public folders is created with the following:

New-PublicFolderDatabase "authorsfolderdatabase"

w_storagegroup "authorsstoragegroup

A public folder is created with this:

—_
o
§
=
m
o
=
S
)
=
=
)

New-PublicFolder "\books" -Path \pubfolders -Server "E12"
Access rights to a folder are granted as follows:

Add-PublicFolderPermission "\books" -User hs
w _AccessRights "Createltems"

You can set storage limitations for a public folder as follows:

Set-PublicFolder "\books" -PostStorageQuota 20MB
w -MaxItemSize 2MB

MORE INFORMATION You can find more WPS scripts for Exchange adminis-
tration on the website [TNETO02].

Internet Information Services

Internet Information Services (IIS) can be accessed through the WMI
classes in the WMI namespace root\MicrosoftIISv2 (see Figure 16.5).
The most important classes in this namespace are as follows:

IIsComputer The root of the object hierarchy

IIsWebService The HTTP service of the IIS

IIsWebServer A virtual web server within the IIsWebService
IIsWebVirtualDir A virtual directory within an IIsWebserver
IIsApplicationPool An application poolin IIS (6.0 and later)

306

CHAPTER 16 NETWORKING

NOTE Each of these classes is read-only. However, each has a corresponding
configuration class that enables you to change settings (see Figure 16.6).

IIsComputer > IIsComputerSetting

IIsWebService > IIsWebServiceSetting
IIsWebVirtualDir > IIsWebVirtualDirSetting

And so on.

WMI Object Browser

o . S

=l IiComputes Nara"LN"
1 (39 1sCompmten | sciminiCL FastCamporers
1 1sCmpmtelsCompandS et Setirg
5 L3 leCompuaes I i ervice PartCorponent
B2 lsComputes_ldmegiienice P asComponent
(2 NeCemgutas llEbimablse PtLengenant
18 [NeCommpunes_lsHripSenice PasCormgunent
1 (i lsComgnates)l 0bpeet PatCompernrt
15 L leCompuner P opifteree ParComponent
- IsComputes I sSmiservios PatComponent
(5 1eCompusn I wink ervice PasComponert
= [l 1S rcn N WISV
i) (24 lseleb ervice.Ilsadm CL PartCompenent
1Ll et ervce_llshppsedonPiocks Patlompenert
= Il DatopdcatonPock Nenes WISVL polocls”
B2 1ohpplcasionPocks JlAdninACL PariC:
- e pokcationPools || gokcaionP ol ParConporet
2 (il NtepbcoenPost

3] W ENC e
-l oA ppikcationdool Kames W JSVE oo ATV

-l Notppic i
- I1ehpeaionPools || Aok sbonPodis #ting Satting
Y I S——
1 1elebernce_IIPEecutySetng Seltrn
[Iwiebienice_|ifwiebinto PatConponent
(3 1eelabtienvica_lliwinctisrver Bt omponant
B]
1 [l 1w e e WISHEN™
101 [s erven Hame W 35VICA £58775678
T I 1t erver Hames" WISC A EMET
- iw'ederven Mame WISVEAIIT
[e
£ Il 1S erver s WISVE/ROEI T
1 (8 Ao webServes_IstdmrdiCL PatCerpenei
51 [NwehiSerse_IaFiters PartComperent
- NaWeberve,_IsFSecuiyieting Seting
(2 1S _Teb arvaating Satting
[V5 et Mrram W TSVE RIS 3T
5 (8 IewebiSorve_idwethvtudDi PantComporert
I 1ol M e WSV OGN TR0l

3 Gl sMebekoalDe_lWebiehusln PurtComporerd
) liwWetN sl
(3 |

I 1t K W BN AT T iost busachai”

o WINCAZET
[

] AWTENCALE
- 1w ebrtanie 1w ebirtuslieS g Seting
5[] oWkt ating Harma WV AGEN 37 Fl ook
- 9w anicn, || wiabS svica-ating Sating
=) [wiebSanacet et Hames W3ENT

& MWebSanvicaSatting Nama-"WISVT"
Fropeties | Metbents | Assmciaions |

=1 Py " st thad N dadh
e
T Hame o [Tree [ahee
IR [™
] B sccessFig: f] 1
|| B fcessstioPryseais bociasn ™
| B Accesthiofiemotet mcute. baclean Falre
] B accestioRomufions [y ™
] P coesstiohemcmesionnt begkean fase
|| B accesstioRomuriatin bockean foler
| P ncossutieas bogkean e
| B Accensionn bskean falrg
T Accsssfosce baclasn Folen
N [™
I AeesssSSLIA baclasn Falea
7] D Aceensiil iy i o
B AecassSSLMaut backan ™
7| B ecessssinegmaeCen Boclesn e
] B fcceessSiAmpaeten beclaan Falen
| accesvwite bockean e
|| B aoribn may el s crty
] P admeienver sting 1
| B asoionptioe beskean e
T A —— [
| B ArepronnPasteedSyne bsksan 5
e e sting IWER_E02
0] D Arvrperslseacs kg HgMWatNn
B AppAleedBan abug baclasn ™
7] D doptenDibuoong beokean Tate
| eoFimnbioes g
ju| By]
|| B feoootd g DelmiugPocl
0] B sppwantunt sting
0] B asibmuDPiceComperents | bookan e
B AspdowSeasortine bogkean s
| B dehpderecrion o) 0
B dsplldtasingliit W 4194304
| D sty bckean ™
T, Asolalclirlurrber bockaan s
0] B AselCoteame i o
| B soliskTarclsaCachalionctoy | sting iy eI iabar NS Corodied T
7| | fspknaied pptcaonestan beckean e
.

T e i s bk

™ =
.

Figure 16.5 The object hierarchy of IIS seen from the WMI object browser

INTERNET INFORMATION SERVICES :3‘[,:"

Windous PouerShell
Copyright (C> 2006 Microsoft Corporation. All rights reserved.

L:'\demn\l‘ﬂ’s
1l Get—WniObject —Class IISComputer —Namespace “'root\microsoftiisv2" | f1

CLASS

SUPERCLASS

__DYNASTY

—RELPATH

| PROPERTY_COUNT

 DERIVATION {CIM ApplicationSysten, CIM Systen. CIM LogicalElement. C
ManagedSystenElenent?

anagedSystenElenent
mputer.Na

|__SERUER :
| NAMESPACE : root\microsoft
_PATH I NNE@1S\rootimicr
Caption :
CreationClassNane

31

|__GENUS
CLASS
UPERCLASS
YNASTY

__RELPATH
|__PROPERTY_GOUNI H
|__DERIVATION : {IIsSetting,. CIM_Setting)
| SERVER @ E@l
__NAMESPACE Y crosoft
root microsoftiisu2:IIsComputerSetting .Name="LH"

xErr s
MaxHistoryFiles
MincHap

Nane
SettinglD

31

Figure 16.6 Displaying the attributes of the classes TTSComputer and
IIsComputerSetting

List of All Virtual Web Servers

The separation between the classes IISWebserver and IIsWebServer

Settings can get a bit annoying; for example, if you want to perform an

easy task such as enumerating all web servers with their internal name and

state and the display name (attribute Servercomment). The internal name

and the state are stored in instances of IIsWebserver, whereas the display

name is stored in IIsWebserverSetting because it can be changed.
Therefore, executing the command

Get-WmiObject -Class IISWebserver -Namespace
= 'root\microsoftiisv2" | ft name, serverstate, servercomment

is not the right solution because servercomment would be empty in all
cases.

—
o~
b
=
m
=
=
(=]
=
=
=
(7]

308 CHAPTER 16 NETWORKING

The solution is to execute a query for the associated settings object for
each instance of IIsWebserver:

Listing 16.5 Get the Internal Name, the Display Name, and the Status of Each Virtual
Web Server

Get the internal name, the display name and the status
w of each virtual webserver

SWebservers = Get-WmiObject -Class IISWebserver
w_Namespace "root\microsoftiisv2"

foreach ($Webserver in SWebservers)

{

Get all associated Settings

Sname = S$WebServer.Name

Squery = "ASSOCIATORS OF {IIsWebServer.Name='S$name'} WHERE
wResultClass=IIsWebServerSetting"

$Settings = Get-WmiObject -Query Squery -Namespace

w "'root\microsoftiisv2"

However, we know for sure that there is only one object in the list!
$Setting = @(S$Settings) [0]

SWebServer.Name + ";" + S$Setting.Servercomment+ ";" +
wSebserver . ServerState
}

Add New Virtual Web Servers

Listing 16.6 enables you to create a bunch of new websites according to the
content of a CSV file (see Figure 16.7).

i

File Edit Format Wiew Help

dotnetframework.de;192.168.1.14;81; 1:%webhsites\www. dotnetframework. de ;l
windows-scripting. de;192.168.1.14;82; 1:\websites \www. windows-scripting. de
powershell-doktor.de;152.168.1.14;83; 1:\websites \www. powershell-doktor. de

aspretdev.de;192.168.1.14; 84; 1 \webs ites\www. aspnetdey. dELI

dotnet-Texikon.de;192.168.1.14; 85; 1: \webhsites'www. dotnet-lexikon. de

windows—scripting. com;192.168.1.14; 86; 1:\websitesiwww. windows-scripting. com LI

Figure 16.7 A CSV text file describes the websites to be created.

INTERNET INFORMATION SERVICES 309

To create a new virtual web server, you must follow these steps (see
Listing 16.6 and Figure 16.8):

Create a new instance of the WMI class ServerBinding.

Fill the instance with the IP address and the port number.

3. Create a new instance of the WMI class IIsWebService with a
reference to the binding.

o =

—
o~
b
=
m
=
=
(=]
=
=
=
(7]

& powershell - hs [elevated user]

Windows PowerShell
Copyright (C)> 2886 Microsoft Corporation. All rights reserved.

H: “deno“UPS

1# H:“demo*WPS“B_IIS~I1I8_CreateSite.en.psl
“SEBisrootsHicrosoftIISe2 “NEBl\root“\Micr ftIISv2:ServerBinding
WYehzerver dotnetframewvork.de angelegt auf nputer EA1 ?
SSEBisrootsMicrosoftIISe2 “\EBlsroot“MicrosoftIISv2:ServerBinding
WYehzerver Windows—Scripting.de angelegt auf Computer EA1 *
“SEBisrootsMicrosoftIISv2 “N\EBlsroot“MicrosoftIISe2: SeluelBlndlng

persh
“SEBisrootsMicrosoftIISe2 “\EBlsroot“MicrosoftIISew2: SeluelBlndlng
Ueh“eluel a“pnetdeu de angelegt auf Cnmpl 1t

Ueh“eluel dntnet lexikon.de angelegt auf
“SEBisrootsMicrosoftIISe2 “N\EBlsroot“MicrosoftIISe2: SeluelBlndlng
WYehzerver wvindouwsscriptinghost.de angelegt auf Computer EA1 ?

24

Figure 16.8 Successful creation of six websites

However, the following listing is much longer than expected. The rea-
son is the encryption of the WMI communication that is required for
access to the IIS configuration store since Windows Server 2003 Service
Pack 1. Because the commandlet Get-wmiobject does not support the
activation of the DCOM encryption, this has to be implemented with
explicit use of .NET classes from the namespaces System.Management.

Listing 16.6 Create IS Websites from a CSV File

=== Get WMI Object with DCOM encryption
Function Get-WMIObjectEx ($SNamespace, S$Path)
{

#Write-Host S$Namespace S$Path
Sconnection = New-Object System.Management.ConnectionOptions

Sconnection.Authentication =
[System.Management .AuthenticationLevel] : : PacketPrivacy

(continues)

310 CHAPTER 16 NETWORKING

Listing 16.6 Create IS Websites from a CSV File (continued)

Sscope = New-Object System.Management .ManagementScope (SNamespace,
= Sconnection)

Spath = New-Object System.Management.ManagementPath ($SPath)
$SGetOptions = New-Object System.Management.ObjectGetOptions

SWMI = New-Object

System.Management .ManagementObject ($scope, $path, $GetOptions)
return SWMI

}

=== Get WMI class with DCOM encryption

Function Get-WMIClassEx ($SNamespace, S$Path)

{

Write-Host S$Namespace S$Path

Sconnection = New-Object System.Management.ConnectionOptions
$Sconnection.Authentication =

w [System.Management .AuthenticationLevel] : : PacketPrivacy
Sscope = New-Object System.Management .ManagementScope (SNamespace,
w Sconnection)

Spath = New-Object System.Management.ManagementPath ($SPath)
$SGetOptions = New-Object System.Management.ObjectGetOptions
return New-Object

= Svstem.Management .ManagementClass (Sscope, Spath, $GetOptions)
}

=== Create Site

function New-IISVirtWeb ([string]S$Computer, [string]S$Name,

w [string]$IP, [string]$Port, [string]$Hostname, [string]$RootDir)
{

SNamespace = "\\" + S$Computer + "\root\MicrosoftIISv2"
SPathl = S$Namespace + ":IIsWebService='W3SVC'"
$Path2 = S$Namespace + ":ServerBinding"

Create Binding

Sclass = Get-WMIClassEx S$Namespace ($Namespace + ":ServerBinding")
Sbinding = $class.CreateInstance()

Sbinding.IP = S$IP

Sbinding.Port = S$Port

Sbinding.Hostname = S$Hostname

[array] S$bindings = S$binding

SUMMARY 3‘1

Create Site
SWebservice = Get-WMIObjectEx S$Namespace $Pathl
SWebsite = S$Webservice.CreateNewSite (SName, S$bindings, SRootDir)

Write-Host "Webserver" $Name "created on Computer" S$Computer "!"

}

--- Parameters
SInputFile = "H:\demo\WPS\B_IIS\webserver.txt"
SComputer = "EQ1"

Read textfile and create a new webserver for each line
Get-Content S$InputFile | Foreach-Object {

Sa = $_.Split(";")

New-IISVirtWeb $Computer $al[0] $al[l] sal2] "" $al3]

}

Delete Virtual Web Servers

You can delete a web server through the method Delete () in the WMI
class ITswebserver. The following command deletes all virtual web
servers that are currently stopped:

Get-WmiObject -Class IISWebserver -Namespace
w'root\microsoftiisv2" | where { $_.serverstate -eq 4 }
w | foreach-object { $_.Delete() }

Microsoft has announced that in WPS 2.0 it will support WMI authen-
tication in the commandlet Get-wmiobject. However, at the time of this
writing, WPS 2.0 is still a very early pre-release version without a con-
firmed release date.

Summary

The WPS core system does not contain any commandlets for network pro-
tocols. However, you learned in this chapter that you can use the PSCX or
a few classes (WMI and .NET) for such.

—_
o
§
=
m
o
=
S
)
=
=
)

312

CHAPTER 16 NETWORKING

Pinging is available through the commandlet Ping-Host or the WMI
class win32_pPingStatus. Network configuration is possible by using
Win32_NetworkAdapterConfiguration. For name resolution, the easi-
est way is the commandlet Resolve-Host. HTTP downloads can be per-
formed through the .NET class System.Net.WebClient. To send an
e-mail, use Send-SmtpMail.

The beginning of this chapter discussed the administration of
Exchange Server and Internet Information Services. Exchange Server has
its own complete set of commandlets, whereas IIS can be accessed
through WMIL

TIP Additional commandlets for a wide variety of protocols (including SNMP,
SSH, POP, IMAP, TFTP, RCP, SOAP, REST, RSS, DNS) can be bought from a com-
pany called /n software, as part of its product NetCmdlets [NSOFT].

CHAPTER 1 7

DIRECTORY SERVICES

In this chapter:

Overview of Directory Services Access 313
Managing Users and Groups Using WMI 314
System.DirectoryServices and the ADS| Adapter 315
Deficiencies in the ADSI Adapter 321
Obiject Identification in Directory Services (Directory Services Paths) . . . 323
Overview of the Common Programming Tasks 325

Access to the local user database and Active Directory is one of the most
common tasks for administrators in medium and large companies. This
chapter and the following three chapters cover this important topic. First,
in this chapter, you learn the basic concepts of Directory Services pro-
gramming within Windows PowerShell (WPS). Chapter 18, “User and
Group Management in the Active Directory,” covers user and group man-
agement in the Active Directory. Chapter 19, “Searching in the Active
Directory,” covers searching. And Chapter 20, “Additional Libraries for
Active Directory Administration” covers advanced features such as group
policy management.

Overview of Directory Services Access

WPS 1.0 does not provide any commandlets to access the Windows user
database (SAM) or the Active Directory or any other directory services.
During the beta phase of WPS, there was an Active Directory navigation
provider, but that had been removed before WPS 1.0 was finished. Such a
provider for navigation through the Active Directory is currently available
within the PowerShell Community Extensions (PSCX) [CODEPLEXO01].

313

314 CHAPTER 17 DIRECTORY SERVICES

There also exists the commandlet Get-aADObject for searching in the
Active Directory.

With WPS 1.0 (without PSCX) access to directory services is possible
only with the classic programming techniques. Here you should use the
NET classes from the namespace System.Directoryservices of the
NET class library, and also the COM component Active Directory Service
Interfaces (ADSI). Some functions are also available with WML

NOTE This chapter uses the domain FBl.net as an example. This example deals
with an Active Directory for the TV series The X Files. The domain is called
FBl.net, with the NETBIOS name FBI. The domain controllers are named
XFilesServer1 and XFilesServer2. The PCs are named AgentPCO1 to
AgentPC99. The following organization units and users exist or will be created
in this and the following chapter:

m Organizational unit “Agents” with users Fox Mulder, Dana Scully,
John Doggett, and Monica Reyes

m Organizational unit “Directors” with users Walter Skinner and
Alvin Kersh

m Organizational unit “Conspirators” with users Smoking Man and Deep
Throat

m Organizational unit “Aliens” with numerous aliens

Managing Users and Groups Using WMI

The options for user administration with WMI are unfortunately rather
limited. ADSI or System.Directoryservices offer a lot more, as you
will see in the following chapters. However, for the sake of completeness,
this chapter discusses the options you have within WMI.

The following command displays an object list of the local users and
groups:

Get-WmiObject Win32_Account
Only user accounts are displayed with the following:

Get-WmiObject Win32_UserAccount

System.DirectoryServices AND THE ADSI ADAPTER 315

Only groups are displayed with this:
Get-WmiObject Win32_Group
Of course, you can also filter objects distinctly:

Name and domain of those user accounts whose password never

weoxpires
Get-WmiObject Win32_useraccount | Where-Object
{$_.Passwordexpires -eq 0 } | Select-Object Name,Domain

Alternatively, you can use this form:

Get-WmiObject Win32_Useraccount -filter
= "Passwordexpires='false'" | Select-Object Name,Domain

The WMI class win32_Desktop contains settings by the users. With
the following command, you will get to know whether user FBI\
FoxMulder has activated a screensaver on computer AgentPC04:

Get-WmiObject Win32_Desktop -computer AgentPC04 |
wyhere { $_.Name -eq "DBI\FoxMulder" } |
wselect screensaveractive

-
~
.
=4
=
m
~n
[=]
=)
=
=
wv
m
=
=
~
m
wv

You can access Active Directory entries using the WMI classes in the
WMI namespace root\directoryNldap. For example, the following
command lists all groups whose name starts with the letter M:

Get-WmiObject -Class ds_group
w_Namespace root\directory\ldap -Filter
w"DS name like ‘m%'"

System.DirectoryServices and the ADSI Adapter

The classes of the NET namespace System.Directoryservices are an
encapsulation of ADSI. ADSI is a Component Object Model (COM) com-
ponent introduced in the era of Windows 2000. Unfortunately, not all func-
tions in the .NET library are encapsulated, and therefore ADSI still plays
a role in WPS.

316

CHAPTER 17 DIRECTORY SERVICES

NOTE The classes in the namespace System.DirectoryServices work
only when the ADSI COM component has been installed, too.

In the following text, the ADSI COM component is referred to as classic ADSI.

The classes in the .NET namespace System.Directoryservices
offer only very general mechanisms for the access to directory services.
There are no longer specific classes for single directory services as they
exist in classic ADSI. Certain operations (for example, changing the pass-
word in a user object) therefore must be called directly or indirectly via
classic ADSI.

Architecture

Figure 17.1 shows the architecture of ADSI under NET. A .NET program
(managed code) has three options to access a directory service:

m Use of objects in the namespace System.Directoryservices to
execute directory service operations

m Use of objects in the namespace System.Directoryservices to
call operations in classic ADSI

m Direct use of classic ADSI via COM interoperability

Integration with ADSI

That all calls in System.Directoryservices are executed in ADSI can
be proved by error messages of the .NET class library. For example, the
class DirectoryEntry delivers the following error message referring to
the COM interface Interop.IADS when calling CommitChanges (), if the
object to be created already exists:

System.Runtime.InteropServices.COMException (0x80071392):
The object already exists.

at System.Directoryservices.Interop.IAds.SetInfo()

at System.Directoryservices.DirectoryEntry.CommitChanges ()

System.DirectoryServices AND THE ADSI ADAPTER

317

NET
' ST Client
Accessvia *

+ NativeObject |
-------- -

Y .

v
.
.

ADSI
Provider
LDAP://

adsldp.dll

ADSI
Provider
WinNT://
adsnt.dll

C/C++ COM
Client Client
\ 4
—

LDAP-API
widap32.dll

Win32-API

Network

Directory, u.a.

NT5.x (without AD)

—
|
.
=
=
m
[a)}
-
(=]
=
=<
wv
m
)
=
"
m
()

Figure 17.1 Programming interfaces for Active Directory

This does not mean anything other than that the calling of

CommitChanges () in the class DirectoryEntry has internaﬂy been

transferred to the method SetiInfo()
SetInfo ()

Directoryservices.Interop.IADs.
method from classic ADSI used to return the property cache to the direc-
tory service and thus to make all changes persistent.

in the interface System.
is the well-known

WARNING The namespace System.Directoryservices.Interop is
not documented and is displayed in the object browser of Visual Studio. In this
namespace, the interfaces IADs, IADsContainer, and so on (well known
from classic ADSI) are defined. Because an instancing of interfaces is no longer
possible in .NET, the interfaces had to be combined with classes.

318

CHAPTER 17 DIRECTORY SERVICES

Object Model

The classes in the namespace System.Directoryservices can be
divided into two groups:

m General classes for the access to leaves and containers
m Classes for the execution of LDAP search queries (see Chapter 19)

The two central classes in the namespace are DirectoryEntry and
DirectoryEntries.

Class DirectoryEntry

The class DirectoryEntry represents any directory entry regardless of
whether it is a leaf or a container. This class owns the property Children
of the type DirectoryEntries. This object volume is filled only when the
object is a container (that is, if it has subobjects). The object volume also
exists in a leaf object; however, it is empty.

In the attribute Property, the DirectoryEntry class has an object
volume of the type PropertyCollection, which represents the volume
of the directory attributes. The PropertyCollection has three subordi-
nated object volumes:

m PropertyNames points to a KeysCollection object that contains
strings with the names of all directory attributes.

m Values points to ValuesCollection, which in turn contains sin-
gle Object volumes of the type PropertyValueCollection. This is
necessary because each directory attribute can have several values.
The valuesCollection represents the volume of values of all
directory attributes; PropertyValueCollection, on the other
hand, stands for the single values of a directory attribute.

m The attribute Item(ATTRIBUTNAME) delivers the respective
PropertyValueCollection for an attribute name that is to be
transferred as parameter.

WARNING Access to the aftribute Values generally is not executed because
usually the values are needed without the attribute names. The common process
is either the direct use of Item (), when the attribute name is known, or the iter-
ation via PropertyNames and, subsequently, the use of Ttem (), if all aftrib-
utes will be listed with their respective values.

System.DirectoryServices AND THE ADSI ADAPTER 319

Each DirectoryEntry object (see Figure 17.2) owns an attribute
named NativeObject, which refers to the respective object. This enables
a quick change to classic ADSI programming.

Children NativeObject T e e *

Parent PropertyNames
SchemaEntry

KeysCollection

| DirectoryEntries |

DirectoryEntry

- PropertyCollection
Properties

ValueCollection
SchemaName

SchemaFilter Collection Item

ltem

| PropertyValue
Item Collection

Figure 17.2 Object model of the classes in the namespace
System.Directoryservices, Part 1

Class DirectoryEntries

The class DirectoryEntries supports the interface TEnumerable and
thus enables the enumeration of its members via a foreach loop. The vol-
ume can be filtered by specifying a volume of directory service classes via
SchemaNameCollection, which will be selected. The method Find()
displays a DirectoryEntry object. If the object specified by name does
not exist in this container, there is an InvalidOperationException.

The class DirectoryEntries cannot be instanced. You can retrieve a
DirectoryEntries object only via the attribute Children of a
DirectoryEntry object.

Class for the Execution of Search Queries

Search queries have been executed in ADSI via ActiveX Data Objects
(ADO) (that is, an OLEDB provider). In .NET, there are now proper
classes for the execution of LDAP search queries, which are independent of
ADO.NET and can access the LDAP implementation of Windows directly.

Whereas the OLEDB provider supports LDAP query syntax and SQL
commands for ADSI queries, classes built in to the .NET class library can
process only LDAP query syntax.

—
|
.
=/
=
m
[a)}
-
(=]
=
=<
w
m
)
=
"
m
()

320 CHAPTER 17 DIRECTORY SERVICES

With the OLEDB provider and with the .NET classes, only LDAP-
capable directory services can be queried. The LDAP query syntax is a
standard ([RFC1960] and [RFC2254]), and therefore nothing other than
the COM implementation (see Figure 17.3).

DirectorySearcher SearchRoot DirectoryEntry
SearchResult
Collection

FindOne()

PropertyNames

KeysCollection

: GetDirectoryEntry()

FindAll()

SearchResults

ValuesCollection

SortOption

Results
PropertyCollection

Sort
Results
PropertyValue

Properties
hi
SearchScope SearchScope
Collection
StringCollection
PropertiesToLoad

Figure 17.3 Object model of the class in the namespace System.
Directoryservices, Part 2

Item

Comparison of System.Directoryservices
and ADSI

Table 17.1 shows that for many interfaces from classic ADSI there are no
longer respective specific classes in System.Directoryservices.

Table 17.1 System.Directoryservices versus ADSI

Directory Object Class ADSI in .NET (System.
in Active Directory ADSI in COM Directoryservices)
Leaf classes Interface IADs Class DirectoryEntry
Container classes Interface IADsContainer Class DirectoryEntries
Class User Interface IADsUser N/A (DirectoryEntry)
Class Computer Interface IADsComputer N/A (DirectoryEntry)
Class Group Interface TADsGroup N/A (DirectoryEntry)
N/A Class ADODB. Connection Class DirectorySearcher
Any classes Class ADODB.RecordSet Class
SearchResultCollection

DEFICIENCIES IN THE ADSI ADAPTER 321

Deficiencies in the ADSI Adapter

Microsoft performed a fundamental shift in direction regarding directory
services programming between Release Candidate 1 and Release
Candidate 2 of WPS. This shift in direction was not only unexpected, it also
led in the wrong direction; thus, this is the point where severe criticism
toward Microsoft is appropriate.

Up to Release Candidate 1, you had to directly use a .NET class from
the .NET namespace System.Directoryservices for these scripting
jobs. As mentioned previously, these classes are internally based on COM
interfaces of ADSI, and in some cases you had access to these interfaces
underlying the scripting.

Starting with Release Candidate 2, Microsoft intended to introduce a
simplification with the proper WPS type [ADSI]. The intention was good;
the realization, however, was an absolute catastrophe.

There are six problems:

m The built-in WPS type [ADSI] instances the type System.
Directoryservices.DirectoryEntry, but offers Only attributes
and no methods of this class. The methods are hidden by the WPS
Adapter.

m The created WPS object offers the methods of the underlying clas-
sic ADSI interfaces instead.

m The important commandlet Get -Member shows neither one nor the
other method.

m Also in direct instancing of System.Directoryservices.
DirectoryEntry, the previously mentioned method chaos is
effective.

m The methods of the class System.Directoryservices.
DirectoryEntry are available only via the subobject PSBase.

m DirectoryEntry objects cannot be processed in the WPS pipeline
with the common commandlets Select-Object, Format-Table,
and so forth. Only the object-based style is possible.

—
|
.
=/
=
m
[a)}
-
(=]
=
=<
W
m
)
=
"
m
()

This is a really illogical and distracting implementation. Already in the
Windows Script Host (WSH), directory services scripting wasn't easy to
learn; now it becomes even more difficult.

322

CHAPTER 17 DIRECTORY SERVICES

Figure 17.4 documents the chaos:

m An entry in a directory service possesses only attributes (that is,
data) and no methods (that is, operations). These attributes are
encapsulated in COM classes.

m Directory service operations are provided by the respective protocol
(for example, LDAP). The classic ADSI encapsulates these opera-
tions in methods that are provided as part of the COM classes.

A NET object of the type DirectoryEntry encapsulates the ADSI
COM object, but also offers other methods at the same time (which inter-
nally rely on ADSI). The object DirectoryEntry offers direct access to
the ADSI methods via the subobject NativeObject.

The WPS object, which in turn represents a capsule around the
DirectoryEntry object, now does not use the methods of
DirectoryEntry, but the methods of the inner ADSI objects instead.

The WPS object offers access to the methods of the DirectoryEntry
object via the subobject PsBase.

PowerShell Object (.NET)

DirectoryEntry Object (.NET)

ADSI Object (COM)
| Method >| Method

o |
|
é A Directory
Method | ----- . Service
Entry
NativeObject (ADS)
Method

Attribute

Attribute

\

y
| Attribute I—)l Attribute I—)l Attribute |
I —

Figure 17.4 Chaos in the directory service operations

OBJECT IDENTIFICATION IN DIRECTORY SERVICES 323

Aruk Kumaravel, Windows PowerShell Development Manager at
Microsoft, admits in [Kumaravel01] that it had been unwise to hide
methods: “In retrospect, maybe we should have exposed these.”

Furthermore, a critical note has to be made that Microsoft implements
such a fundamental change between a RC1 and a RC2. All WPS scripts
written for the Active Directory until then had to go down the drain. Such
a decision can be expected in the beta phase, but certainly not shortly
before launching.

Microsoft has announced that in WPS 2.0 they will improve the ADSI
object adapter by exposing all the members of DirectoryEntry, espe-
cially Parent, Path, Children, SchemaClassName, and SchemaEntry.
However, at the time of this writing, WPS 2.0 is still an early prerelease
version, and there is not yet a confirmed release date.

Object Identification in Directory Services (Directory
Services Paths)

To program with directory services, you must be able to identify the entries
in the directory service.

ADSI also uses the so-called COM monikers for path names under
NET to identity entries in different directory services and to get a pointer
to the meta object. The moniker has the following form:

—
|
.
=
=
m
[a)}
-
(=]
=
=<
w
m
)
=
"
m
()

<Namespace ID>:<Provider-Specific Part>

And it is called the directory path (or ADSI path) in this context.

WARNING Be careful: The namespace IDs are case sensitive. However, the
rest of the path is not case sensitive.

The provider-specific part of the directory service path contains the
distinguished name (DN) of the directory object and a server name (see
Table 17.2).

324 CHAPTER 17 DIRECTORY SERVICES

Table 17.2 Sample Paths in Different Directory Services

Namespace Directory Path

Active Directory (via LDAP) LDAP://server/cn=Agents,dc=FBI,dc=NET
LDAP://XFilesServerl. FBI.net/cn=Fox Mulder,
OU=Agents,dc=FBI,dc=NET

NT 4.0-domains and local WinNT://Domain/Computer/User

Windows user databases WinNT://Computername/Groupname

(“SAM”) WinNT://Domain/User

Novell 3.x NWCOMPAT://NW Server/printername

Novell 4.x (NDS) NDS://Server/O=FBI/OU=Washington/cn=Agents
1IS IIS://ComputerName/w3svc/1

Object Identification in the Active Directory

For addressing the entries in an Active Directory, LDAP directory paths in
the form LDAP://server:port/DN are used. In this path, all components are
optional.

If there is no server name, the so-called Locator Service is used.
Regarding serverless connections, the Active Directory locator service,
with help from the Domain Name Service (DNS), looks for the best
domain controller for the indicated directory entry. Domain controllers
with a good connection are preferred.

Without a designated port, the standard LDAP port 389 is used.

Without a DN, the default naming context is called in the current
domain.

TIP Regarding Active Directory, you should always use the name of the domain
controller closest by as server name. You can retrieve the server name of the
domain controller via the commandlet Get-DomainController (contained
in PSCX). Connecting without indicating a server (serverless connection) is possi-
ble, but for performance reasons not recommendable.

When addressing a directory entry with such a path, there is the dan-
ger that directory objects have been renamed in the meantime. Some
directory services thus enable connecting via a GUID, which remains
unchangeable for a directory object:

LDAP://XFilesServerl/<GUID=228D9A87C30211CF9AA400AA004A5691>

OVERVIEW OF THE CoMMON PROGRAMMING TASKS 325

For standard containers in an Active Directory, there is special sup-
port. For these so-called well-known objects, there is a predefined GUID
(well-known GUID), which is the same in each Active Directory:

LDAP://<WKGUID=a9d1lcal5768811d1laded00c04£d8d5cd, dc=£fbi,dc=net>

Note that here WKGUID= is to be used, and that the GUID indicated
thereafter is not the real GUID of the object. The standard containers get
an individual GUID when Active Directory is installed; the WKGUID is a
generally valid alias.

Table 17.3 List of Well-Known Objects

Well-Known Obiject GUID

cn=Deleted Objects 18E2EA80684F11D2B9AA00C0O4F79F805

cn=Infrastructure 2FBAC1870ADE11D297C400C04FD8D5CD

cn=LostAndFound AB8153B7768811D1ADEDO0C04FD8D5CD

cn=System AB1D30F3768811D1ADEDO0C04FD8D5CD 5

ou=Domain Controllers A361B2FFFFD211D1AA4B00C04FD7D83A o
=

cn=Computers AA312825768811D1ADEDOOC04FD8D5CD a
=)

cn=Users A9D1CA15768811D1ADEDOOC04FD8D5CD 5'
=
=
=]

Overview of the Common Programming Tasks

This section documents the most important mechanisms of directory
service programming with System.DirectoryServices.

Binding to Directory Entries

Precondition for access to entries in the directory service is the binding of
a meta object to a directory entry (see Figure 17.5). Whereas under the
classic ADSI the binding process was executed via the method
GetObject (), in System.DirectoryServices this happens via a
parameter during the instancing of the class DirectoryEntry.

326

CHAPTER 17 DIRECTORY SERVICES

For example

So = new-object system.directoryservices.directoryEntry

w ("LDAP://XFilesServerl")

Su = new-object system.directoryservices.directoryEntry

w ("I,DAP://XFilesServerl/CN=Fox Mulder,QU=Agents, DC=FBI,DC=net")

For this purpose, there also exists a shortcut via the built-in WPS data
type [ADSI], for example

So [ADSI] "LDAP://XFilesServerl"
Su = [ADSI] "LDAP://XFilesServerl/CN=Fox
wMulder, OU=Agents, DC=FBI, DC=net"

After this operation, the variable $o contains the instance of the class
DirectoryEntry. When you access $o, the relative path appears on the
console.

& powerShell - hs [elevated user]

Windows PowerShell
Copyright (C)> 2086 Microsoft Corporation. All rights reserved.

H:“deno“UPS

1# %0 = [ADSI] “LDAP://RFilesServeri"
2% So

diztinguishedNane

{DC=FBI .DC=net>

ig gu = [ADSI1 “"LDAFP:--iFilesServerl CN=Fox Hulder.OU=fAgents.DC=FBI.DC=net"
u

disztinguishedNane

{CN=Fox Mulder, OU=Agents, DC=FBI DC=netl

S

Figure 17.5 Access to an Active Directory entry

If there is no indication for an LDAP path, DirectoryEntry will set
up a connection to the default naming context of the Active Directory to
which the computer belongs when instanced:

New-Object System.DirectoryServices.DirectoryEntry

OVERVIEW OF THE CoMMON PROGRAMMING TASKS 327

Impersonation

By default, the class DirectoryEntry logs in to the Active Directory
under the user account that originally started the script. When you apply
impersonation, however, it is possible to use another user for the commu-
nication with the Active Directory, if the starting user does not have suffi-
cient privileges.

The class DirectoryEntry uses the ADSI impersonation mode by
indicating a username and a password when instancing the class
DirectoryEntry as second and third parameters (see Figure 17.6):

So = new-object system.directoryservices.directoryEntry
w ("TL,DAP://XFilesServerl/CN=Fox
wMulder, OU=Agents, DC=FBI,DC=net", "FoxMulder",

w"T+]love+Scully")

= powerShell - hs [elevated user]

7# 50 = new-ohject system.director puices . .directoryEntry("LDAP: /vEFilesServer/|
CN=gox Hulder.OU=fgents . DC=FBI ,DC= 'y
8l 5o

%0 = new-ohject system.directoryservices.directoryEntry("LDAP://iFilesServer/|
>

i
CN=Fox Mulder,OU=Agents,DC=FBI,DC=net", "FoxMulder", "I+love+Scully"

Figure 17.6 Access with and without impersonation

Checking the Existence of Directory Entries

The classic ADSI did not have a built-in method to check the existence of
a directory object. You had to rely on time-consuming “trial and error”
[WPEO1]. Under .NET, the class DirectoryEntry offers the static
method Exists () to check whether a directory object, specified by means
of its ADSI path, really exists:

SYesNo = [system.directoryservices.directoryEntry]::Exists
w ("TL,DAP://XFilesServerl/CN=Fox
wMulder, OU=Agents, DC=FBI, DC=net")

—
~
.
=4
=
m
oY
=
(=]
=
=<
wv
m
=
=
=y
m
wv

328 CHAPTER 17 DIRECTORY SERVICES

You can shorten this as follows:

SYesNo = [ADSI]::Exists("LDAP://XFilesServerl/CN=Fox
wMulder, OU=Agents, DC=FBI,DC=net")

Reading Directory Entry Attributes

Actually, the Object model of System.Directoryservices is Compli—
cated. In a DirectoryEntry object, the single values are convoluted and
are accessible only via the volumes Properties and Propertyvalue
ObjectCollection. However, the WPS ADSI adapter makes it easier for
the user. You can just write the following:

Sxy = Sobj.AttributeName

Even multivalued attributes can be retrieved in this way.
In Listing 17.1, data about a user is retrieved.

Listing 17.1 Fetching a Directory Object

new-object
system.directoryservices.directoryEntry ("LDAP://XFilesServerl/
w(CN=Fox Mulder,OU=Agents, DC=FBI,DC=net")

"Name: "+ $o.sn

"City: " + So.1

"Telephone Number: " +$o.Telephonenumber
"Other Telephone Numbers: " +$o.0therTelephone

WARNING The access to a directory attribute that does not exist does not
cause an error. Therefore, be careful of the syntax!

To fetch the directory path of a directory entry, which is already acces-
sible for you in form of a variable, you have to use .psbase.path (for
example, $o.psbase.path).

OVERVIEW OF THE CoMMON PROGRAMMING TASKS 329

ADSI Property Cache

Because ADSI objects are only placeholders for directory entries, attribute
values are administered in a property cache. When an attribute is accessed
for the first time, ADSI downloads all attribute values in the property
cache. Write accesses are possible via assignments to the attributes.

All write accesses have to be concluded by calling the method
Commi tChanges () (SetInfo () under classic ADSI). Only then will the
property cache be transferred to the underlying directory service.
Therefore, transaction security can be guaranteed: Either all changes will
be effected or none. There is also a method for the import of attributes into
the property cache: RefreshCache () (complies with GetInfo () under
classic ADSI). The program should explicitly call it when there are doubts
that the values in the property cache are not up to date. With
RefreshCache (), changes can also be discarded, if there is no
CommitChanges () between the changes and the RefreshCache().
Before a first access to an attribute is executed, single values can be
imported in the property cache by indicating an array with attribute name
in RefreshCache (ARRAY_OF_STRING), to diminish the network use by
preventing a transfer of all attributes.

In contrast to classic ADSI, System.Directoryservices offers the
possibility to switch off the property cache. To do this, you need the fol-
lowing command after instancing the DirectoryEntry object:

So.PSBase.UsePropertyCache = 0

NOTE The switching off of the property cache does not work with creating
directory obijects of directory classes that possess mandatory attributes, because
the directory service creates an entry only after all mandatory attributes have
been transferred.

Writing Directory Entry Attributes

Writing to a directory attribute is nearly as simple as reading. You only have
to assign a value or an array of values (if a multivalued attribute is con-
cerned) to the relevant directory attribute.

—
|
.
=
=
m
[a)}
-
(=]
=
=<
w
m
)
=
"
m
()

330

CHAPTER 17 DIRECTORY SERVICES

It’s important, however, that in the end the property cache is written to
the directory service. Because of the already mentioned method chaos,
there are now two options:

m Calling the COM method setInfo ()
m Calling the NET method CommitChanges () via the subobject
PSBase

In the NET world, the method is not named SetInfo(), but
CommitChanges ():

Listing 17.2 Changing a Directory Object

So.Telephonenumber = "+49 201 7490700"

$o.0therTelephone = "+01 111 222222","+01 111 333333","+49 111 44444"
$o.SetInfo()

oder:

$o.PSBase.CommitChanges ()

Common Properties

The meta class DirectoryEntry possesses a few attributes that contain
basic properties of a directory object (see Listing 17.3), including the
following:

m Name Relative distinguished name of the object

path Distinguished name of the object

SchemaClassName Name of the directory service class in the dia-
gram of the directory service

Guid Global unique identifier (GUID) of the meta object
NativeGuid The GUID for the directory service object
Children List of the subordinate objects

UsePropertyCache Flag, which indicates whether the property
cache will be used

WARNING Unfortunately, you cannot call these general attributes directly in
the current final version of WPS, but only via PSBase.

OVERVIEW OF THE CoOMMON PROGRAMMING TASKS 331

Listing 17.3 Accessing Basic Properties of a Directory Object

So = new-object system.directoryservices.directoryEntry
w ("LDAP://XFilesServerl/CN=Fox Mulder, OU=Agents,
wDC=FBI,DC=net", "FoxMulder", "I+love+Scully")

"Class: " + $o0.PSBase.SchemaClassName

"GUID: " + $0.PSBase.CGuid

Accessing Container Objects

Binding to container objects and access to their directory attributes is
affected completely identically to the access to leaf objects (that is, via
the class DirectoryEntry). If you want to have the subobjects of the
container listed, however, you must call the subobject Children, which
displays a DirectoryEntries object (see Listing 17.4). The
DirectoryEntries object contains an instance of the class
DirectoryEntry for each subordinated directory entry.

Again, keep in mind that the subobject Children is not available
directly, but only via PsBase.

Listing 17.4 List of the Subobjects of a Container

—
|
.
=
=
m
[a)}
-
(=]
=
=<
wv
m
)
=
"
m
()

SPath= "LDAP://XFilesServerl/OU=Agents,DC=FBI,DC=net"
Scon = new-object system.directoryservices.directoryEntry ($Path)
$con.PSBase.Children

Actually, the DirectoryEntries collection does not possess a
numeric index. Nevertheless, WPS allows numeric access to the elements
with a trick (that is, encapsulating the collection into a hash table with the
@ sign; see Chapter 5, “The PowerShell Navigation Model”):

"The second element is " +
w@ (Scon.PSBase.Children) [1] .distinguishedName

Alternatively, you can search for an element in the container by means
of its CN with the method Find ():

"Search for an element " +
wScon.PSBase.Children.find("cn=Fox Mulder") .distinguishedName

332 CHAPTER 17 DIRECTORY SERVICES

Creating Directory Entries

A directory entry is created via the parent container because only this con-
tainer knows whether it is at all prepared to accept a certain directory class
as subobject. The method add () of the .NET class DirectoryEntries
expects in the first parameter the relative distinguished name (RDN) of
the new entry, and in the second parameter the name of the directory serv-
ice class, which will be used as schema for the entry. After setting of poten-
tial mandatory attributes, you have to call Commi tChanges ():

Listing 17.5 Creating an Organizational Unit

"Creating a OU..."

$Path= "LDAP://XFilesServerl/DC=FBI,DC=net"

Scon = new-object system.directoryservices.directoryEntry ($Path)
Sou = $con.PSBase.Children.Add("ou=Directors", "organizationalUnit")
Sou.PSBase.CommitChanges ()

Sou.Description = "FBI Directors"

Sou.PSBase.CommitChanges ()

"OU has been created!"

Deleting Directory Entries

A directory entry is either deleted via a method call to itself
(DeleteTree ()) or via the execution of the method Remove () on a par-
ent container entry. In this case, you have to indicate the DirectoryEntry
object, which represents the directory entry that is to be deleted, as param-
eter. The call of Commi tChanges () is not necessary:

Listing 17.6 Deleting an Organizational Unit

SouPath= "LDAP://XFilesServerl/ou=Directors, DC=FBI,DC=net"

Sou = new-object system.directoryservices.directoryEntry (SouPath)
if ([system.directoryservices.directoryEntry]::Exists(SouPath))

{

"OU already exists and will now be deleted!"
Sou.PSBase.DeleteTree ()

}

SUMMARY 333

TIP DeleteTree () has the advantage that it recursively also deletes all sub-

obijects.

Summary

Unfortunately, WPS 1.0 includes no commandlets for the administration of
directory services. Also, WMI is not helpful here. In this lesson, you
learned how to use the Active Directory Service Interface (ADSI) and its
NET-based API System.DirectoryServices to access LDAP- and
non-LDAP-based directory services.

You learned about object identification with paths, binding from a
DirectoryEntry object to the real directory entry, impersonation when
using a directory service, and all basic operations such as reading and writ-
ing entries and the creation of new entries and the deletion of entries.

In the next chapter, you use this as the necessary basic knowledge for
the administration of user accounts and groups in the Active Directory.

—
|
.
=
=
m
o}
-
(=]
=
=<
wv
m
)
=
"
m
()

This page intentionally left blank

CHAPTER 1 8

User AND GROUP MANAGEMENT
IN THE ACTIVE DIRECTORY

In this chapter:

Directory Class User, 335
Creating a User Account 339
Authentication 341
Deleting Userso 342
Renaming User Accounts 342
Moving User Accounts 343
Group Management 343
Organizational Units 346

This chapter provides some examples of the use of classes of the name-
space System.Directoryservices to access Microsoft Active Directory.
Specifically, you will learn how to manage user accounts, groups, and orga-
nizational units.

Directory Class User

A user entry in the Active Directory (AD class user) possesses numer-
ous directory attributes. A mandatory attribute, owned by all user entries,
is SAMAccountName, which contains the Windows NT 3.51/NT 4.0-
compatible login name.

Table 18.1 shows further directory attributes of user entries in the
Active Directory. There are some amazingly short names, such as 1 for
city, and extremely long ones, such as physicalDeliveryOfficeName for

office.

335

336

CHAPTER 18 USER AND GROUP MANAGEMENT IN THE AD

Table 18.1 Selected Attributes of the Active Directory Class User

Manda-
({194

Multi-
valued

Data Type

(Length)

cn

nTSecurityDescriptor

objectCategory
objectClass
Objectsid
SAMAccountName
accountExpires
accountNameHistory
badPwdCount
comment

company
createTimeStamp
department
description
desktopProfile
displayName
displayNamePrintable
DistinguishedName
division
employeeID
EmployeeType
expirationTime
FacsimileTelephoneNumber
givenName
homeDirectory
HomeDrive

homeMDB

Initials

internationalISDNNumber

Yes
Yes

Yes
Yes
Yes
Yes

Yes

DirectoryString (1-64)

ObjectSecurityDescriptor
(0-132096)

DN

OID

OctetString (0-28)
DirectoryString (0-256)
INTEGERS8
DirectoryString
INTEGER
DirectoryString
DirectoryString (1-64)
GeneralizedTime
DirectoryString (1-64)
DirectoryString (0-1024)
DirectoryString
DirectoryString (0-256)
PrintableString (1-256)
DN

DirectoryString (0-256)
DirectoryString (0-16)
DirectoryString (1-256)
UTCTime
DirectoryString (1-64)
DirectoryString (1-64)
DirectoryString
DirectoryString

DN

DirectoryString (1-6)
NumericString (1-16)

DIRECTORY CLASS User 337

1

lastLogoff
LastLogon
logonCount
LogonHours
logonWorkstation
manager
middleName
Mobile

name
objectGUID
ObjectVersion

otherFacsimile
TelephoneNumber

OtherHomePhone

physicalDeliveryOfficeName

PostalAddress
postalCode
PostOfficeBox
profilePath
SAMAccountType
scriptPath
street
streetAddress
TelephoneNumber
title
userWorkstations
whenChanged
whenCreated

wiWWHomeLeaf

(1-128)

(0-64)
(1-64)
(1-255)

(1-64)

(1-64)
(1-128)
(1-4096)
(1-40)
(1-40)

(1-1024)
(1-1024)
(1-64)
(1-64)
(0-1024)

(1-2048)

Manda- Multi- Data Type

fory valued (Length)

No No DirectoryString
No No INTEGERS

No No INTEGERS

No No INTEGER

No No OctetString

No No OctetString

No No DN

No No DirectoryString
No No DirectoryString
No No DirectoryString
No No OctetString (16-16)
No No INTEGER

No Yes DirectoryString
No Yes DirectoryString
No No DirectoryString
No Yes DirectoryString
No No DirectoryString
No Yes DirectoryString
No No DirectoryString
No No INTEGER

No No DirectoryString
No No DirectoryString
No No DirectoryString
No No DirectoryString
No No DirectoryString
No No DirectoryString
No No GeneralizedTime
No No GeneralizedTime
No No DirectoryString

—_—
.ﬂ
(—
wv
m
=
>
=
o
D
=
(=)
(=
~
=
>
=
>
@
m
=
m
=
-
H
=
=X
m
>
A
=
<
m
L=
=
m
~
=
(=]
=
=<

338

CHAPTER 18 USER AND GROUP MANAGEMENT IN THE AD

Some multivalued fields from the dialog boxes of the MMC snap-in
Active Directory User and Computer are stored in Active Directory in
more than one attribute. A good example for this is the list of telephone
numbers. The main telephone number is stored in the single-valued attrib-
ute telephoneNumber, whereas the other telephone numbers are per-
sisted in the multivalued attribute otherTelephone. Additional cases of

this kind include the following:

mobile/otherMobile
mail/otherMailbox

logonWorkstation/otherLoginWorkstations.

NOTE By the way, the preceding named attributes are not typos by the author
(login-logon), but inconsistencies within the Active Directory; the persons respon-
sible for this can be found in Redmond.

You can gather a complete list of all directory attributes in the docu-
mentation of the Active Directory schema [MSDNO9]. In the script, use
the LDAP names of the attributes, indicated in the documentation as
“LDAP Display Name” (see Figure 18.1).

Unfortunately, the LDAP attribute name is partly located very far away
from the names in the MMC console. The document “User Object User
Interface Mapping” [MSDNI0] helps to find the right LDAP names.
Another option is to take a look at the “raw” directory and search for the
LDAP names with the tool ADSI Edit from the Support Tools for
Windows Server.

CREATING A USER ACCOUNT 339

<1 Locality-Name - Microsoft Internet Explorer |;”§‘E|
Fle Edit View Favortes Tools Help w

Q- @ B @ |;{:j pSearm *Favorih&s o 8'; |- 8 S

Address |] http: jmsdn.micrasoft. com/lbrary/default. aspurl=ibrary/fen-us/adschema/adschema/active_directary_schema.asp Go | Links

Microsoft.com Home | Sit= Map

e,

MSDN Home | Developer Centers | Library | Downloads | Howto Buy | Subscribers | Worldwide

Search for Welcome to the MSDN Library

MSDN Home > MSDN Library > Win32 and COM D > Ad n and Mansgement >
MSDN Library Directory and Identity Services > Active Directory Schema > Attributes > Global Attributes

Advanced Search

Platform SDK: Active Directory Schema

synctoc P X
LI LDAP-Admin-Limits
[] LDAP-Display-Name Locality-Name
[J LDAP-IPDeny-List

[] Legacy-Exchange-Df
O Link-1D (=] Locality-Name
[Link-Track-Secret

Represents the name of a locality, such as a town or city.

Ldap-Display- |
[Lm-Pwd-History . Name
[Locale-ID T Size N
B[Locality-Name] Update Demain administrator or accaunt owner.
[Localization-Display- Privilege
[Localized-Descriptior Update When the user's record iz created and whenever the locality needs to
[Local-Policy-Flags Frequency change.
[Local-Policy-Referen Attribute-1d 2.5.4.7
[Location System-Td- bfS679a2-0de6-11d0-3285-00a3003045e2
[Lockout-Duration Guid
[Lock-Out-Observatio Syntax Strina(Unicode}

[Lockout-Threshold

Implementations
[Lockout-Time

+ Windows 2000 Server

[1 loginshell
O Logo « Windows Server 2003
bl
@ e @ + ADAM e
&] Locality-Name D Intemet

Figure 18.1 Documentation of the Active Directory schema

Creating a User Account

Because the creation of an object is initiated by the parent container, the
first step is to bind the container to DirectoryEntry. The creation of a
new entry is effected with a call to the method add (), by indicating the
RDN of the new entry in the first parameter and the Active Directory class
name user in the second parameter.

The setting of the attribute SAMAccountName is mandatory. If the
property cache has not been switched off, CommitChanges () has to be
executed after all attributes have been set; otherwise, the user entry will
not be created.

—
P
(=
wv
m
=
>
=
o
(2]
=
(=)
<
~
=
=
=
>
@
m
=
m
=
-
=
=
=X
m
>
A
=
<
m
L=
=
m
o)
=
(=]
=
=3

340

CHAPTER 18 USER AND GROUP MANAGEMENT IN THE AD

By default, a new user account is deactivated in the Active Directory.
The easiest option to activate it is to access the attribute Account
Disabled in the COM interface IADsUser.

Example

In Listing 18.1, a user account, Walter Skinner, with the login name
WalterSkinner is created. As optional attributes, only city (1) and descrip-
tion (Description) are set.

Listing 18.1 Creating a User Object in Active Directory

Create ADS-user

SPath=
Sname =

"LDAP://XFilesServerl/OU=Directors, DC=FBI, DC=net"

"Walter Skinner"

SNTname = "WalterSkinner"

Sou =
Suser

Suser.
Suser.
Suser.
Suser.
Suser.

"User

Suser.

New-Object Directoryservices.DirectoryEntry ($Path)

Sou.PSBase.Children.Add ("CN=" + S$name, 'user')

PSBase.CommitChanges ()
SAMAccountName = $NTname

1 = "Washington"

Description = "FBI Director"
PSBase.CommitChanges ()

has been created: " + S$Suser.PBase.Path
SetPassword ("secret-123")

"Password is set"

Suser.Accountdisabled = $false

"User has been activated!"

Setting the Password

The password of a user account can be set only after the user account has
been created in the directory service. Also in this operation, the imperson-
ation is necessary under .NET. Listing 18.2 shows setting a password.

You can now take advantage from the fact that Windows PowerShell
(WPS) publishes ADST methods rather than COM methods, because the
method for the setting of a password (SetPassword ()) does not exist on
the .NET level. Being a parameter, the new password has to be transferred
in form of a string; it cannot be encrypted! After the setting of a password,
the user can be activated.

AUTHENTICATION 341

Listing 18.2 Setting a Password for an AD User Account

"User has been created: " + Suser.PBase.Path
Suser.SetPassword("secret-123")

"Password has been set"
Suser.userAccountControl = 512
Suser.PSBase.CommitChanges ()

Avuthentication

Unfortunately, there is no built-in method that enables an authentication
with username and password against Active Directory. To realize this, you
can only use the trial-and-error method [WPEO1]. You try to access the
Active Directory by applying the impersonation with the login data to be
checked. If access to the attribute NativeGuid is successful, the data is
correct. If the data is not correct, you receive an error message. This is
realized in the following helper routine, Authenticate-User() (see
Listing 18.3).

Listing 18.3 Authentication with Active Directory

Function Authenticate-User {

trap [System.Exception] { "Error!"; return S$false; }

"Try, user " + Sargs([l] + " with the password " + Sargs[2] +
w" to aguthenticate " + $args[0] + "..."

So = new-object

system.directoryservices.directoryEntry([string] Sargs([0],
w [String]$args[1l], [Stringl$args[2])

$o.PSBase .NativeGUID

return S$true

}

#So0 = new-object system.directoryservices.directoryEntry ("LDAP://E02")
#So.get_NativeGUID()

$Se = Authenticate-User "LDAP://XFilesServerl"

w " fhi\foxmulder" "I+love+Scully"

Se

if ($e) { "User could be authenticated!" }

else { "User could NOT be authenticated!" }

—
pe
(=
wv
m
=
>
=
o
(2]
=
(=)
(=
~
=
=
=
>
@
m
=
m
=
-
H
=
=X
m
>
A
=
<
m
L=
=
m
~
=
(=]
=
=<

342 CHAPTER 18 USER AND GROUP MANAGEMENT IN THE AD

Deleting Users

To remove a user account, you can apply the method DeleteTree (), even
if the user is a leaf entry (that is, if he has no subentries):

Listing 18.4 Deleting a User

SPath= "LDAP://XFilesServerl/CN=Walter Skinner,OU=Agents,DC=FBI,DC=net"
Suser = new-object system.directoryservices.directoryEntry ($SPath)

if ([system.directoryservices.directoryEntry]: :Exists ($Path))

{

"User already exists and will be deleted now!"
Suser.PSBase.DeleteTree ()

}

else

{

"User does not exist!"

}

Renaming User Accounts

With the method Rename (), the class DirectoryEntry offers a quite sim-
ple procedure for the renaming of a directory entry. Under classic ADSI,
you had to use the IADsContainer method MoveHere () to accomplish
this.

Example
In Listing 18.5, the user account “Walter Skinner” is renamed to “Walter

S. Skinner.”

Listing 18.5 Renaming an AD User Account

Rename user

$Path= "LDAP://XFilesServerl/CN=Walter

Skinner,OU=Directors, DC=FBI,DC=net"

Suser = new-object system.directoryservices.directoryEntry ($SPath)
Suser.PSBase.Rename ("cn=Walter S. Skinner")

"User has been renamed!"

GROUP MANAGEMENT 343

Moving User Accounts

In the .NET class DirectoryEntry, there is an equivalent to the COM
method IADSContainer.MoveHere () with the method MoveTo (). This
method moves a directory entry to another container. The target container
has to be transferred as parameter in form of a second DirectoryEntry
object.

Example for Moving a User Account

In Listing 18.6, the user account Fox Mulder from the organization unit
Agents is moved to the standard user container Users.

Listing 18.6 Moving an AD User Account

Move user

$Path= "LDAP://XFilesServerl/CN=Walter Fox

Mulder, OU=Agents, DC=FBI,DC=net"

Starget = "LDAP://XFilesServerl/CN=Users,DC=FBI,DC=net "

Suser = new-object system.directoryservices.directoryEntry (SPath)
Suser.PSBase.MoveTo (Starget)

"Object has been moved!"

Group Management

In a directory object of the type group, there exists an attribute Member
with LDAP paths to the group members. To display the members of a
group, you therefore only need a one-liner. The following command shows
the members of the group of all FBI agents:

(new-object directoryservices.directoryentry
("LDAP://XFilesServerl/CN=All Agents,DC=FBI,DC=net")) .member

Nevertheless, this command displays only the direct members. When
a group contains another group, however, there are also indirect members.
The following function, Get-Members, which is implemented in Listing
18.7, fetches recursively all direct and indirect members of a group in the
Active Directory. Figure 18.2 shows the result.

—_—
pe
(—
wv
m
=
>
=
o
D
=
(=)
(=
~
=
=
=
>
@
m
=
m
=
-
H
=
=X
m
>
A
=
<
m
L=
=
m
~
=
(=]
=
=<

344 CHAPTER 18 USER AND GROUP MANAGEMENT IN THE AD

Listing 18.7 Listing of Indirect Group Members

HHAHAH AR H AR R

PowerShell Script

Display all direct and indirect members of a group
(C) Dr. Holger Schwichtenberg

http://www.windows-scripting.com/

HhAHH SRR

(new-object directoryservices.directoryentry
w ("ILDAP://xfilesserver/CN=All FBI
wEmployees, DC=FBI,DC=net")) .member

"Direct Group Members:"

Sgroup = New-Object directoryservices.directoryentry

w ("LDAP://xfilesserver/CN=A1l1l FBI Employees,DC=FBI,DC=net")
Sgroup .member

function Get-Members ($Sgroup) {
if (Sgroup.objectclass[l] -eqg 'group') {
"-- Group S$(Sgroup.cn)"
$SGroup .member | foreach-object {
Sde = new-object
directoryservices.directoryentry ("LDAP://xfilesserver/" + $_)
if ($de.objectclass[l] -eqg 'group') {
Get-Members $de
}
Else {
Sde.distinguishedName

}
Else {
Throw "$group is not a group."

"-—- Listing of Group Members:"

"All Members (including non-direct):"

Get-Members (new-object directoryservices.directoryentry (
w "I DAP://xfilesserver/CN=All Employees,DC=FBI,DC=net"))

GROUP MANAGEMENT 345

Powershell - hs [elevated user]

dows PowerfShell
Copyright (C)> 20886 Hicrosoft Corporation. All rights reserved.

H:“deno“UPS
1% H:sdemoupsib_ads“ADS_Group_Members .psl
Direct Group MHenber:
——— Listing of Grou
fill Menbers (including non—-direct?:
—— Gruppe fAll Enploye
— ruppe All Directo
alter Skinner. OU=Directors =FBI .DC=net
ruppe All Agents
hn J. Doggett, OU=Agents, D Bl .DC=net

|

CN=Walter Skinner, 0U=Directo =FBI .DC=net
CN=Dana Scully, OU=Agent H I.DC=net
g§=Fux Mulder,OU=Agents,DC=FBI ,DC=net

Figure 18.2 Listing of Direct and Indirect Group Members

Creating and Filling a Group

You create a group in the same way as you create a user. When creating
groups, however, note the different class name (group) used, as compared
to creating users:

Listing 18.8 Creating a Group

"Creating a group..."

$Path= "LDAP://XFilesServerl/DC=FBI,DC=net"

Scon = new-object system.directoryservices.directoryEntry ($Path)
Sou = S$con.PSBase.Children.Add("cn=All Directors", "group")
Sou.PSBase.CommitChanges ()

Sou.samaccountname = "AllDirectors"

Sou.Description = "Group for FBI Directors"
Sou.PSBase.CommitChanges ()

""Group was created!"

Assigning Group Members

There are no specific methods for the assignment of users to groups in the
class DirectoryEntry. Here, a WPS object once again enables access
to the methods Add() and Remove () defined in the COM interface
IADsGroup (see Listings 18.9 and 18.10).

—_—
.“
(—
wv
m
=
>
=
o
D
=
(=)
c
~
=
>
=
>
@
m
=
m
=
=
=
=
=X
m
>
A
=
<
m
L=
=
m
~
=
(=]
=
=3

346 CHAPTER 18 USER AND GROUP MANAGEMENT IN THE AD

Listing 18.9 Adding Users to Groups

Add a group member

SPath= "LDAP://XFilesServerl/cn=All Directors,DC=FBI,DC=net"
$Sgr = new-object system.directoryservices.directoryEntry ($SPath)
$User = "LDAP://XFilesServerl/CN=Walter

w Skinner,OU=Directors, DC=FBI,DC=net"

Sou.Add (SUser)

"User " + $User + " have been added to the goup " + $ou + "

Listing 18.10 Deleting Users from Groups

Deleting a group member

SPath= "LDAP://XFilesServerl/cn=All Directors,DC=FBI,DC=net"
Sgr = new-object system.directoryservices.directoryEntry ($Path)
SUser = "LDAP://XFilesServerl/CN=Walter

Skinner,OU=Directors, DC=FBI,DC=net"

Sou.Remove ($User)

"User " + $User + " have been deleted from group " + Sou + "

Organizational Units

How organization units (directory service class organizationalUnit)
are created and deleted has already been demonstrated in Chapter 17,
“Directory Services.”

When creating organization units, note the different class name
(organizationalUnit) in the first parameter and the different attribute
name (OU) in the first parameter of Add (), as compared to the creation of
users or groups (see Listing 18.11).

SUMMARY 347

Listing 18.11 Script to Create an OU

Script to create an OU (The OU will be deleted if it already
wexists!)

SouPath= "LDAP://XFilesServerl/ou=Directors, DC=FBI,DC=net"

Sou = new-object system.directoryservices.directoryEntry ($SouPath)
if ([system.directoryservices.directoryEntry]: :Exists (SouPath))

{

"OU already exists and will be deleted!"

Sou.PSBase.DeleteTree()

}

"Creating an OU..."

SPath= "LDAP://XFilesServerl/DC=FBI,DC=net"

Scon = new-object system.directoryservices.directoryEntry ($Path)
Sou = S$Scon.PSBase.Children.Add("ou=Directors", "organizationalUnit")
Sou.PSBase.CommitChanges ()

Sou.Description = "FBI Directors"

Sou.PSBase.CommitChanges ()

"OU has been created!"

Summary

In this chapter, you learned the most common operations for user and
group administration in the Active Directory. Specifically, you saw how to
create users and groups through calls of the Add () method. This chapter
also covered deleting, renaming, and moving with the methods
DeleteTree (), Rename (), and MoveTo ().

—
pe
(=
b2
m
=
>
=
o
(2]
=
(=)
<
~
=
=
=
>
@
m
=
m
=
=
=
=
=X
m
>
A
=
<
m
L=
=
m
o)
=
(=]
=
=<

This page intentionally left blank

CHAPTER 1 9

SEARCHING IN THE ACTIVE
DIRECTORY

In this chapter:

LDAP Query Syntaxo 349
LDAP Queries in PowerShell L. 351
Search Tipsand Tricks 354
LDAP Query Examples 358
Using the Commandlet Get-ADObject 358

In the Active Directory, just like in other LDAP-based directory services,
entries that adhere to certain criteria can be searched in several contain-
ers simultaneously using the LDAP query syntax.

LDAP Query Syntax

For LDAP queries, there exists a special syntax according to [RFC1960]
and [RFC2254]:

To execute an LDAP query, you need four parameters:

m Path. An LDAP path, including LDAP://. The path can be indicated
in Little Endian form as well as in Big Endian form.
For example, LDAP: / /XFilesServerl/dc=FBI,dc=net

m Filter. A condition in Inverted Polish notation (UPN or Postfix
notation). This notation is unique by the fact that the operators are
set at the beginning, not between the operands. Valid operations are

349

350 CHAPTER 19 SEARCHING IN THE ACTIVE DIRECTORY

& (and), | (or), and ! (not). For comparison, =, <=, and >= are avail-
able, but not < and >.
For example, (& (objectclass=user) (name=h*))

m Properties. An attribute list of the desired directory attributes that
will be built in to the table. This indication is not optional. The star
operator (*), which can be used in SQL to query databases, is not
valid.

For example, AdsPath, Name, SAMAccountname

m Scope. One of the constants named in Table 19.1.

Table 19.1 Search Levels in ADSI Queries

Constant (LDAP Syntax) Explanation

BASE Only the level of the indicated entry is searched. The
result volume comprises one or no datasets.

ONELEVEL Only those entries are searched that are subordinated
to the entry indicated.

SUBTREE All underlying levels are searched.

Starting with Windows Server 2003, there is a new branch, Stored
Queries, in the Active Directory MMC User and Computer snap-in that
can be used to design and execute LDAP queries (see Figure 19.1).

Example for an LDAP Query

The following query searches the complete Active Directory for all user
accounts whose names start with the letter H:

Path. LDAP: / /XFilesServerl/DC=FBI,DC=net>
Filter. & (objectclass=user) (name=h*)) ;
Properties. adspath, SAMAccountname

Scope. subtree

LDAP QUERIES IN POWERSHELL 351

£ Active Directory Users and Computers = |5|5|
@ File Action Wew Window Help |_ = 1[
e~ |BaElt2BXRE (2 EEhTED
6 Active Directory Users and Comput | All disabled accounts 0 objects
=] Saved Queries _-;Ill
- Al users with "a"
I Al disabled accounts Name: his view.
= FoLnet [dsebled accourts
@] Agents
(] Aliens Description:

-] Builtin

-] Computers I

E-{&] Conspiratars Qe

-{&] Directors 4% Find Common Queries : 21X
&-{&] Domain Controllers I AFBI -

—
nod
.
w
m
>
=
n
=
=
(=}
H
=
=X
m
>
A
=
<
m
L=
=
m
~
=
(=]
=
=<

-] ForeignSecurityPrincip Find: |Common Queries -
(] Users M Include subcontainers i I J
Query string: Users | Comnuters' Gmunsl
The query is valid but will not be sl Define the variables of your quer.
it contains values that must be car
quey is run, Mame: I j I
Description: Y I

E h
. J |5 [exactly]
[V Disabled a s ot

™ Non expitin{Has a value
Has no valug

Days since last

coon |

] e—| L]
| |
‘;‘Start J @ é J :’ Manage Your Server | @Netwnrk[nnnactlnni I énctive Directory User... J ‘ ‘ 19:16

Figure 19.1 Saved queries in the MMC

LDAP Queries in PowerShell

An LDAP query is executed with .NET classes as follows (see Figure 19.2):

—

Create an instance of the class DirectorySearcher.

2. Set the root of the query by assigning a pointer to a Directory
Entry object, which is bound to the root, to the attribute
SearchRoot.

Set the filter part of the LDAP query in the attribute Filter.

4. Set the attributes by filling the object volume PropertiesTo
Load.

@

352

CHAPTER 19 SEARCHING IN THE ACTIVE DIRECTORY

DirectorySearcher SearchRoot

5. Set the scope in the attribute SearchScope. You can define this

either by the appropriate enumeration member ([System.
DirectoryServices.SearchScope] : : Subtree) or just a string
("subtree").

. Run the query via the method Findall(). The method

Findall () retrieves an object volume of the type Searchresult
Collection.

The SearchResultCollection contains single SearchrResult
objects.

. A SearchResult object enables you to either access the queried

attributes by reading or to have a DirectoryEntry object for the
found directory entry displayed by the method GetDirectory
Entry (). The thus displayed DirectoryEntry object also
enables a writing access.

DirectoryEntry
SearchResult
Collection

FindOne()

PropertyNames

KeysCollection

: GetDirectoryEntry()

FindAll()

SearchResults

ValuesCollection

SortOption
Sort

Properties
SearchSt
SearchScope earenscope

Item

|

Results
PropertyValue
Collection

Results
PropertyCollection

Item

StringCollecti
PropertiesToLoad ring’ollection

Figure 19.2 Object model for LDAP search

Example for an LDAP Query in PowerShell

In Listing 19.1, all user accounts are searched throughout the whole Active
Directory for those whose directory names start with the letter A. Figure

19.3 shows the results.

Listing 19.1 Executing an LDAP Search in AD

SRoot = new-object system.directoryservices.directoryEntry

w ("LDAP://XFilesServer/DC=FBI,DC=net")
SFilter = " (&(objectclass=user) (name=a*))"

LDAP QUERIES IN POWERSHELL 353

SAttribute = "CN", "ObjectClass", "ObjectCategory", "distinguishedName",
w"]lastLogonTimestamp", "description", "department", "displayname"

Compile search

$Searcher = New-Object Directoryservices.DirectorySearcher (SRoot)
Ssearcher.PageSize = 900

Ssearcher.Filter = S$Filter

Ssearcher.Searchscope =

w [System.DirectoryServices.SearchScope] : : Subtree

SAttribute | foreach {[void]$searcher.PropertiesToLoad.Add(s_)}

Execute search

Sresult = S$searcher.findAll ()

"Number of results: " + Sresult.Count

—
nod
.
wv
m
=
=
n
=
=
@
H
=
=X
m
>
~
=
<
m
S
=
m
~
-
s
=<

Sresult

'owershell - hs [elevated user]

ndows PowerShell
Copyright (C> 20886 Hicrosoft Corporation. All rights reserved.

H: “deno“UPS
1% H:sdemoupsib_ads \ADS_Search_NanmePattern.psl
Nunber of results: 101

Properties

{ohjectcategory, displaynane, ohject...
{objectcategory, displayname, ohject.
{ohjectcategory, displaynane, ohject.
{objectcategory, displaynanme, ohject.
{ohjectcategory, displaynane, ohject.
{objectcategory, displayname, ohject.
{ohjectcategory, displaynane, ohject.
{objectcategory, displayname, ohject.
{obhjectcategory, displaynane. ohject.
{objectcategory, ohject.
:/78FilesServer/Cl i {ohjectcategory, ohject.
://8FilesServer/Cl i {objectcategory, ohject
:/78FilesServersCl i {ohjectcategory, playname, ohject
://8FilesServer/Cl i -0l {objectcategory, splayname, ohject
://78FilesServersCl i {ohjectcategory, displayname, ohject
://8FilesServer/Cl i -0l {ohjectcategory, displayname, ohject
i i {ohjectcategory, displaynane, ohject.
{objectcategory, displayname, ohject.
{ohjectcategory, displaynane, ohject.
{objectcategory, displayname, ohject.

{obhjectcategor displ ohject...

Figure 19.3 Search results

Searching a User with Its Login Name

When only the Windows NT 4.0—compatible login name of a user is
known, but not the path of the directory service entry, you can execute the
search in the Active Directory only with an ADSI query via the attribute
SAMAccountName (see Listing 19.2). It is important to note that here that
only the username has to be indicated, and not the Windows NT 4.0-com-
patible domain name.

354 CHAPTER 19 SEARCHING IN THE ACTIVE DIRECTORY

Listing 19.2 Search Directory Service Entry for a User Whose SAMAccountName
Is Known

Susername = "FoxMulder"

"Search user " + $username + "..."

Sroot = new-object system.directoryservices.directoryEntry

w ("LDAP://XFilesServerl/DC=FBI,DC=net")

SFilter = " (SAMAccountName=" + $username +")"

SAttribute = "CN", "ObjectClass", "ObjectCategory", "distinguishedName",
w"]lastLogonTimestamp", "description", "department", "displayname"

Compile search

$Searcher = New-Object Directoryservices.DirectorySearcher (Sroot)
Ssearcher.PageSize = 900

Ssearcher.Filter = S$Filter

S$searcher.SearchScope = "subtree"

$Attribute | foreach {[void]$searcher.PropertiesToLoad.Add($_)}

Execute search

Ssearcher.findall ()

Search Tips and Tricks

This section contains tips and tricks for effective and well-performing

searches in the Active Directory.

Use Indexed Attributes

You should use as many indexed attributes in queries as possible. In the
documentation of the Active Directory, you will learn which attributes are
indexed. Figure 19.4 shows where you can find the documentation for
Active Directory attributes in the Active Directory schema in the MSDN

library. The entry Is Indexed: True shows indexed attributes.

SEARCH TIPS AND TRICKS

355

M50 Library - April 2004 - Object-Category of =]
el
16 4+ 00 A 4 G| mhddmsmommirminyx-| Ol ¢ 4 8] B,
(i # x| Tobject-Category | i x —_
I?:’;“? = Aatform SOK: Actieo Diroctory Schoma, =] N
Object-Category wv
@ Ay Weloome to the MSDH Lbrary | i . _) ¢
1 o8 MEDN Library Viewser ek An object class name used to groups objects of this or derived dlasses, >
‘Component Ed
: @ Dk Arcess = Object-Categary 2
1 4y Devedopment (General) Ldap-Bisplay-Mame | objectCatagory =
) 4y Enerprise Development p
5 8% Craghies and size about 20 bytes on average. =
i @ Messagng and Collsboration Update Frequency This valun should never changs. =
5) Mobilo ard Embockdod Development The designer of the abject wauld st this -
@ @y NET Development Update Privilege valug. -
£ (Y Nebworking and Dinctory Sanvices =
B3 Uy Activn Directory, ADST and Divectory Services Ul Lacation ADSIEdit =
() 50k Documentakion d 1.2.840,113556.1.4.762 =
B[] Denctory Senvces -
Deectory - System-Only =
1L Drectories Schoma-Td-Guid 2E4ITIE-60T0-11d1- 2906 m
[Yy ductive Drechory Fo— 2551
51 4y durtive Direchory Application Hode =4
£ iy ductive Directory Schema OM-Syntaw 127 =
uctive Dirachory Schma Crorview NT-Security- 0:BAG:BAD:S: [a)}
8 8y Wirsdowrs 2000 Schema 3
154y Wirkows: Sewver 2003 Oy Scheema Unk-1d =
£y Wirsdowes Serve 2003 Cormbined Schema =
&y Qe MAPL-Td
2 Q_".‘l:;';‘“ Le-Single-Valued True
T 3] Aecousi-Expires {15 tndexeal frrur)
o] Ascound-HasmrHistery In Global Catalog Trudt
A5 At Token sk Pee Lsex
] ACS- Mleabie RSV Borcheidih Range-Lonor .
: ACS-Cachn-Trmsok Range-Upper _
ACSDinction
B A B DantTim search-rlags 1
: ACS-DSRM-Pricrity System-Flags 0x00000012
2] ACS-DSBHRefresh tlasses used in Tup
ACS-Eruable-ACS- Sarvicn
7 acsE iy
S L T ee—p—
: ACSEverd-Log-Lavel Speichecant
(5] ACS-derky Hamm Ohect-Chass Acive Droctory Schema Feference: Fldtform 5.
ACS-Ma AP Rk - o e
5] ACS-Max-Duration-Per-Flov -
il] »
D ihak|) e | @ 5en Fir cbectass| T s | 1 Socbernteissn Fr gomnerd propmity oo |
[ooee [14

Avoid Multivalued Attributes

Although the following the query is correct

m Path. LDAP: //XFilesServerl/dc=FBI, dc=net>
m Filter. (& (objectClass=user) (name=a*))
m Properties. name, adspath

m Path. LDAP: //XFilesServerl/dc=FBI, dc=net>
m Filter. (& (objectCategory=person) (objectClass=user)

(name=a*)) ;

m Properties. name, adspath

Figure 19.4 Documentation of AD attributes in the MSDN developer library

for performance reasons it is not optimal. It is better to use the following:

356

CHAPTER 19 SEARCHING IN THE ACTIVE DIRECTORY

When executing in a large directory service, you will notice that the second
query is executed much faster.

Besides objectClass, the modified query also contains a reference to
the attribute objectCategory. The reason for this is that objectClass
is a multivalued attribute that shows the complete inheritance hierarchy of
the directory class. For example, there is a user object “top, person,
organizationalPerson, user” stored. It’s interesting that a computer object
indicates that a computer is a specialization of the user, because
objectClass contains the following for a computer: “top, person,
organizationalPerson, user, computer.” A search via a multivalued attribute
is very time-consuming. Unfortunately, no attribute in the Active Directory
contains the class name in a single-valued attribute.

Besides the class, there also exists a categorization of the directory
objects. Categories are person, group, computer, and organizational
Unit. Person contains the classes user and contact. The category of a
directory object is stored in objectCategory, and objectCategory is an
indexed attribute that enables a quick search. For this reason, it makes
sense to add objectClass and objectCategory to the conditions.

The sequence of the attributes in the condition, however, is optional;
the Active Directory optimizes itself.

The following list shows the correct filters for a quick search for dif-
ferent directory classes:

m Contacts. (& (objectclass=contact) (objectcategory=
person)

m User. (& (objectclass=user) (objectcategory=person)

Groups. (& (objectclass=group) (objectcategory=group)

m Organizational units. (& (objectclass=organizational
Unit) (objectcategory=organizationalUnit)

[| Computer. (& (objectclass=user) (objectcategory=
computer)

Avoid the Star Operator

Another tip for the optimization of Active Directory queries is that you
should avoid the use of placeholders (star operator, *) at the beginning of
a string,

SEARCH TIPS AND TRICKS 357

Search Results Restrictions

In standard configuration, the Active Directory limits the number of
search results to 1,000. You can change this setting in the domain policies,
as shown in Listing 19.3 and Figue 19.5.

Listing 19.3 Changing Domain Policies for Search Results Restrictions Using
Ntdsutil.Exe

C:\> ntdsutil

ntdsutil: ldap policies

ldap policy: connections

server connections: connect to server SERVERNAME

Connected to SERVERNAME using credentials of locally logged on user
server connections: g

ldap policy: show values

Policy Current (New)
. . .MaxPageSize 1000...

ldap policy: set maxpagesize to ##### (for example, 50000)
ldap policy: commit changes

ldap policy: g

ntdsutil: g

Disconnecting from SERVERNAME

f—ej' Default Domain Policy [xFilesserver @8 Active Directory
g Computer Configuration
El

[Liilersc&nﬂgur:“?: Maximum size of Active Directory E:atting | State
D_ ware 58 .Ings searches’ M Maximum size of Active Directory searches" Mot configured
[windows Settings =

=5
|28 Enable filter in Find dialog box" Mot configured

(21 Administrative Templates | Display Properties] qod a

-3 Windows Componerts M Hide Active Directory folder Mok configured

Requirements:
-[_1 Start Menu and Taskbal
= At least Microsoft Windows 2000

=[] Desktap
(0 Active Desktop Description:
-4 Ackive Directory Spedifies the maximum number of
-3 contral Panel objects the system displays in

response to a command to browse or
(10 shared Folders search Active Directory, This setting
(20 network affects all browse displays associated
- System with Active Directory, such as those
in Local Users and Groups, Active
Directory Users and Computers, and
dialog boxes used to set permissions
For user or group objects in Active

Directory,

Figure 19.5 Changing the domain policies for the search restriction using
the MMC

—
nod
.
wv
m
>
=
n
=
=
(=}
H
=
=X
m
>
A
=
<
m
S
=
m
~
=
(=]
=
=<

358 CHAPTER 19 SEARCHING IN THE ACTIVE DIRECTORY

LDAP Query Examples

The following list contains further examples for possible filters for the
search for user accounts:

m All users whose name starts with S
(& (objectCategory=person) (objectClass=user) (name=s*))

m All users without a description
(& (objectCategory=computer) (!description=*))

m All deactivated users
(& (objectCategory=person) (objectClass=user)
(userAccountControl:1.2.840.113556.1.4.803:=2))
In this case, the challenge is that the deactivation information is
stored in a single bit in userAccountControl. A comparison with
a fixed value with the equals sign would not lead to the desired
result. A bitwise AND is necessary. Unfortunately, this is a rather
complicated expression in LDAP query syntax:
1.2.840.113556.1.4.803. A bitwise OR would be the value
1.2.840.113556.1.4.804.

m All users with the Password Does Not Expire setting
(& (objectCategory=person) (objectClass=user)
(userAccountControl:1.2.840.113556.1.4.803:=65536))

m All users created after 2004/10/11
(& (objectCategory=person) (objectClass=user)
(whenCreated>=20041110000000.02))

WARNING A query that consists only of the condition class=* does not
work. To retfrieve all directory objects, the star operator has to be applied to
another attribute.

Using the Commandlet Get-ADObject

The PowerShell Community Extensions contain the commandlet Get-
ADObject, which is able to apply the LDAP filter. Output objects are of
the type System.Directoryservices.DirectoryEntry.

SUMMARY 359

Table 19.2 Using the Get -ADObject Commandlet

Get-ADObject -Class user Fetches all user accounts
(instances of the directory service
class user)

Get-ADObject -value "*domain*" Fetches all directory service
objects whose names contain the
word domain

Get-ADObject -Filter Fetches all deactivated user

" (& (objectCategory=person) accounts

(objectClass=user) (userAccount

Control:1.2.840.113556.1.4.803:=2))"

Get-ADObject -Server E02 -SizeLimit 10 Fetches the first ten directory
entries of domain controller EO2

—
nod
.
w
m
>
=
n
=
=
(=}
H
=
=X
m
>
A
=
<
m
L=
=
m
~
=
(=]
=
=<

Get-ADObject -Server E02 -Scope Fetches all entries in the Users
subtree -DistinguishedName container and its subcontainers
"CN=Users,DC=IT-Visions,DC=local"

Summary

In this chapter, you learned how to use the power of LDAP search queries
to find entries in an LDAP-based directory service that match certain cri-
teria. LDAP queries contain a root path, a filter, a list of properties and a
search scope. LDAP queries can be executed through the .NET class
System. Directoryservices.DirectorySearcher or the comman-
dlet Get-ADObject from the PowerShell Community Extensions. If you
want to write well-performing queries, however, keep in mind the special
structure of the Active Directory, especially the inheritance, multivalued
attributes, and indexed attributes.

This page intentionally left blank

CHAPTER 2 0

ADDITIONAL LIBRARIES FOR
ACTIVE DIRECTORY
ADMINISTRATION

In this chapter:
Navigating the Active Directory Using the PowerShell

Community Extensions 361
Using the www.[T-Visions.de Active Directory Extensions 362
Using the Quest Active Directory Extensions 365
Getting Information about the Active Directory Structure 365
Group Policies 367

A few advanced Active Directory administrative tasks can be performed
only through an additional library (for example, access to group policies).
In this chapter, you are introduced to three Add-On libraries that ease the
Active Directory administration within Windows PowerShell (WPS).

Navigating the Active Directory Using the PowerShell
Community Extensions

As soon as the PowerShell Extensions (PSCX) [CODEPLEXO01] are
installed, the Active Directory can be used as a navigation container. When
WPS is started, PSCX automatically creates a new drive for the Active
Directory to which the computer belongs. The drive is named according
to the Windows NT 4.0-compatible domain name (that is, FBI:, for the
domain with the DNS name fbi.net).

361

www.IT-Visions.de

362

CHAPTER 20 LIBRARIES FOR AD ADMINISTRATION

The following command selects all groups that have the word domain
in their names from the Users container of the Active Directory and dis-
plays this list sorted according to name:

dir FBI:/users | where { ($_.name -match "domain") -and
w (S . Type -match "group") } | sort name

To create a new organizational unit with the OU Directors, you need
only one command using the commandlet New-Item:

New-Item -path FBI://Directors -type organizationalunit

However, the capabilities of this provider are limited.

Using the www.IT-Visions.de Active
Directory Extensions

The commandlet library of www.IT-Visions.de provides some comman-
dlets for the directory service administration that make the work much
easier, including the following;

m Get-DirectoryEntry Access to a single directory object

m Get-DirectoryChildren Access to the content of a container
object (lists the subelements)

m Add-User Access to a user account with password

m Add-DirectoryEntry Creation of a directory object that does
not need a password

m Remove-DirectoryEntry Deleting a directory object

m Get-DirectoryValue Fetching a value for a directory attribute

m Set-DirectoryValue Setting a value for a directory attribute

NOTE The commandlets support the commandletbased programming style

Add-User -name $Name -Container ("WinNT://" +
wSComputer) -Password "secret"
Set-DirectoryValue -Path ("WinNT://" +
wSComputer +"/" + S$Name) -Name "Fullname"
w_-Value "Dr. Holger Schwichtenberg"

www.IT-Visions.de
www.IT-Visions.de

USING THE WWW.IT-VISIONS.DE ACTIVE DIRECTORY EXTENSIONS 363

and the objectbased style, because the commandlets transfer the relevant
obijects to the pipeline:

Su = Add-User -Password "secret" -RDN S$Name
w_Container ("WinNT://" + S$Computer)
Su.Fullname

Su.PSBase.CommitChanges ()

Example

Listing 20.1 shows the application of the directory services commandlets,
applicable to a local Windows user database (tested on a Windows Server
2003 member server) or an Active Directory (tested on a Windows Server
2003 domain controller). Figure 20.1 shows a sample of the output.

Listing 20.1 Various Directory Service Operations via WinNT-Provider (available through
www.IT-Visions.de commandlets)

EEEE R E R R R TR E R R R R R R Rk i ik ik ki

Test script for directory service access with
the www.IT-Visions.de PowerShell commandlets
Dr. Holger Schwichtenberg 2007

EEEEE R R R R TR E R R R R ik R Rk i ik ik ki

Add-PSSnapin ITVisions_PowerShell_extensions
--- Parameters

SName = "cn=FoxMulder"
SContainer = "LDAP://XFilesServer/OU=Agents,DC=FBI,DC=net"

--- Write

Write-Host "Access to Container" -ForegroundColor yellow
Get-DirectoryEntry S$Container | select name

Write-Host "Create user" -ForegroundColor yellow
Su = Add-User -Name S$Name -Container $Container -Password
w'"secret-123" -verbose

(continues)

N
d
>
=]
=4
=
o
=
>
-
=
@
=
>
=
m
[

www.IT-Visions.de
www.IT-VISIONS.DE

364 CHAPTER 20 LIBRARIES FOR AD ADMINISTRATION

Listing 20.1 Various Directory Service Operations via WinNT-Provider (available through
www.IT-Visions.de commandlets) (continued)

Write-Host "Set attribute - Commandlet Style" -ForegroundColor yellow
Set-DirectoryValue -Path S$Su.psbase.path -Name "Description"
w-Value "Agent"

Write-Host "Set attribute - Object Style" -ForegroundColor yellow
Su.l = "Washington DC"

Su.PSBase.CommitChanges ()

--- Read

Write-Host "Read attribute - Object Style" -ForegroundColor yellow
Su = Get-DirectoryEntry S$u.psbase.path

"Name: " + S$Su.Description

Write-Host "Read attribute - Commandlet style" -ForegroundColor yellow
Get-DirectoryValue -Path Su.psbase.path -Name "Description"

Write-Host "Delete user" -ForegroundColor yellow
Remove-DirectoryEntry Su.psbase.path

Write-Host "List container content" -ForegroundColor yellow
Get-DirectoryChildren S$Container | Select name

3# H:=~demo“wpssb_ads“ADE_ITUisjions_Commandlets.psl
Access to Container

{Agents?

Create user

UERBOSE: Adding User cn=FoxMulder to
LDAP://KFilesServer0U=Agents . DC=FBI .DC=net
Set attribute — Commandlet style

True

Set attribute — Object style

Read attribute — object style
Hame =

Read attribute — Commandlet style
Delete user

True

List container content

{Dana Scully>

{Fox Mulder:

{John J. Doggett?

{Monica Reves?

41t

Figure 20.1 Clipping from the output of Listing 20.1

www.IT-Visions.de

GETTING INFORMATION ABOUT THE ACTIVE DIRECTORY STRUCTURE 365

Using the Quest Active Directory Extensions

The company Quest provides commandlets for Active Directory adminis-
tration (for example, Get-QADComputer, Get-QADUser, New-QADObject,
Set-QADObject) and as an adapted PowerShell console (Quest
Management Shell for Active Directory); see Figure 20.2.

& Posh C:\Documents'hs

?# Get—-QADComputer "EBx*"
Type DH
computer CN=EB2 ., 0U=Domain
computer CN=EB4, CN=Comput

computer CN=EB1 . CN=Comput
computer CN=EB3,CN=Conpute p:

18# Get—QADGroup A"

Type DH

Administrators group CN=Administrators.CN=Builtin,DC=IT-VUisions.DC=local
Account Operators group CN=Account Operators,.CN=Builtin.DC=IT-Uisions,.DC=local

114

Figure 20.2 Quest Management Shell for Active Directory

Getting Information about the Active Directory Structure

N
(=]
>
=4
=
=
S
=
=
-
=
=]
d
=
=
m
wv

In addition to the namespace System.Directoryservices, which con-
tains general classes for the programming of directory services, there is the
subnamespace System.Directoryservices.ActiveDirectory (also
called Active Directory Management Objects, ADMO) in .NET, starting
with version 2.0. This namespace contains some Active Directory—specific
functions that are not applicable to other directory services.

In particular, this namespace offers classes for the administration of the
complete structure of an Active Directory (for example Forest, Domain,
ActiveDirectoryPartition, DomainController, GlobalCatalog,
and ActiveDirectorySubnet). Some classes specially designed for the
Active Directory Application Mode (ADAM, a function-reduced version
of the Active Directory for use as data storage for some applications) are
supported with classes such as ADAMInstanceCollection and
ADAMInstance.

366 CHAPTER 20 LIBRARIES FOR AD ADMINISTRATION

Example 1: Domains and Forests

Listing 20.2 gives information about the domain to which the computer
belongs and about the forest to which this domain belongs.

Listing 20.2 Information about the Domain and the Forest

Display current domain
$d = [System.Directoryservices.ActiveDirectory.Domain]
w . :GetCurrentDomain () ;

Information about current domain

"Name: " + $d.Name

"Domain Mode: " + $d.DomainMode

"Owner of InfrastructureRole: " + $d.InfrastructureRoleOwner.Name
"Owner of PdcRole: " + $d.PdcRoleOwner.Name

Information about forest of current domain
$f = $d.Forest;

"Name of forest: " + S$f.Name

"Mode of forest: " + S$f.ForestMode

Example 2: Domain Controllers and Roles

In Listing 20.3, all domain controllers (and their roles) of a special domain
are listed.

Listing 20.3 Information about the Domain Controllers and Their Roles

Display current domain
$d =
[System.Directoryservices.ActiveDirectory.Domain] : :GetCurrentDomain ()
SDCs = $d.DomainControllers
Loop over all domain controllers
foreach ($DC in $DCs)
{
"Name: " + $DC.Name
"IP: " + S$DC.IPAddress.ToString/()
"Time: " + $DC.CurrentTime.ToString()

GROUP POLICIES 367

"Roles:"

Loop over all roles of DC
foreach (SR in $DC.Roles)
{

"- " 4+ S$R.ToString()
}

Group Policies

Group policies cannot be accessed through ADSI or System.
DirectoryServices. Group policies can be managed by the COM com-
ponent GPMGMT, which is part of the Group Policy Management
Console (GPMC) [MS04].

WARNING Confirm that the GPMC is installed on your system before running
any of the scripts in this chapter.

Note that via the GPMGMT component you can attach and detach group
policies to Active Directory containers. However, it does not enable you to cre-
ate new group policies or change settings within an existing group policy.

N
(=]
>
o
=
=
S
=
>
-
=
@
Fd
>
=~
m
wv

Classes

Figure 20.3 shows the object model of the GPMGMT component. As the
root class, GPMGMT . GPM is the only instantiable class; all scripts start by cre-
ating an instance of this class.

Enumerating Policies

Listing 20.4 lists the display name and creation time for all group policies
in a specific domain. After instantiation of the root class, you have to access
the domain through the method GetDomain (). After that, you can use the
method SearchGro () on the domain object to search for Group Policy
objects. In this case, no filters are used.

368 CHAPTER 20 LIBRARIES FOR AD ADMINISTRATION

'
F GPMDomain
GetDomain()

SearchGPO()

GPMGPOCollection

¥ SearchSOMs()
'

'
:
_G-eléP(-)()- >
GetGPOLinks|
=== GPMBackupDir
GetBackupDir(“PFAD")

GetGPOLinks()

GPMGPOLinks
Collection

GPMBackup

Figure 20.3 Object model of the GPMGMT component for Group Policy
Management

Listing 20.4 Enumerate Group Policies

Parameters
$Domain = "fbi.net"

Create root object
Sgpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain
$Domain = S$GPM.GetDomain ($Domain, "", S$SGPM.GetConstants () .UseAnyDC)

Filter Object
SFilter = S$gpm.CreateSearchCriterial()

Get GPOs
$SGPOList = $Domain.SearchGPOs ($SFilter)

Display GPOs
$GPOList | Select Displayname, CreationTime

GROUP POLICIES 369

If you want to enumerate all group policies that are linked to a certain
organizational unit, you can use the script shown in Listing 20.5. GetS0M ()
retrieves a container in the Active Directory, and GetGPOLinks ()
retrieves a list of links. Each link contains the global unique identifier of
the linked group policy.

Listing 20.5 Enumerating All Group Policies Linked to a Container

Parameters
SDomain = "fbi.net"
SContainer = "ou=agents, dc=fbi, dc=net"

Create root object
Sgpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain
SDomain = $GPM.GetDomain ($SDomain, "", S$SGPM.GetConstants() .UseAnyDC)

Container
SContainer = $Domain.GetSOM($SContainer)

Get GPOs
SLinks = S$Container.GetGPOLinks ()

Display GPOs

foreach ($link in S$Links)

{

SGPO = S$Domain.GetGPO($1link.GPOID)

$GPO | Select Displayname, CreationTime
}

Create a New Group Policy Link

To link a group policy to a container, complete these steps (see Listing 20.6
and Figure 20.4):

1. Create an instance of the root object.
2. Access the domain through GetDomain ().
3. Access the container through GetsoMm().

N
d
>
=]
=4
=
o
=
>
-
=
@
=
>
=
m
[

370 CHAPTER 20 LIBRARIES FOR AD ADMINISTRATION

4. Get a reference to the Group Policy object using the GUID of the
group policy through GetGPO () .
5. Call the method CreateGPOLink () on the container.

Listing 20.6 Create a GPO Link

trap {

Write-Error ("ERROR: " + $_.Exception.Message)

if ($_.Exception.InnerException -ne $null) { Write-Error
= ("ERROR: " + $_.Exception.InnerException.Message) }

exit

Parameters

$Domain = "fbi.net"
$Container = "ou=agents, dc=fbi, dc=net"
SGPOID = "{063751AF-8CBD-4F04-B889-196840B99D2E}"

Create root object
Sgpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain
S$Domain = $GPM.GetDomain ($Domain, "", S$SGPM.GetConstants() .UseAnyDC)

Container
SContainer = $Domain.GetSOM($Container)

Get GPO Object
SGPO = $Domain.GetGPO (SGPOID)

Create Link
$Link = $Container.CreateGPOLink (-1, S$GPO)

"Link created!"

Delete a Group Policy Link

The script in Listing 20.7 deletes all Group Policy links for a given con-
tainer in the Active Directory. To delete a link, call the belete () method
of the appropriate GPMGPOLink object.

GROUP POLICIES 371

& powerShell - hs [elevated user]

Windows PowerShell
Copyright (C) 2886 Microszoft Corporation. All rights reserved.

H : \.demo“WUPS

1% H:sdeno“WPS\B_GroupPolicies“GP_Create_Link.psi
Link created?

28 H:sdeno“UPS\B_GroupPolicies“GP_Create_Link.psi

Figure 20.4 A container can contain only one link to each policy.

NOTE Note that the script will delete only the links. The group policies will
remain, even if they are not linked to a container any more. If you want to
delete the group policy, call Delete () on the Group Policy object itself.

Listing 20.7 Delete GPO Links

Parameters
$Domain = "fbi.net"
$Container = "ou=agents, dc=fbi, dc=net"

Create root object
Sgpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain
SDomain = $GPM.GetDomain ($Domain, "", S$SGPM.GetConstants() .UseAnyDC)

Container
$Container = $Domain.GetSOM($Container)

Get GPOs
$Links = S$Container.GetGPOLinks ()

Display GPOs
foreach ($link in $Links)
(continues)

N
(=]
>
=4
=
=
S
=
=
-
=
=]
d
=
=
m
wv

372 CHAPTER 20 LIBRARIES FOR AD ADMINISTRATION

Listing 20.7 Delete GPO Links (continued)

{

SGPO = $Domain.GetGPO($link.GPOID)
"Deleting Link..." + S$SGPO.Displayname
$link.Delete()

}

Summary

The first topic in this chapter concerned simplifications for Active
Directory handling that are provided in different PowerShell extension
libraries.

Second, you got to know the classes of the system.
Directoryservices.ActiveDirectory library that deliver informa-
tion about the Active Directory domain structure.

Third, you saw how to use the COM component GPMGMT to link and
unlink group policies to Active Directory containers.

CHAPTER 2 1

DATABASES

In this chapter:

Infroducing ADO.NET 373
Example Database 379
Data Access with PowerShell 380

In this chapter, you learn how to access databases through ADO.NET,
which is a class library within the NET Framework. You also learn to use
the commandlets from the www.IT-Visions.de PowerShell Extensions,
which encapsulate a lot of the complexity of ADO.NET.

NOTE Chapter 23, “Security Settings,” continues the topic data access, focus-
ing on some advanced features.

Introducing ADO.NET

Windows PowerShell (WPS) has no commandlets for database access and
no navigation provider either, although it would be convenient to include
databases in the concept of navigation providers. As far as database access
is concerned, you can use ADO.NET in WPS. After all, WPS supports the
access of single tables by offering column names as attributes of the table
object (in this case, an automatic figure occurs, similar to what happens
with WMI objects).

This chapter teaches some necessary basics about ADO.NET. Figure
21.1 shows the ADO.NET architecture.

Just like its predecessor concepts ODBC and OLEDB, ADO.NET
also uses database-specific drivers, which are called ADO.NET Data

373

www.IT-Visions.de

374 CHAPTER 21 DATABASES

Provider, .NET Data Provider, and Managed Provider. Data Provider for
OLEDB and ODBC provide the backward compatibility of ADO.NET for
those data sources that don’t (yet) have a specific ADO.NET data provider.

PowerShell

www.IT-Visions.de Commandlets

l

ADO.NET (ActiveX Data Objects.NET)

SQLServer OLE DB ODBC
NET Data Provider, NET Data Provider NET Data Provider

Y

OLE DB (Object Linking and Embedding Database)

OLE DB-
Provider
for SQL-
Server

JET OLE DB-
OLE DB- Provider
Provider for ODBC

OLE DB-
Provider
for...

OLE DB (Open Database Connectivity)

ODBC
Driver for
Access

ODBC-
Driver for
DBase

ODBC-
Driver
for...

Network

Microsoft Access Other

SQL Server DBase Database

Figure 21.1 ADO.NET driver architecture

www.IT-Visions.de

INTRODUCING ADO.NET 375

Data Providers

The .NET Framework 2.0, 3.0, and 3.5 are delivered with the following
data providers ((NET Data Provider or Managed Data Provider):

m System.Data.SqlClient Special driver for Microsoft SQL

Server 7.0/2000 and 2005

m System.Data.SqglServerCe Special driver for Microsoft SQL
Server CE

m System.Data.OracleClient Special driver for Oracle
databases

m System.Data.OLEDB Bridge to OLEDB providers
m System.Data.Odbc Bridge to ODBC drivers

Additional providers (for example, for MySQL, DB2, Sybase, Informix,
and Ingres) are delivered from different producers, a list of which can be
found under www.dotnetframework.de/tools.aspx [DOTNETO02].

Enumerating the Installed Providers

The ADO.NET data providers existing on a system can be enumerated via
the static method System.Data.Common.DbProviderFactories.

GetFactoryClasses().
Access to this method in WPS looks like this (see Figure 21.2):

[System.Data.Common.DbProviderFactories] : :GetFactoryClasses ()

NOTE The installed providers are not stored in the registry, but in the central
XML configuration file of .NET Framework [machine . config) in the section
<system.data> <DbProviderFactories>.

i 14

o
=
=
=
w
m
w

www.dotnetframework.de/tools.aspx

376

CHAPTER 21 DATABASES

X powershell - Holger Schwichtenberg

2# [System.Data.Comnmon.DbProviderFactories]::GetFactoryClasses(> | fl

Nane : Odbe Data Provider
ipti : .Net Framework Data Provider for Odhc
: System.Data._Odbc
AssemblyQualifiedName : System.Data.OQdbc.0dbcFactory, System.Data, Version=2.8.
8.8, Culture=neutral. PublicKeyToken=h77a5c561934eB89

Nane : 0leDh Data Provider
ipti : .Net Framework Data Provider for 0leDh
: System._Data._0leDh
: Systen.Data.0leDbh.0leDbFactory, Systenm.Data, Version=2.
B8.8.8, Culture=neutral, PublicKeyToken=h77a5c561934eB89

: OracleClient Data Provider

: .Net Framework Data Provider for Oracle

: System._Data._OracleClient

: Systen.Data.0racleClient.0racleClientFactory, Systen.Da
ta.0OracleClient, Uersion=2.8.8.8, Culture=neutral. Publ
icKeyToken=h77a5%c561734eB8?

: SqlClient Data Provider
: .Het Framework Data Provider for SqlServer
: System.Data.S8qlClient
fiscenmblyQualifiedName : System.Data._SqlClient.SgqlClientFactory, System.Data, Ue
19%2n;§éﬂ.ﬂ.ﬂ, Culture=neutral, PublicKeyToken=h77a5c56
e

Nane : 8QL Server CE Data Provider

Description : .NET Franmework Data Provider for Hicrosoft SQL Server 2
B85 Mohile Edition

InvariantNane : Microsoft.SqlServerCe.Client

fizcenmblyQualifiedName : Microsoft._SglServerCe._Client.SglCeClientFactory, Hicros
oft.SqlServerCe.Client, Version=7.8.242.8, Culture=neut
ral, PublicKeyToken=8%845dcd8088cc91

Figure 21.2 Enumeration of the installed ADO.NET drivers

List of Available SQL Servers

If you want to know which instances of Microsoft SQL Server are active in
your domain, you can use the NET class SglDataSourceEnumerator
(see Figure 21.3):

[System.Data.Sgl.SglDataSourceEnumerator]
w : : Instance.GetDataSources ()

DataReader versus DataSet

Figure 21.4 shows different ways of receiving data from a data source in
ADO.NET. Data can be received by the data user via a provider-
independent DataReader object or via a provider-independent DataSet
object. The DatasSet object needs a DataAdapter object (not to be con-
fused with a WPS object adapter) to get the data, which, in turn, has to be
implemented separately in each data provider.

INTRODUCING ADO.NET 377

& rowershell - Holger Schwichtenberg (www.IT-¥isions.de) - [Running as Administrator:

Uindows PowerShell
Copyright (C> 20886 Hicrosoft Corporation. All rights reserved.

i# [System.Data.Sql.SqlDataSourceEnuneratorl::Instance.GetDataSources{)

ServerNane InstanceName IsClustered Version

9.80.30842 .88
9.80.1399 .86

Figure 21.3 List of available SQL servers

Starting with .NET 2.0, .NET also provides so-called data source con-
trol elements, which make it easier for the developer to bind data to a con-
trol element. These data source control elements are part of the libraries
for graphic user interfaces (Windows Forms and ASPNET) and are not
discussed in this book.

Data Consumer
Controls (z.B. DataGrid, DropDownList)
Code
Insert A Insert
Update Update
Delete Delete
SP SP
Read() Read()“
DataTableReader
DataReader DataSet
) [Provider Specific, [Common Class,
Connection < Managed Provider] System.Data]
A
Select
SP . DataAdapter
R Implicit
ead() limplict] [Provider Specific,
Managed Provider]
Insert
Update > Connection
Delete
\ 2 / SP y)
Command .
~ [Provider Specific, :?
Managed Provider] =
7 S
wv
b4
3 &
Data Store

Figure 21.4 Data paths in ADO.NET 2.0

378 CHAPTER 21 DATABASES

TIP It is possible, although somewhat more difficult, to program the access to a
data source in such a way that the database can easily be exchanged.

In the description of the data paths, DataReader and DataSet were
mentioned. Table 21.1 and Figure 21.5 compare both data access method
in detail. As you can see from the table, the DataSet provides more
options, but also has a higher memory consumption. However, because
most scripting solutions do not use large sets of data, the Dataset is appro-
priate in most cases within WPS.

Table 21.1 DataRreader versus DataSet

DataReader DataSet

Model Server Cursor Client Cursor

Implemented in Each ADO.NET System.Data
Data Provider

Basic classes DbDataReader MarshalByValueComponent
MarshalByRefObject Object
Object

Interfaces IDataReader, IListSource,
IDisposable, IXmlSerializable,
IDataRecord, ISupportInitialize,
IEnumerable ISerializable

Read data Yes Yes

Read data forward Yes Yes

Read data backward No Yes

Direct access to any row No Yes

Direct access to any

column of the record Yes Yes

Modify data No, only via separate Yes (via data adapter)
command objects

Command creation for Completely manually Partly automatic

data changes (CommandBuilder)

Data caching No Yes

Change history No Yes

Memory consumption Low High

Available for data
transport between levels No Yes

EXAMPLE DATABASE 379

Datareader
/—\
~— Client
Select
Database EE
< Table/View/SP Read()
Read() / DataReader PowerShell
< Read() Object Script
< Read()
Update
Dataset
/—\
~— Client
Select
Database BN
Table/View/SP Table PowerShell
Script
DataSet
Object
DataAdapter
Object
Update

Figure 21.5 Comparing DataReader and DataSet

Example Database

The example database is taken right out of the everyday life of system
administration. It contains a list of user accounts that was either exported
from a Windows system or that might serve to create a series of users per
script (see Figure 21.6).

N
—
o
=
=
=
(73
m
(3

380

CHAPTER 21

DATABASES

m Microsoft Access - [Users : Tabelle]

E:l Datel ‘k Ansicht EinfOgen Format Datensdtze Extras Fenster 7

=10l

-0 X

- BRI SRV S EBREA9 &Y T4 x| T

Userl

D | UserContainer

| UserAccountName | UserFirstname | UserSurname | User

|

127 \WinNT.//Friends
126 WinNT.//Friends
125 WinNT://Friends
122 WinNT://Friends
119 WinNT://Friends
118 WinNT: #/Friends
117 WinNT: #Friends
116 WinNT: /Friends
115 WinNT: /Friends
114 WinNT://Friends
113 WinNT://Friends
112 WinNT://Friends
111 WinNT://Friends
110 WinNT://Friends
109 WinNT://Friends
65 WinNT://Friends
44/ WinNT://Friends
43 WWinNT://Friends
42/ WWinNT://Friends
41 WWinNT://Friends
39 WinNT://Friends
38 WinNT://Friends
37 WinNT:/fFriends
35 WinNT://Friends

2 WinNT.//Friends

1/ WinNT:#/Friends

| | AutotWert)
Datensatz: I<| 4 || 27| e |>* von 27

Datenblattansicht

HFfister
RSchwake
Skleinschmidt
TRoedel

FEfe

Thecker
KShon
“Perdreau
SBorth
TRuenker
TKrapp
TBecker
TAynur
SGreve
SBuse
SBartmann
RTamler
RLienekogel
Florten
JSoloman
JBaolender
Ckleinschmidt
BRuenker
ASchuermann
Akuensherg
AlrucaSchwake

Heidi
Raimar
Simone
Thalia
Figen
Tina
Kirn
“anessa
Sandra
Thomas
Thea
Thomas
Tilin
Sandra
Sandra
Silke
Ronald
Rolf
Petra
Jennifer
Jirg
Carsten
Birgit
Astrid
Alexandra
Ayse

0 —

Pfister
Schwake
Kleinschmidt
Roedel

Efe

Becker
Shon
Perdreau
Barth
Rinker
Krapp
Becker
Aynur

Greve

Buse
Bartmann
Tamler
Lienekogel
Korten
Solomon
Baolender
Kleinschrnidt
Riinker
Schirmann
von Kinsberg-La
Aruca-Schwake

N L=

Figure 21.6 Database with user accounts

Data Access with PowerShell

This section first discusses the creation of a connection. After that, access

is executed.

Connections

No matter which data access form is chosen, and no matter which action is
to be executed, communication with the database management system

always requires a connection.

Each data provider has its own implementation of the connection class:
SglConnection, OracleConnection, OleDbConnection, and so on.
During the instantiating of theses objects, the connection string can be
transferred. After that, the call open () is executed. A connection has to be

closed by close().

DATA ACCESS WITH POWERSHELL 381

Examples

Listings 21.1 through 21.3 show the creation and closing of a connection to
three different kinds of databases, respectively:

m A dynamically loaded Microsoft Access database file (Listing 21.1)

m A statically bound Microsoft SQL Server database (Listing 21.2)

m A dynamically loaded Microsoft SQL Server database file (only
works with Microsoft SQL Server Express) (Listing 21.3)

Listing 21.1 Creating and Closing a Connection to a Microsoft Access Database

parameters

$Conn = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=H: \demo\WPS\B_Database\users.mdb; "
$SQL = "Select * from users order by UserSurname"

Open databses

"Open the database..."

Sconn = New-Object System.Data.OleDb.OleDbConnection ($Conn)
Sconn.open ()

"Status of database: " + $conn.State

Close database
$Conn.Close ()
"Status of database: " + $conn.State

Listing 21.2 Creating and Closing a Connection of a Statically Bound Microsoft SQL
Server Database

parameters

SConnstring = "Data Source=.\SQLEXPRESS;Initial catalog=Users;Integrated
Security=True;"
$SQL = "Select * from users order by UserSurname"

Open database
"Open the database..."
Sconn = New-Object System.Data.SglClient.SglConnection ($Connstring)
Sconn.open ()
(continues)

i 14

o
=
=
=
w
m
w

382 CHAPTER 21 DATABASES

Listing 21.2 Creating and Closing a Connection of a Statically Bound Microsoft SQIL
Server Database (continued)

"Status of database: " + $conn.State

Close database
$Conn.Close ()
"Status of database: " + S$conn.State

Listing 21.3 Creating and Closing a Connection to a Dynamically Bound Microsoft SQL
Server Express Database File

Parameters

SConnstring = "Data Source=.\SQLEXPRESS;AttachDbFileName=

w: \demo\PowerShell\data bases\users.mdf; Integrated Security=True;"
$SQL = "Select * from users order by UserSurname"

Open database

"Open the database..."

Sconn = New-Object System.Data.SglClient.SglConnection ($Connstring)
Sconn.open ()

"Status of database: " + $conn.State

Close database
$Conn.Close ()
"Status of database: " + $conn.State

Provider-Independent Data Access

In the previous examples, different classes were used, depending on which
database provider (Microsoft Access or Microsoft SQL Server) was used.
This is not ideal an ideal scenario (when you have to access different data-
bases or if you intend to change the database later). ADO.NET also sup-

ports the provider-independent data access (see Listing 21.4).

When you access data provider independence, you don't instantiate
the connection class directly, but via a so-called provider factory. You get
the provider factory from the .NET class System.Data.Common.
DbProviderFactories by indicating the so-called provider invariant

name as a string, as follows:

DATA ACCESS WITH POWERSHELL 383

m For Microsoft Access. "System.Data.0OleDb"
m For Microsoft SQL Server. "System.Data.SglClient"
m For Oracle. "System.Data.OracleClient"

WARNING Provider-independent data access is executed without the transla-
tion of SQL commands. If you use database-specific commands, you lose the

provider independence.

Listing 21.4 Provider-Independent Establishment of a Connection

Parameters

SPROVIDER = "System.Data.SglClient"

SCONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=
w:\demo\WPS\B_Database\users.mdf; Integrated Security=True;"
$SQL, = "Select * from FL_Flights"

Create factory
Sprovider =
[System.Data.Common.DbProviderFactories] : :GetFactory (SPROVIDER)

Create and fill connecting object
Sconn = Sprovider.CreateConnection()
Sconn.ConnectionString = S$SCONNSTRING;

Establish connection
Sconn.Open () ;
"Status of database: " + S$conn.State

Close database
SConn.Close ()
"Status of database: " + S$conn.State

i 14

o
=
=
=
w
m
w

Executing Commands

Each database provider provides a provider-specific command object
(SqlCommand, OracleCommand, OleDbCommand, and so On). Moreover,
there also exists a provider-neutral command object of the type
DbCommand.

384

CHAPTER 21 DATABASES

The command object offers the following functions:

m ExecuteNonQuery () for the execution of DML (for example,
Insert, Update, Delete) and DDL (for example, Create Table)
commands, which do not retrieve data rows. As long as these com-
mands retrieve the number of the affected rows, this result is
received through the return value of the method. Otherwise, the
return value is -1.

m ExecuteRow () delivers the first row of the result set in the form of
a SqlRecord object (only SQL Server).

m ExecuteScalar () fetches the first column of the first row of the
result set.

m ExecuteReader () delivers a DataReader object (see next para-

graph).

Provider factories also enable you to work provider independently with
the command object, as the next example demonstrates. In this case, the
command object has to be created by the provider factory via
CreateCommand ().

Example

In Listing 21.5, first the number of users is counted, then a new user is cre-
ated, and then the number of users is counted again. In the end, the newly
created user is deleted, and another counting is executed. (Figure 21.7
shows the execution.)

Listing 21.5 Executing Commands with Provider-Independent Command Objects

Parameters

SPROVIDER = "System.Data.SglClient"

SCONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=
w: \demo\WPS\B_Database\users.mdf; Integrated Security=True;"
$SQL1 = "Select count(*) from users"

$SQL2 = "insert into users (UserFirstName, UserSurname)
wyvalues ('Hans', 'Meier')"

$SQL3 = "delete from users where UserSurname='Meier'"

Create factory
Sprovider =
w [System.Data.Common.DbProviderFactories] : :GetFactory (SPROVIDER)

DATA ACCESS WITH POWERSHELL 385

Create connection object
Sconn = S$provider.CreateConnection()
Sconn.ConnectionString = S$SCONNSTRING

Open connection
Sconn.Open/() ;

"Status of database: " + $conn.State

create command #1

[System.Data.Common.DbCommand] S$cmdl = S$Sprovider.CreateCommand ()
Scmdl . CommandText = $SQL1

Scmdl.Connection = $conn

execute command #1

Se = Scounter = $cmdl.ExecuteScalar ()

"Count before insert: " + S$Counter

create command #2 (INSERT)

[System.Data.Common.DbCommand] $cmd2 = S$Sprovider.CreateCommand ()
$cmd2 . CommandText = $SQL2
Scmd2 .Connection = $conn

execute command #2
Se = $Scmd2.ExecuteNonQuery ()

execute command #1
Scounter = $cmdl.ExecuteScalar ()

"Count after insert: " + S$Counter

create command #3 (DELETE)

[System.Data.Common.DbCommand] $cmd3 = S$Sprovider.CreateCommand ()
$cmd3 . CommandText = $SQL3
$Scmd3 .Connection = $conn

execute command #2
Se = $cmd3.ExecuteNonQuery ()

execute command #1
Scounter = $cmdl.ExecuteScalar ()
"Count after delete: " + $Counter

Close database
$Conn.Close ()
"Status of database: " + $conn.State

N
—
=4
=
[
=
w
m
v

386 CHAPTER 21 DATABASES

& rowershell - hs [elevated user] - H:\demo'\ WPS

Windows PowerShell
Copyright (C)> 2086 Hicrosoft Corporation. All rights reserved.

H:“deno“UPS

1# H:sdeno“WUPS\B_Databasze“Connand.psl
Status of datahase:

Count hefore insert:

GCount after insert:

Count after delete:

gaatus of databhase: Closed

Figure 21.7 Execution of the script Command.ps1

Data Access Using a Data Reader

A DataReader object is a server-side cursor that allows only unidirectional
reading access (only forward) to the result of a SELECT-application
(Resultset). A change of the data is not possible. In contrast to DatasSet,
DataReader supports only a flat presentation of the data. Data retrieval is
executed only row-wise, and therefore you have to iterate via the result vol-
ume. Compared with the classic COM-based ActiveX Data Objects
(ADO), an ADO.NET DataReader is the equivalent to a “read-only/
forward-only Recordset.”

Each ADO.NET data provider contains its own DataReader imple-
mentation, so there are numerous different DataReader classes in .NET
Framework (for example, SglDataReader, OLEDBDataReader, and
OracleDataReader). The DataReader classes derive from System.
Data.ProviderBase.DbDataReaderBase and implement System.
Data.IDataReader.

To fetch the data, a DataReader needs a command object that is just
as provider specific (for example, SglCommand, OLEDBCommand, and
OracleCommand). The connection to the database itself requires a
provider-specific connection object (for example, SglConnection or
OleDbConnection). Figure 21.8 demonstrates the connection of these
objects by the example of the data provider for SQL Server. The object
model is similar for OLEDB—just replace Sql in the class name with
0leDb. The provider for SQL Server (Sglclient) has, starting with NET
2.0, an additional class, sqlRecord, which represents a single dataset as
result of a command.

DATA ACCESS WITH POWERSHELL 387

Provider specific classes (System.Data.SqIClient.*) :.g;’r;\tz;ng::’s s),-s

SelectCommand
DeleteCommand,
UpdateCommand,
InsertCommand,

GetData() SqlDataAdapter

1 I 1
Eoooo - |FillDataSet)
ExecuteReader() - -
| o
1

BeginTransaction()

GetSchemaTable()
[tEM m——-

:-ExecuteScaIar()

L}
- SqlRecord Item
ExecuteRow()

System.Object

Figure 21.8 Connecting objects by the example of the data provider for
SQL Server

The DataReader can also be used provider independently via an
instance of the class System.Data.Common.DbDataReader, retrieved
from a provider-independent command object via ExecuteReader ().

Example for Using a Data Reader
Listing 21.6 fetches all users from the user table.

Listing 21.6 Fetching of a Database Table with a Provider-Independent DataReader

Parameters

SPROVIDER = "System.Data.SglClient"

SCONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=
w:\demo\WPS\B_Database\users.mdf; Integrated Security=True;"
$SQL = "Select * from users"

Create factory
Sprovider =
w [System.Data.Common.DbProviderFactories] : :GetFactory (SPROVIDER)

N
—
=4
=
=
=
(7
m
w

Create and fill connection object
Sconn = Sprovider.CreateConnection()
Sconn.ConnectionString = S$SCONNSTRING

(continues)

388

CHAPTER 21 DATABASES

Listing 21.6 Fetching of a Database Table with a Provider-Independent DataReader

(continued)

Create connection
Sconn.Open/() ;
"Status of database: " + $conn.State
Create command

$cmd =
Scmd . CommandText =

$Sprovider.CreateCommand ()
$S0L
Scmd.Connection = S$Sconn

Execute command

Sreader = scmd.ExecuteReader ()

Loop over all data rows
while($reader.Read())

{

Sreader.Item("UserID") .ToString ()
- oo

}

+ Sreader.Item("UserSurname")

Close database
$Conn.Close ()

"Status of database: " + S$conn.State

+ "

" + Sreader.Item("UserFirstName")

Summary

There are no commandlets for the access to databases in WPS 1.0. However,
you learned in this chapter all the necessary basics to use the ADO.NET
library from the .NET Framework. ADO.NET has a provider model with a
few providers included in the .NET Framework, and more providers are
available from third-party vendors. ADO.NET enables you to connect to a
database (classes such as SglConnection or OleDbConnection), to exe-
cute commands (SglCommand or OleDbCommand), and read data through
a data reader (0OleDbDataReader or SglDataReader). Don't forget to
close a connection as soon as possible, at the latest at the end of your script.
The next chapter covers an important advanced feature: the Dataset.
In addition, the next chapter covers commandlets from the www.
IT-Visions.de PowerShell Extension Library that facilitate data access.

www.IT-Visions.de
www.IT-Visions.de

CHAPTER 2 2

ApVANCED DATABASE OPERATIONS

In this chapter:

Data Access Using @ DataSetottt 389
Data Access with the www.IT-Visions.de PowerShell Extensions 396

This chapter contains advanced database access techniques (specifically,
using an ADO.NET DatasSet). This chapter provides examples on how to
read and change data and convert between tabular data and XML docu-
ments. You also learn that using the commandlets within the www.
IT-Visions.de Commandlet Library makes data access a lot easier.

Data Access Using a DataSet

A DataSet contains a collection of data tables that are presented by single
DataTable objects. The DataTable objects can be filled from any data
sources without a relation existing between object and data source;
the DataTable object does not know where the data comes from. The
DataTable objects can also be filled with data without a database in the
backend.

A DatasSet offers, in contrast to the DataReader, all kinds of access
(that is, also adding, deleting, and changing DataSets). You can also view
hierarchic relations between single tables and store them in a DataSet.
This enables a processing of hierarchic data volumes. By the way, in the
background, Dataset uses a DataReader to fetch the data.

A DataSet is a client-side cache. A Dataset does not lock any rows in
the database, but uses the so-called optimistic locking (that is, conflicts
caused by concurrent changes arise only when you try to write the data).

389

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

390

CHAPTER 22 ADVANCED DATABASE OPERATIONS

WARNING A DataSet consumes much more memory than a self-defined
data structure. The fetching of data with a DataReader, the storing in a self-
defined data structure, and the saving of changes with SQL commands are more
work-intensive during developing, but they are much more efficient in the execu-
tion. This is especially important for server-based applications. It is not important
for most WPS applications.

DataSet Object Model

A Dataset object consists of a number of DataTable objects in the
DataTableCollection. Each DataTable object owns a link to the
DataSet to which it belongs via the attribute Dataset (see Figure 22.1).

The DataTable object also contains a DataColumnCollection
with DataColumn objects for each column of the table and a
DataRowCollection with DataRow objects for each row. Within a
DataRow object, you can call the contents of the cells via the indexed
attribute Item. Item alternatively expects the column name, the column
index, or a DataColumn object.

Management
Class
MethodData

Methods Collection

Management - -

ObjectCollection Getlnstances() tem T

GetSubClasses()
Management

InParameters BaseObject

ltem GetRelatedClasses()
OutParameters
Management) g o o 2o -
Object « C) | Property Data

GetRelationships Properties Properties 7| Collection

SystemProperties SystemProperties
Item PropertyData

ManagementPath
Path

ClassPath

ObjectGetOptions
Options

ManagementScope
Scope

Figure 22.1 Object model of the Dataset class

DATA ACCESS USING A DataSet 391

Data Adapter

To fetch data, a Dataset needs a data adapter. Reading data with a
DataSet is executed in the following steps:

1. Creation of a connection to the database with a Connection
object. During the instantiating of the object, the string can be
transferred.

2. Instantiating of the command class and connecting the object to
the Connection object via the attribute Connection.

3. Setting of a SQL command that displays data (for example,

SELECT or a stored procedure) in the OLEDBCommand object in the

attribute CommandText.

Instantiating of the data adapter based on the command object.

Instantiating of the DataSet object (without parameter).

6. The execution of the method Fi11 () in the Dataset object copies
the complete data in form of a DataTable objects in the Dataset.
You can set the alias name for the DataTable object as second
parameter when using Fil1 () within the Dataset. Without this
setting, the DataTable object is named Table.

7. Optionally, further tables can be fetched and connected with each
other in the Dataset.

N
N
>
2
=
=
n
m
o
=4
=
=4
>
wv
m
(=]
-
m
=
=
=
=
wv

AN

Thereafter, the connection can be closed immediately.

Provider-Specific Example

Listing 22.1 retrieves all Datasets sorted from a Microsoft Access data-
base. In this case, the OLEDB provider for ADO.NET is used.
Implementation is provider specific. Figure 22.2 shows the result.

The script consists of the following steps:

1. Setting of the connection string and the SQL command to be
executed

2. Instantiating of a connecting object (0leDbConnection) with the
help of the connection string, and opening of the connection to the
database

3. Creation of a command object (0leDbCommand) by indicating the
connection object and the SQL command

392 CHAPTER 22 ADVANCED DATABASE OPERATIONS

=~

Creation of a data adapter (0leDbDataAdapter) for the command

5. Instantiating of an empty data container (Dataset) to be filled
with data

6. Filling of the data container by the data adapter with help of the
method Fill ()

7. Access to the first table in the data container (counting starts
with 0)

8. Output of the data through pipelining of the table

NOTE |t is not possible to access the contents of the table with $Table.
Columnname, analogical to XML documents. According to the ADO.NET object
model, the DataTable object does not contain the columns directly, but
DataRow obijects instead. WPS, however, can split DataTable objects in rows
and columns when pipelining them. With single DataRow objects, access to the
columns via their names can be executed by the automatic mapping, as follows:

$Table | % { S$_.UserSurname }

You can also use two other syntax forms if the column name contains a

blank:

$Table | % { S$_["User Surname"] }
$Table | % { $_."User Surname" }

Listing 22.1 Database Access with a Dataset via a Provider-Specific Data Adapter to an
Access Database

Parameters

SCONNSTRING = "Provider=Microsoft.Jet.OLEDB.4.0;
wData Source=H:\demo\WPS\B_Database\users.mdb;"
$SQL = "Select * from users order by UserSurname"

Open database

"Open the database..."

$conn = New-Object System.Data.OLEDB.OLEDBConnection ($CONNSTRING)
Sconn.open ()

"Status of database: " + $conn.State

DATA ACCESS USING A DataSet 393

Execute SQL command

"Execute command: " + S$SQL

Scmd = New-Object System.Data.OLEDB.OLEDBCommand ($sgl, $conn)
Sada = New-Object System.Data.OLEDB.OLEDBDataAdapter ($Scmd)
$ds = New-Object System.Data.DataSet

$ada.Fill ($ds, "user") | Out-null

"Number of tables in dataset: " + $ds.Tables.Count

"Number of datasets in table 1: " + S$ds.Tables[0].Rows.Count

Access to table
STable = $ds.Tables["user"]

N
N
B
>
2
>
=
ray
m
o
4
=
=
>
wv
m
(=]
-
m
=
2
(=]
H
wv

Output
"Output of the data:"
STable | Select UserFirstName, UserSurname, userid

Windows PowerShell
Copyright (C)> 2086 Microsoft Corporation. All rights reserved.

H : “demo“UPS

1 & *'H:>demo~UWPS:\B_Databhase~Dataset Access.psl’

Open the database...

Status of database: Open

Execute conmand: Select * from users order by UserSurnane
Numher of tahles in dataset: 1

Nunher of datasets in tahle 1: 26

Output of the data:

UserFirstnane UserSurnamne
Aruca—Schuake
Aynur
Bartmann
Becker
Becker
Bolender
Borth
Buse
Efe
Greve
Carsten Kleinschmidt
Simone Kleinschnidt
Korten
Krapp
Lienekogel
Perdrean
Pfister
Roedel
Riinker
Riinker
Schiirmann
Schuake
Shon
Solonon
Tamler
filexandra von Kinsherg-Langenstadt

2%

Figure 22.2 Output of the script

394 CHAPTER 22 ADVANCED DATABASE OPERATIONS

Provider-Independent Example

In Listing 22.2, the database adapter is created by the provider factory.

Listing 22.2 Database Access with a Dataset via a Provider-Neutral Data Adapter
to a Microsoft SQL Server Database

Parameters

SPROVIDER = "System.Data.SglClient"

SCONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=
w: \demo\wps\b_database\users.mdf; Integrated Security=True;"
$SQL = "Select * from users"

Create Factory
Sprovider =
[System.Data.Common.DbProviderFactories] : :GetFactory (SPROVIDER)

Create Connection
Sconn = S$provider.CreateConnection ()
$conn.ConnectionString = $CONNSTRING

Open Connection
$conn.Open () ;

"Status of database: " + $conn.State

Create Command

Scmd = $provider.CreateCommand ()
$cmd . CommandText = $SQL
Scmd.Connection = S$Sconn

Create Adapter
[System.Data.Common.DbDataAdapter] Sada =
wSprovider.CreateDataAdapter ()
Sada.SelectCommand = S$cmd

Create Dataset
$ds = New-Object System.Data.DataSet

DATA ACCESS USING A DataSet 395

Retrieve data
Se = Sada.Fill($ds, "User")

Close database
$Conn.Close ()

"Status of database: " + $conn.State

Output

"Number of Tables: " + $ds.Tables.Count

"Number of Rows in Table 1: " + $ds.Tables[0].Rows.Count

Access table
STable = $ds.Tables[0]

N
N
=
2
=
=
n
m
o
o
=
-
>
wv
m
(=]
-
m
=
=
=
=
wv

Print all rows
"Rows: "
STable | Select UserFirstName, UserSurname, userid

XML Export and Import

Single data tables or whole Datasets with multiple tables can be exported
to XML files:

Export to XML
STable.WriteXml ("H:\demo\WPS\B_Database\users.xml")
STable.WriteXmlSchema ("H:\demo\WPS\B_Database\users.xsd")

The export of the XML Schema (XSD) is useful for the later re-import
of the XML document to a DataSet:

Import DataSet XML

STable = New-Object System.Data.DataTable
$Table.ReadXmlSchema ("H: \demo\WPS\B_Database\users.xsd")
$Table.ReadXml ("H: \demo\WPS\B_Database\users.xml")
$Table | ft

396 CHAPTER 22 ADVANCED DATABASE OPERATIONS

Data Access with the www.IT-Visions.de PowerShell

Extensions

Data access through ADO.NET classes is somewhat “gossip” because of
the necessary handling of connections, commands, and adapters. However,
in most cases, only standard options are required.

The www.IT-Visions.de PowerShell extensions provide the following
commandlets to facilitate data access:

Test-DbConnection Shows (True/False), if a connection can
be created.

Invoke-DbCommand Executes an SQL command on the data
source. The return value is a number indicating how many rows
were affected.

Get-DataTable Displays a data volume according to an SQL
command from a data source in form of a volume of DataRow
objects (see Figure 22.3).

Get-DataRow Delivers a row from a data source in the form of an
ADO.NET DataRow object. If the indicated SQL command
retrieves more than one row, only the first row is displayed (see
Figure 22.4).

Set-DataTable Saves changes in a DataTable object in the data
source.

Set-DataRow Saves changes in a DataRow object in the data
source.

All commandlets are based on provider-neutral programming. As long
as commandlets expect a connecting string, they also allow the setting of a
provider (parameter ~Provider). The setting of a provider is the optional,
standard setting "MssQL". Other possible values are "OLEDB", "ODBC",
"ORACLE", and "ACCESS". Note that these short forms are expected, not
the full provider-invariant name.

www.IT-Visions.de
www.IT-Visions.de

397

DATA ACCESS WITH THE WWW.IT-VISIONS.DE POWERSHELL EXTENSIONS

awerShell - Holger Sch

21
28 Get—DbTable —connection 'Data Source

“SQLEXPRESS ;AttachDbFilenam

N

loy\Datenbhanken\WorldWidel

ngs.ndf ; Integrated Sec

User Instance-True" —sq

FL_Abf1
ugort

Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Berlin
Fran

Fran

Fran

Fran

Fran

Fran

Fran

Hanhurg
Hanburg
Hanhurg
Hanburs

FL_Ziel

ort

Fran...
Miinchen
Hamburg

Gln. ..

Rom
London

Miinchen
Hamburg
Sln. ..
Rom
London
Paris

Mailand

Fran...
Hamburg
Kéln...
FRom
London

aris
Mailand
Prag
Moskau
New ...
Seattle
Esse...
aps. ..
Madrid
Oslo
Dallas
Berlin

elect = from FL_Fluege

FL_Datu FL_Nich FL_Plae FL_Frei FL_PI_M FL_Anza FL_Eing
n tRauche tze ePlaetz I_Mitar hlStart er

rFlug heiterN s
»

True
True
True
Irue
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
Irue
True
True
True
True

True

ty=True;Connect Timeou!
t

Figure 22.3 Use of Get-DataTable to access a Microsoft SQL Server table

containing flight data

'owershell - Holger Schwichtenberg (www.IT:

Windows PowerShell

Copyright (C)> 2086 Hicrosoft Corporation. All rights reserved.

1# Get—DhRow "Provider=Hicrosoft.Jet.OLEDB.4.8;Data Source

tenbanken\users.ndh;

UserlD
UserContainer
UserficcountNane
UserFirstnane

UserSurnane
UserDescription
UserCreateDate
UserSID
UserGUID
UserPhoto
UserPassword

Select * from users

i
WinNT : //Friends
AfArucaSchuake
fAyse
Aruca—Schuake

B8.11.2004 B0:20:08

Zprovider ACCESS

deno“PowerShellDa

A1 8500000000B005 15000000431 7003223F31F663DBERACS BFAG3 B00A

Figure 22.4 Use of Get-DataRow to access the first dataset in an Access table

N
N
B
>
2
>
=
ray
m
o
4
=
=
>
wv
m
(=]
-
m
=
2
(=]
H
wv

www.IT-VISIONS.DE

398 CHAPTER 22 ADVANCED DATABASE OPERATIONS

Example

The script in Listing 22.3 shows the previously discussed commandlets in
action. The script executes all jobs of the prior scripts, but much more con-
cisely! (Figure 22.5 shows the output.)

Listing 22.3 Database Access with the PowerShell Extensions of www.IT-Visions.de

Requirements: www.IT-Visions.de Commandlet Extension Library
http://www.PowerShell doctor.de

Parameters

SSQL = "Select * from users order by UserSurname"
SConn = "Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=H: \demo\PowerShell\B_Databases\users.mdb;"
SProvider = "ACCESS"

M Test database connections:"
test-dbconnection -connection $Conn -provider S$Provider

M —— Execute Commands:"

$SSQL1 = "Select count(*) from users"

$SSQL2 = "insert into users (UserFirstName,
w{serSurname) values ('Hans', 'Meier')"

$SQL3 = "delete from users where UserSurname='Meier'"

invoke-ScalarDbCommand -connection $Conn
w_sgl $SQL1 -provider S$Provider
invoke-DbCommand -connection S$Conn
w_sgl $SQL2 -provider S$Provider
invoke-ScalarDbCommand -connection $Conn
w_sgl $SQL1 -provider S$Provider
invoke-DbCommand -connection S$Conn
w_sqgl $SQL3 -provider S$Provider
invoke-ScalarDbCommand -connection $Conn
w_sqgl $SQL1 -provider S$Provider

R Get Data "
Stable = Get-DbTable -connection $Conn
w_sqgl $SQL -provider S$Provider
$table | ft

www.IT-Visions.de

DATA ACCESS WITH THE WWW.IT-VISIONS.DE POWERSHELL EXTENSIONS 399

Memmm - Select Row "
Srow = Stable | where { $_.usersurname -eq "Pfister" }

Memmm - Change Row "
Srow.UsercreateDate = [DateTime] "11/11/2005"

fommm e Update Data "
$table | Set-DbTable -connection $Conn -sqgl $sql
w_provider $Provider -verbose

o
N
=
2
=
=
n
m
o
4
=
=d
>
wv
m
(=]
-
m
el
=
=]
=
wv

T Get Row"
$SQL = "Select * from users where usersurname = 'Pfister'"
Srow = Get-DbRow $Conn $SQL $Provider

I Pomerthell - olges St bl prerg (s T-Visions.de] - [Russing as Ad

Figure 22.5 Output of the script in Listing 22.3

www.IT-VISIONS.DE

400 CHAPTER 22 ADVANCED DATABASE OPERATIONS

Summary

In this chapter, you learned how to use the Dataset as a disconnected
offline cache for data. This use, in contrast to the DataReader, allows
changing data and writing the changes back to the database through the
use of a data adapter.

However, you saw that a few steps are necessary each time you work
with a Dataset. This can be shortened a lot by the use of the www.
IT-Visions.de PowerShell Extension Library, which provides easy-to-use
commandlets such as the following:

Test-DbConnection
Invoke-DbCommand
Get-DataTable
Get-DataRow
Set-DataTable
Set-DataRow

www.IT-Visions.de
www.IT-Visions.de

CHAPTER 2 3

SECURITY SETTINGS

In this chapter:

Windows Security Basics 402
Classes . ..o 406
Reading ACLs 408
Reading ACEs 410

This chapter covers the management of access control lists for files, direc-
tories, and registry keys. The access control list is a crucial concept of
Windows that controls access to resources. Resources such as file system
objects and registry entries are protected by access control lists (ACLs).
Windows PowerShell (WPS) offers two built-in commandlets for working
with ACLs:

m Get-Acl Read the ACL of a resource
m Set-Acl Write the ACL of a resource

They include the basic functions of downloading and saving an ACL,
depending on the displayed resource path. With WPS 1.0, however, only
the file system and the registry are supported.

NOTE Besides the previously named commandlets, you need some knowledge
from the .NET namespace System. Security.AccessControl for the
manipulation of ACLs.

401

402 CHAPTER 23 SECURITY SETTINGS

Windows Security Basics

For a better understanding using and changing security settings, the basics
of Windows security are presented here.

Accounts

User and groups are entities that can have rights on resources. There are
three different ways to describe an account:

m Account name (for example, \\itv\hs)
m Security identifier, SID (for example, S-1-5-32-544)
m SDDL security identifier (for example, “BA”)

A SID is a number array in variable length. In text form, the SID is indi-
cated with a starting S.

Security Descriptors

Each resource (for example, a file, a folder, an entry in the Active Direc-
tory, a registry key) possesses a so-called security descriptor (SD) for the
saving of the access controls. An SD consists of three parts:

m The owner’s security identifier (SID) of the account
m The discretionary ACL (DACL), which describes the access control
m The system ACL (SACL), which contains the auditing settings

Access Control Lists

An access control list (ACL) (DACL and SACL) consists of access control
entries (ACEs). In turn, an ACE contains the following information:

m Identity (trustee). The SID of the user or the group of users.

m Access mask. The access mask defines the rights for the trustee.
For each object type (for example, file system entry, registry entry,
Active Directory entry), there are different possible rights a trustee
can receive. Each right is a bit of a combination of bits with a 32-bit
integer value. As a rule, an access mask consists of an addition of
several single access rights.

WINDOWS SECURITY BASICS 403

m Access control type. The type is either ALLOW or DENY.

m Inheritance flags. Inheritance of rights is controlled via the inher-
itance flags. ObjectInherit means that subordinated leaf objects
(for example, files in the file system) derive their setting from the
ACE. containerInherit means that subordinated container
objects derive their setting from the ACE (for example, folder in the
file system). ObjectInherit and ContainerInherit can be com-
bined. Alternatively, you can define that no inheritance takes place
(NONE).

m Propagation flags. Inheritance is further controlled via the propa-
gation flags. InheritOnly means that the ACE is derived only, but
does not work on the current object itself. NoPropagateInherit
means that the ACE is derived but cannot be derived again by the
deriving objects.

Access Masks
Table 23.1 contains the possible rights for entries in the file system.

NOTE The following table is quoted unchanged from the MSDN documentation
[MSDNOT1]. The author of the table is Microsoft.

Table 23.1 Access Rights on the Windows File System

Right Description

AppendData Specifies the right to append data to the end of
a file.
ChangePermissions Specifies the right to change the security and

audit rules associated with a file or folder.

CreateDirectories Specifies the right to create a folder.
This right requires the synchronize value.
Note that if you do not explicitly set the
Synchronize value when creating a file or
folder, the synchronize value will be set
automatically for you.

(continues)

N
w
.
wv
m
fa)
(—
=
=
=<
W
m
=
=
=
@
v

404 CHAPTER 23 SECURITY SETTINGS

Table 23.1 Access Rights on the Windows File System (continued)

Right Description

CreateFiles Specifies the right to create a file.
This right requires the synchronize value.
Note that if you do not explicitly set the
Synchronize value when creating a file or
folder, the synchronize value will be set
automatically for you.

Delete Specifies the right to delete a folder or file.

DeleteSubdirectoriesAndFiles Specifies the right to delete a folder and any
files contained within that folder.

ExecuteFile Specifies the right to run an application file.

FullControl Specifies the right to exert full control over a
folder or file, and to modify access control and
audit rules. This value represents the right to
do anything with a file and is the combination
of all rights in this enumeration.

ListDirectory Specifies the right to read the contents of a
directory.
Modify Specifies the right to read, write, list folder

contents, delete folders and files, and run
application files. This right includes the
ReadAndExecute right, the write right, and
the Delete right.

Read Specifies the right to open and copy folders or
files as read-only. This right includes the
ReadData right, ReadExtendedAttributes
right, ReadAttributes right, and
ReadPermissions right.

ReadAndExecute Specifies the right to open and copy folders or
files as read-only, and to run application files.
This right includes the Read right and the
ExecuteFile right.

ReadAttributes Specifies the right to open and copy file system
attributes from a folder or file. For example,
this value specifies the right to view the file
creation or modified date. This does not
include the right to read data, extended file
system attributes, or access and audit rules.

WINDOWS SECURITY BASICS 405

Right Description

ReadData Specifies the right to open and copy a file or folder.
This does not include the right to read file system
attributes, extended file system attributes, or access
and audit rules.

ReadExtendedAttributes Specifies the right to open and copy extended file
system attributes from a folder or file. For example,
this value specifies the right to view author and content
information. This does not include the right to read
data, file system attributes, or access and audit rules.

ReadPermissions Specifies the right to open and copy access and audit
rules from a folder or file. This does not include the
right to read data, file system attributes, and extended
file system attributes.

Synchronize Specifies whether the application can wait for a file
handle to synchronize with the completion of an I/O
operation.

The Ssynchronize value is automatically set when
allowing access, and automatically excluded when
denying access.

The right to create a file or folder requires this value.
Note that if you do not explicitly set this value when
creating a file, the value will be set automatically

for you.

TakeOwnership Specifies the right to change the owner of a folder or
file. Note that owners of a resource have full access to
that resource.

Traverse Specifies the right to list the contents of a folder and to
run applications contained within that folder.

Write Specifies the right to create folders and files, and to
add or remove data from files. This right includes the
WriteData right, AppendData right,
WriteExtendedAttributes right, and
WriteAttributes right.

WriteAttributes Specifies the right to open and write file system
attributes to a folder or file. This does not include the
ability to write data, extended attributes, or access and
audit rules.

(continues)

N
w
.
wv
m
fa)
(—
=
=
=<
W
m
=
=
=
@
v

406 CHAPTER 23 SECURITY SETTINGS

Table 23.1 Access Rights on the Windows File System (continued)

Right Description

WriteData Specifies the right to open and write to a file or
folder. This does not include the right to open and
write file system attributes, extended file system
attributes, or access and audit rules.

WriteExtendedAttributes Specifies the right to open and write extended file
system attributes to a folder or file. This does not
include the ability to write data, attributes, or
access and audit rules.

Classes

The namespace System. Security.AccessControl contains numerous
classes for the administration of rights (ACLs). For each kind of resource
whose ACLs can be administered, the namespace AccessControl offers
one class derived from System.Security.AccessControl.Object-
Security. For example, System.Security.AccessControl.
FileSecurity is used to read and process the ACLs of a file in the file
system.

Figure 23.1 shows these classes in the inheritance tree of the NET
class library. The other resources indicated there (for example, Active
Directory) cannot yet be called via Get-acl. A direct call via the .NET
class library, however, is possible.

Members of the Class Object Security

The basic class ObjectSecurity derives, among others, the following
members, so that they are provided in all subordinate classes:

m GetOwner () Displays the owner of the resource.
m SetOwner () Sets the owner of the resource.
m GetAccessRules() Displays a list of ACEs. The return value

has the type AuthorizationRuleCollection. The contained
objects are dependent on the resource type (for example,
FileSystemAccessRule or RegistryAccessRule).

CLASSES 407

m GetAuditRules() Displays the entries of the system ACL

(SACL).
m IsSddlConversionSupported Indicates, whether the ACL can

be expressed in SDDL.
B GetSecurityDescriptorSddlForm() Delivers the ACL as an

SDDL string.

{ commonobjectsecanty (3 |
batract Class {
b Objectsecurity

{ DirectoryObjectsear...
i Abstract Class

: =+ ObjectSecurity
a

ActiveDirectorys... (¥) i NativeObjectSecurdy (%) |
Clasz i Abstract Clazs |
b DirectoryObijectSecurty ¢ b CommonObjectSecurty |
2 i)

,,,,,,,,,,,,,, [I J

RegistrySecurity (¥ CryptoKeySecurity (%) ! Ftesystemsecurty [¥) | MutexSecurity 63 EventWaitHandl... (¥
Sealed Class Sealed Class Abstract Class § Sealed Class Sealed Class

4 NativeObjectSecurity # NativeObjectSecurity © b NativeObjectSecurity = NativeObjectSecurity + NativeObjectSecurity
E=] 2 a3 2 &=l

DirectorySecurity (%)
Sealed Class

- FleSystemSecurity
=

Figure 23.1 Inheritance hierarchy of the classes used for the saving of the ACL

Resource Classes

Throughout the whole .NET class library, you will find classes that possess
a method GetAccessControl () and display an object derived from the
class ObjectSecurity (see Table 23.2).

N
w
.
wv
m
[a)
(—
=
=
-
wv
m
=
=
=
(]
v

408 CHAPTER 23 SECURITY SETTINGS

Table 23.2 Security Classes for Different Resources

Enumeration

Resource Class Class for ACL Class for ACE for Rights
System.IO. FileSystemSecurity FileSystemAccessRule FileSystemRights
File
System.IO. DirectorySecurity FileSystemAccessRule FileSystemRights
Directory
System.IO. FileSystemSecurity FileSystemAccessRule FileSystemRights
FileInfo
System.IO. DirectorySecurity FileSystemAccessRule FileSystemRights
DirectoryInfo
Microsoft.Win32. RegistrySecurity RegistryAccessRule RegistryRights
RegistryKey

User Accounts and SIDs

The namespace System.Security.AccessControl uses classes from
System.Security.Principal to present control holders (users and
groups). System.Security.Principal supports the two indicators
known for control holders in Windows:

m Account name (for example, ITVisions\hs) via the class
System.Security.Principal .NTAccount

m Security Identifier (for example, S-1-5-21-565061207-3232948068-
1095265983-500) via the class System.Security.Principal.
SecurityIdentifier

Reading ACLs

Get-Acl provides instances of the following .NET classes, depending on
the resource type:

B System.Security.AccessControl.DirectorySecurity (for
directories)
m System.Security.AccessControl.FileSecurity (for files)

READING ACLS 409

m System.Security.AccessControl.RegistrySecurity (for

registry keys)

Get-Acl expects as a parameter the path of the resource whose ACL
will be displayed, as follows:

Get-Acl hklm:/software/www.IT-visions.de
Get-Acl j:\projects

Get-Acl j:\projects\content.csv

Standard output is executed with Format-Table. The output with
Format-List is obvious, and the output is thus easier to read.

Figure 23.2 demonstrates the application of Get-Ac1 to a directory in
the file system. Figure 23.3 shows the same ACL in Windows Explorer.

NOTE Note that Access is not an attribute of the .NET class
ObjectSecurity; instead it is a PowerShell code property that calls
GetAccessRules () internally. The return value is in both cases an
AuthorizationRuleCollection.

: Microsoft.PowerShell.Core~FileSysten::J:\Projects
: BUILTIN“Adni

trators Allow FullControl
ITUNConsultants Allow Modifvy, Synchronize
ITUNHanagenent fillow FullControl
ITU~developers Allow ReadAndExecute. Synchronize

: O:BAG:DUD:PAICA;OICIsFA;;sBAYCASOICI ;Bx1381bf ;55 ;558-1-5-21-1973890784-14
8174113-2732654181-1224>CA0ICI ;FA;;358-1-5-21-1973890784-1460174113-273
%gS:;g%;lZZB)(H;OICI;BleBBa?;;;3—1—5—21—1973890784—140174113—27326541

Figure 23.2 Fetching an ACL

N
w
b
W
m
fa)
[
=
=
-
W
m
-
=
=
@
wv

410

CHAPTER 23 SECURITY SETTINGS

Projects Properties

21

General | Shaing Seeuity | web Sharing | Customize |

€70 Administators [E01 \Administrators)
€7 Consultants (I TVAConsultants)

€7 Developers (ITVhdevelopers)

€71 Management (ITV\Management]

Advanced Security Settings for Projects

Permissions | Audiing | Ovner | Effective Permissions
To view more nformation abou special permissions, select a permission entty, and then click Edit

Peimission enfries:

Type | Mame | Permission [Inherited From | Apply To
Add [Allow Admirshators [EOTVA.. Full Control <notinkenled> T his folder, subfolders..
Allow Consultants (TVACon... Modify <natinherted> This folder, subfolders..
Permissions for Developers s | | Allow Developers (TV\dev.. Read&Ewecute <notinheited> This folder, subfolders..
Alow Management ITVAM... Full Control <natinkerted> This folder, subfolders.
Full Contral
Permission Entry for Projects 2lx|
Madiy
Riead & Execute Object |
List Folder Contents
Ffiead Add. Edt. Name: [Cansultants [TYNCorsaltarts) Change
Wite —
CoccilDoincines [Allow inheritable permissions from the pare | Apply gnta: [This folder, subfolders and iss =l
For special permissions of for advanced setl these with entries explicitly defined here
click Advanced -) Pemissions Allow Deny
I™ Replace pemission entiies on all child ob
Full Contral m]
Traverse Folder / Execute File
0K c List Folder / Read Data
Leam more about access control Read Attributes
Read Extended Attibutes
Create Files /Wite Data

Creats Folders / Append Dats
Write Attributes

‘wiits Extended Attributes
Delete Subfolders and Files O
Delete
Rea

-

Apply these permissians to objects and/or
cantainers within this container only

000000000000

L«

Clear Al

e [

0K Cancel

Figure 23.3 Actual settings

Reading ACEs

If you want to take a closer look at the single ACEs of a system module,
you should iterate via the ACL yourself. The list of the type
AuthorizationRuleCollection
GetAccessRules ()

displayed by

tain the following attributes:

IdentityReference
control
FileSystemRights Rights

AccessControlType Control type (allowed or denied)
IsInherited Indicates, whether the rule is inherited
InheritanceFlags

Access
contains, as far as the file system is concerned,
objects of the type FileSystemAccessRule. These objects, in turn, con-

Subject (user or group) holding access

Indicates the kind of downward derivation

READING ACES 411

User accounts can be expressed in two ways: in clear text or via SIDs.
When you use GetAccessRules (), you have to indicate how you want to
view the user: [System.Security.Principal.NTAccount] (clear text)
or [System.Security.Principal.SecurityIdentifier] (SID).
Before this, the method has two parameters that enable you to control
which rules you want to look at: the rules set explicitly on the object (first
parameter) and the inherited rules (second parameter). Explicit ACEs
always hold the first place in the list.

Code property access is equivalent to GetAccessRules ($true,
$true, [System.Security.Principal.NTAccount]). If you want to
get other information, you have to use GetAccessRules () explicitly. In
Listing 23.1, the second output of the list (see Figure 23.4) shows only the
inherited rules in SID form.

Listing 23.1 Display Details from the ACEs

Sa = Get-Acl "j:\projects\"

Saces =$a.access

or: Saces =S%Sa.GetAccessRules (Strue, S$true,
w [System.Security.Principal .NTAccount])

Write-Host "All ACEs, account name form:" -F yellow
foreach (Sace in Saces)

{

write-host S$ace.IdentityReference.ToString() " has "
wSACE.FileSystemRights SACE.AccessControlType " Inherited?"
w SACE.IsInherited

N
W
:
wv
m
[a)
(—
=
=
=<
wv
m
i
=
=
@
3

Sa = Get-Acl j:\projects

Saces =S$a.GetAccessRules ($true, S$false,
[System.Security.Principal.SecurityIdentifier])

Write-Host "Only explicit rules, SID form:" -F yellow
foreach (Sace in S$aces)

{

write-host Sace.IdentityReference.ToString() " has "
wSACE.FileSystemRights $ACE.AccessControlType " Inherited?"
wSACE. IsInherited

}

412 CHAPTER 23 SECURITY SETTINGS

'owershell - hs [elevated user] -

Windows PowerShell
Copyright (C)> 20886 Hicrosoft Corporation. All rights reserved.

H: “deno“UPS

1# H:sdeno“UPS\B_Securitys\Filesysten_ACL_Read._p=i

All ACEs, account name forn:

BUILTIN“Adninistrators has FullControl Allow Inherited? False

ITUNConsultants has HModify, Synchronize Allow Inherited? False

ITUNHanagement h. FullControl Allow Inherited? False

ITU~Ndevelopers h ReadfindExecute, Synchronize Allow Inherited? False

Only explicit rules, SID form:

5-1-5-32-544 hat Zugang FullControl Allow Uererht? False
§-1-5-21-19738908784-140174113-2732654181-1224 hat Zugang Modify. Synchronize A1l
ow Uererbt? False

£-1-5-21-1973890784-140174113-2732654181-1226 hat Zugang FullControl Allow Uerer|
ht? False

£-1-5-21-1973890784-140174113-2732654181-1227 hat Zugang ReadfAndExecute, Synchro
nize Allow Vererbht? False

Figure 23.4 Output of the script in Listing 23.1

Summary

The programmatic access to security settings is one of the most difficult
areas of system administration. In this chapter, you learned about the use
of the commandlets Get-aAcl and Set-Acl in connection with the .NET
classes from the System. Security.AccessControl library. You learned
how to display ACLs and how to access each ACE within the list.

CHAPTER 2 4

ADVANCED SECURITY
ADMINISTRATION

In this chapter:

Account Identifier Translation 413
Reading the Owner 417
AddingaNew ACEtoan ACL 418
Removing an ACE froman ACL 421
Transferring ACLs 424
Setting ACLs Using SDDL 425

This last chapter covers all the write operations that can be performed on
access control lists (ACLs) and access control entries (ACEs). Examples in
this chapter include

Reading the owner of a resource

Adding a new access control entry to access control lists

Removing an access control entry from an access control list
Transferring access control lists from one resource to another
Setting access control lists using the Security Descriptor Definition

Language (SDDL)

Account Identifier Translation

As we prepare to modify ACLs, you learn in this section three different
ways of representing accounts and about the conversion between them.

413

414 CHAPTER 24 ADVANCED SECURITY ADMINISTRATION

Converting between Username and Security
Identifier

If you want to display the security identifier (SID) of any user (see Listing
24.1), you can also create an instance of System.Security.Principal.
NtAccount by indicating the username in text form and calling
Translate () afterward.

Listing 24.1 Displaying the SID

Translate account name to SID

SAccount = new-object system.security.principal.ntaccount ("itv\hs")

$SID =
wSAccount.Translate([system.security.principal.securityidentifier]) .value
- $STD

Translate SID to account name

SAccount = new-object system.security.principal.securityidentifier

W ("S-1-5-32-544")

SName = S$Account.Translate([system.security.principal.ntaccount]) .value
SName

Using Well-Known SIDs

Besides users and groups, Windows also knows pseudo-groups such as
Everybody, Interactive User, and System. These groups are called well-
known security principals. To change the security settings, you need the
SIDs shown in Table 24.1. (Listing 24.2 shows access via an SID.) In the
Active Directory, the well-known security principals are saved in the
ConfigurationNamingContext in the container cn=Well Known
Security Principals. However, you will not find these users in the
DefaultNamingContext.

WARNING Do not confuse the well-known security principals with the built-in
accounts (for example, Guests, Administrators, Users). You will find the latter in
the Active Directory in the Defaul tNamingContext in cn=BuiltIn.

ACCOUNT IDENTIFIER TRANSLATION 415

Table 24.1 SIDs of the Well-Known Security Principals
Well-Known Security Principal SID

Anonymous logon
Authenticated users
Batch

Creator group
Creator owner
Dialup

Enterprise domain controllers
Everyone
Interactive
Network

Proxy

Restricted

Self

Service

System

Terminal server user

1;1:0;0;0:0,0;5;7:0;0;0
1;1,0,0,0;0;0;5;11;0;0;0
1:1:0;0;0:0,0;5;3:0;0;0
1,1,0;0,0,0;0,3;1;0,0,0
1;1;0;0.0.0.0.3;0,0;0;0
1,1,0,0,0;0;0;5;1,0,0;0
1:1:0;0;0:0,0;5;9:0;0;0
1,1,0;0,0,0;0,1,0;0,0,0
1:1:0;0;0:0,0;5;4:0,0;0
1,1,0,0,0;0;0;5;2;0,0;0
1:1:0;0;0:0,0;5;8:0;0;0
1;1,0,0,0;0;0;5;12;0;0;0
1;1:0,0;0:0,0;5;10.0;0;0
1,1,0,0,0;0;0;5,6,0,0;0
1:1:0,0;0:0,0;5;18:0;0;0
1;1,0,0,0;0;0;5;13;0;0;0

The .NET class library provides an enumeration System.Security.

Principal.WellKnownSidType that you can use for the instancing of the
class securityIdentifier. You can thus avoid the language-specific dif-
ferences of the operating system (for example, the English Guests is
named Giste on German operating systems).

Listing 24.2 Access to an Account via the SID

Well-Known Security Identifier
$SID = [System.Security.Principal.WellKnownSidType]::
wBuiltinAdministratorsSid

SAccount = new-object system.security.principal.securityidentifier

w (STD, Szero)

SName = S$Account.Translate([system.security.principal.ntaccount]) .value
SName

N
P
>
2
=
=
o)
m
o
wv
m
o)
(—
=
=
-
>
(=4
=
=
7]
=
Fd
5
o
=

416 CHAPTER 24 ADVANCED SECURITY ADMINISTRATION

Some built-in users and groups contain the SID of the domain within
their own SID. In this case, when an instancing of the class
SecurityIdentifier is executed, the domain SID has also to be indi-
cated. Unfortunately, the documentation remains silent with regard to how
the domain SID can be fetched with .NET methods. Even on the World
Wide Web, there is not yet an example for this.

SDDL Names

Another possibility for an access to built-in users and groups is the use of
the abbreviations for built-in users and groups (see Table 24.2 and Listing
24.3) as defined in the Security Descriptor Definition Language (SDDL).

Listing 24.3 Displaying a SID from an SDDL Abbreviation

SDDL name
SAccount = new-object System.Security.Principal.SecurityIdentifier ("BA")
SAccount.Value

Table 24.2 SDDL Abbreviations for Built-In Users and Groups

SDDL Abbreviation Meaning

"AO" Account operators
"AN" Anonymous logon
"AU" Authenticated users
"BA" Built-in administrators
"BG" Built-in guests

"BO" Backup operators

"BU" Built-in users

"CA" Certificate server administrators
"CG" Creator group

"Co" Creator owner

"DA" Domain administrators
"DC" Domain computers
"DD" Domain controllers
"DG" Domain guests

READING THE OWNER 4]7

SDDL Abbreviation Meaning

-
EAY
VED"
D"
pA"
f—
LAY
-
e
-
g
"o
NS
PO
'pg
-
VRS
VRD"
VRE"
-
-~
5o
vsy

Domain users

Enterprise administrators
Enterprise domain controllers
Everyone

Group Policy administrators
Interactively logged-on user
Local administrator

Local guest

Local service account

Local system

Network logon user
Network configuration operators
Network service account
Printer operators

Personal self

Power users

RAS servers group
Terminal server users
Replicator

Restricted code

Schema administrators
Server operators

Service logon user

Reading the Owner

You can read the owner of a system module via the code property owner
from the object derived from objectsecurity and extended by Windows
PowerShell (WPS), which Get-acl retrieves. Alternatively, you can use
Getowmer () and choose again which form is to be used (see Listing 24.4).
Conversion between the two forms of the user presentation is also possible
with the method Translate().

N
P
>
2
=
=
o)
m
o
wv
m
o)
(—
=
=
-
>
(=4
=
=
7]
=
Fd
5
o
=

418 CHAPTER 24 ADVANCED SECURITY ADMINISTRATION

Listing 24.4 Read User Information

"owner information:"

Sa = Get-Acl j:\projects

$a.Owner

Sa.GetOwner ([System.Security.Principal .NTAccount]) .Value
Sa.GetOwner ([System.Security.Principal.SecurityIdentifier]) .Value

Converting between account name and SID
Saccount = $a.GetOwner ([System.Security.Principal.NTAccount])
Saccount.Translate([system.security.principal.securityidentifier]) .value

Converting between SID and account name
Saccount = $a.GetOwner ([System.Security.Principal.SecurityIdentifier])
Saccount.Translate([system.security.principal .NTAccount]) .value

Adding a New ACE to an ACL

Listing 24.5 demonstrates the adding of an ACE to an ACL of a file in the
file system. New ACEs of the type FileSystemAccessRule need five
indications:

m Account Object (NTAccount Object or SecurityIdentifier
object)

m Access control rights to be granted (values from the
FileSystemRights enumeration)

m Targets of the inheritance (values from the InheritanceFlags
enumeration)

m Type of inheritance (values from the PropagationFlags
enumeration)

m Type of rule: Allow or deny (values from the AccessControlType
enumeration)

ADDING A NEW ACE Ta AN ACL 419

The following script grants a user reading rights to a directory (see
Figures 24.1 and 24.2).

Listing 24.5 Add an ACE

Adding an ACE to an ACL: Set read permissions for a user

Parameters

SDIR = "j:\projects"
SUSER = "HS"
Get ACL

SACL = Get-Acl S$DIR

"ACL before:"
$acl | format-list

Define ACE
SRights = [System.Security.AccessControl.FileSystemRights]
w "ReadData, ReadExtendedAttributes, ReadAttributes, ReadPermissions"
SAccess=[System.Security.AccessControl.AccessControlType]::Allow
SInherit=[System.Security.AccessControl.InheritanceFlags]::
wContainerInherit °

-bor [System.Security.AccessControl.InheritanceFlags]::
wObjectInherit
SProp=[System.Security.AccessControl.PropagationFlags]: :InheritOnly
SAccessRule =
wnew-object System.Security.AccessControl.FileSystemAccessRule

(SUSER, SRights, SInherit, SProp, SAccess)

Add ACL to ACE
SACL.AddAccessRule (SAccessRule)

Save ACL
Set-Acl -AclObject S$SACL -Path S$DIR

Controle
SACL = Get-Acl SDIR

"ACL afterwards:"
$acl | format-list

N
P
>
2
=
=
o)
m
o
wv
m
o)
(—
=
=
-
>
(=4
=
=
7]
=
d
5
o
=

420 CHAPTER 24 ADVANCED SECURITY ADMINISTRATION

TIP When several flags have to be set in a parameter, they have to be linked
together through an OR (operator ~bor in WPS language):

SRights= [System.Security.AccessControl.FileSystemRights]::
wRead

-bor [System.Security.AccessControl.FileSystemRights]::
wReadExtendedAttributes °

-bor [System.Security.AccessControl.FileSystemRights]::
wReadAttributes °

-bor [System.Security.AccessControl.FileSystemRights]::
wReadPermissions

To be more concise, you can also write the enumeration values in a string, sepa-
rated by commas:

SRights = [System.Security.AccessControl.FileSystemRights]
w"ReadData, ReadExtendedAttributes, ReadAttributes,
wReadPermissions”

owerShell - hs [elevated user]

ndows PowerShell
pyright (C> 20886 Microszoft Corporation. All rights reserved.

H:“deno“UPS
1% H:sdeno“WPS“B_Security Filesysten_ACL_Write.psl
ACL hefore:

: Hicrosoft.PowerShell.CoresFileSysten: :J:\projects

= BUILTIN“Administrators

= ITUNDonain U 5

H BUILTIN\Rdnlnlﬁtrator“ Allow FullControl
ITUNConsultants Allow MHodify. Synchronize
ITUNHanagement fllow FullControl
ITUNdevelopers Allow ReadAndExecute, Synchronize

: O:BAG:DUD:PAICA;OICI;FA; ;s BAYCA;OICT ;8x1381bf 55;5;58-1-5-21-1273890784-14
0174113-2732654181-1224>CA;0ICI ;FA;;;8-1-5-21-1973890784-1460174113-273
555:53%;1226)(9;0101;BxiZBBa?;;;3—1—5—21—1973898784—148174113—27326541

ACL aftervards:

Hicrosoft.PowerShell.CoresFileSysten::J:\projects
= BUILTIN“Administrators

ITUSDomain Use
= BUILTIN“Administrators Allow FullControl

ITUSHS Allow Read, Synchronize

ITUNConsultants Allow Modify. Synchronize

ITUNHanagenent fillow FullControl

ITUNdevelopers Allow ReadAndExecute, Synchronize

= O:BAG:DUD:PAICA;OICI;FA;;;BAYCASOICITO;FR; ;5;58-1-5-21-1973890784-140174
113-2732654181— 1118)(9 0ICI; Bx1381bf,,,3 1-5-21-1973890784-140174113-2
732654181-1224>(A; OICI,FR,,,S—i—S 21-1973890784-140174113-2732654181-1
2262<A;0ICI; BxiZBBa?,,,S 1-5-21-1973898784-140174113-2732654181-1227)

Figure 24.1 Execution of a script that grants reading rights to a user

REMOVING AN ACE FROM AN ACL 421

Projects Properties 21

General | Sharing Secuity | web Sharing | Custorrize |

Group or user names:
€T Admiristrators (E01\Adminisbators)

€7 Consultants (I TVAConsultants]

€7 Developers (ITV\developers)

€3 Dr. Holger Schwichtenberg (HS@IT-Visions.local)

€ Manegement ITVAManageme Advanced Security Gettings for Projects i 21x|

Permissions | Auditing | Owrer | Effective Permissions

LBermissions for Dr. Holger " Toview more information about special permissions, select a permission entry, and then click Edit
Schwichtenberg
Full Contral Permission enfries: Permission Entry for Projects 21 x|
Hodiy Type | Name Pemission
Object
Read & Execute Allow Administiators [EOTNA... Full Control
List Folder Cantents Allow Dr. Holger Schwichte... Read

Froad Allow Consultants (ITY\Con... Modify Mame: [1Schwichtenberg (HS@IT Visonslocal | Change..

Allow Management (ITWAM.. Full Control

wite
wie Alow Developers [T\Adev... - AlesdExes) ppolyortr [ubladers and s cnl B
For special permissions or for advan Permissions: Allow Deny
click Advanced. e =i
List Folder / Fled Data
i Edit i) Read Atributes
oK
[Allow inheitable permissiansfrom the parent ta Read Eutended Altibutes
these with entries explicitly defined here. Create Files / Wiite Data
Create Folders / Append Data

I™ Replace pemission enties on all child objects v wite Alibutes

Wite Extended Atributes
Delsts Subfolders and Files
Leam more about acoess contral Delete

Flead Pemissians

Change Pemissions

Take Dwnership

- Apply hese pemissions to objects and/or Clear Al

containers within this container only

QK Cancel

O0000000F8EEAQ
0000000000004

Figure 24.2 View of the rights in Windows Explorer

Removing an ACE from an ACL

To remove an ACE from the ACL, you can use the method
RemoveaAccessRule (), which is inherited from NativeObjectSecurity
by all access control classes. The method expects an object of the type
AccessContolEntry as a parameter.

In case you want to remove all entries belonging to a user, you can use
PurgeAccessRules () and indicate a user account object (not the account
name).

Example 1

The script in Listing 24.6 deletes all ACEs belonging to a certain user from
the ACL.

N
P
>
2
=
=
o)
m
o
wv
m
o)
(—
=
=
-
>
(=4
=
=
7]
=
Fd
5
o
=

422 CHAPTER 24 ADVANCED SECURITY ADMINISTRATION

Listing 24.6 Write ACL: Delete All ACEs of a User

Parameters

$SDIR = "j:\projects"
SUSER = "itv\HS"
$Count = 0

Control output
Sacl = Get-Acl $DIR
"ACL previously:"
$acl | format-list

Get ACL
Sacl = Get-Acl j:\projects

SAccount = new-object system.security.principal.ntaccount ("itv\hs")
Sacl.PurgeAccessRules (SAccount)
set-acl -AclObject S$SACL -Path $DIR

Save ACL
set-acl -AclObject S$SACL -Path $DIR

Check output

Sacl = Get-Acl $DIR
"ACL afterwards:"
$acl | format-list

Example 2

The script in Listing 24.7 deletes all ACEs from the ACL in which the right
to read and write has been granted ("ReadandExecute"). Figure 24.3
shows the result.

Listing 24.7 Deleting ACEs from an ACL

Write ACL: Delete all access control entries from an access control
w]list, which contain the right to read and execute ("ReadAndExecute")

Parameters
SDIR = "j:\projects"

REMOVING AN ACE FROM AN ACL

423

SUSER = "itv\HS"
SCount = 0

Control output
Sacl = Get-Acl $DIR
"ACL previously:"
$acl | format-list

Get ACL
Sacl = Get-Acl j:\projects

Access to ACEs
Saces =S%Sacl.GetAccessRules ($true, Strue,
w [System.Security.Principal .NTAccount])

Loop over all ACEs

foreach (Sace in S$aces)

{

Write-host S$ace.IdentityReference.ToString() " has right "
wSACE.FileSystemRights $ACE.AccessControlType " Inherited?"
wSACE. IsInherited

Selectively deleting

if (Sace.FileSystemRights.ToString() -match "ReadAndExecute")
{
"...will be removed..."
SResult = $acl.RemoveAccessRule (Sace)
if (SREsult) { echo "Has been removed!"; $Count++ }
}

}

Save ACL
set-acl -AclObject S$SACL -Path $DIR

echo ($Count.ToString() + " ACEs have been removed!")

Control output
Sacl = Get-Acl $DIR
"ACL afterwards:"
$acl | format-list

N
P
>
2
=
=
o)
m
o
wv
m
o)
(—
=
=
-
>
(=4
=
=
7]
=
d
5
o
=

424 CHAPTER 24 ADVANCED SECURITY ADMINISTRATION

& powershell - hs [elevated user]

Windows PowerShell
Copyright <C> 2086 Microsoft Corporation. All rights reserved.

H = demo WPS
14 H:z\demo\WPS\B_SecurityFilesysten_ACE_DeleteAllReadExecute - psi
ACL proviously:

Microsoft.PowerShell.CoresFileSystem::J:\projects
BUILTINNAdministrators
I1TUNDomain Users

2 BUILTINSAdministrators Allow FullControl
ITUNHP Allow ReadAndExecute. Synchronize
ITUNHSchwichtenberg Allow ReadfAindExecute, Synchronize
ITUNConsultants Allow Modify. Synchronize
ITUNManagement Allow FullControl
1TUndevelopers Allow ReadAndExecute. Synchronize

0:BAG:DUD:=PALCA;OICI;FA;; ;BAXCA;0ICT ;8x1208a?;; ;8-1-5-21-1973890784-14
B174113-2732654181-1123)CA;0ICL ;Bx1200a% ;5 ;8-1-5-21-1973890784-1401741
13-2732654181-1182><n ICI Bx13l1bf §-1-5-21-197389A784-140174113-27
32654181-1224)<CA;01CI H —1973898784-148174113-2732654181-12
263 (A501CI; Ix1280a9; ; = —21 1973890784 140174113-2732654181-1227>

(BUILTINNAdministrators has right FullControl Allow Inherited? False
ITUNHP - has right ReadfndExecute, Synchronize Allow Inherited? False
ill be 1‘emnued -
Has been remo
TU\Hthulchtenhe»g has right ReadAndExecute, Synchronize Allow Inherited? Fa|

A ill be removed
s heen removed?
ght Modify, Synchronize Allow Inherited? False
ight FullControl Allow Inherited? False
has right ReadfAndExecute. Synchronize Allow Inherited? False

heen removed?
have heen
ACL afteruar

Path Hicrosoft.PoucrShell.CoreNFileSysten: sJ: \projects

Ouner = BUILTINAdministrato

Group = ITU Use

Ace : BUILTINNAdmi ators Allow FullControl
1TUNConsultants Allow Modify, Sunchronize
1TU\Hanagement fAllow FullControl

0:BAG:DUD:=PALCA;0ICI5FA BA><A;0IC x13@1bf 55 ;5-1-5-21-1973890784-14
8174113 2732554181 1224)(R OICI;FA; -1-5-21-1973890784-140174113-273
2654181-1226)>

Figure 24.3 Three ACEs have been removed.

Transferring ACLs

The combination of Get-Acl and Set-Acl enables an easy transfer of an
ACL from one file system object to another:

Listing 24.8 File System ACL_transfer.psl

Transfer an ACL from one folder to another
Get-Acl j:\projects | Set-Acl j:\customers

Transfer an ACL from one file to a volume of files

Sacl = Get-Acl j:\projects

Get-ChildItem g:\data | foreach-object { Set-Acl $_.Fullname S$acl;
w"transfer to $_" }

SETTING ACLS UsING SDDL 425

Setting ACLs Using SDDL

The Security Descriptor Definition Language (SDDL) is a text format for
the description of ACLs with single ACEs in Windows (introduced with
Windows 2000).

An example for a SDDL string is as follows:

O:BAG:DUD:PAI (A;;FA;;;BA) (A;0ICI;0x1600a9;;;S-1-5-21-
w»1973890784-140174113-2732654181-1188)

= (A;O0ICI;0x1200a9;;;5-1-5-21-1973890784-
w»140174113-2732654181-1189)

Example

The script in Listing 24.9 uses SDDL to transfer an ACL from one direc-
tory to another. In the meantime, the ACL is stored in the file system
(acl.txt) so that reading and setting are independent from each other, as
regards timing (see Figures 24.4 and 24.5).

Listing 24.9 Transfer of Permissions Using SDDL

Transferring an ACL via SDDL

SSOURCE = "j:\projects"
STARGET

"j:\software"

function replace-acl
{
Param (
SObject,
$SDDL
)
Sacl = Get-Acl $Object
Sacl.SetSecurityDescriptorSddlForm ($SSDDL)

Set-Acl -aclObject Sacl $Object

Read and save SDDL in a text file

N
P
>
2
=
=
o)
m
o
wv
m
o)
(—
=
=
-
>
(=4
=
=
7]
=
Fd
5
o
=

(continues)

‘l:Z(S CHAPTER 24 ADVANCED SECURITY ADMINISTRATION

Listing 24.9 Transfer of Permissions Using SDDL (continued)

(Get-Acl $SOURCE) .SDDL > h:\demo\wps\b_security\acl.txt
Read SDDL from text file
$sddl = Get-Content h:\demo\wps\b_security\acl.txt

replace-acl STARGET $sddl

"The following rights have been transferred: " + $sddl

B PowerShell - hs [elevated user]

Windows PowerShell
Copyright (C) 2886 Microsoft Corporation. All rights reserved.

H:“deno“UPS
18 H:sdeno“WPS\B_SecuritysFilesysten_SDDL.ps1
The following rights have bheen transferred: O:BAG:DUD:PAICA;OQOICI;FA;;;BAXCA;QIC

I;8x1381bf 55;8-1-5-21-1973890784-140174113-2732654181-1224>(A;0ICI;FA;5;8-1-5-2
%—197389B?B4—148174113—2732654181—1226)

Figure 24.4 Successful export and import of rights using SDDL

!', acl.tst - Notepad :_ ;Iglll

File Edit Format Miew Help

p:EAG:DUD:PAI(A;OICI;FA;;;EA)(A;OICI;OX120039;;;5—1—5—21—19738‘:J
00784-140174113-2732654181-1110)(A;0TCT; 0x1301bf;; ;5-1-5-21-19
738590784-140174113-2732654181-1224)(A; 0ICI;FA;;;5-1-5-21-19738
00784-140174113-2732654181-1226)(A;0ICI; 0x1200a8; ; ; 5-1-5-21-18
73800784 -140174113-2732654181-1227)

]

Figure 24.5 Saved ACL in SSDL form

Summary

In this last chapter of this book, you learned how to work with different
security account identifiers (account name, SID, well-known security iden-
tifiers), how to read ACEs, and how to remove them from an ACL.

Also, this chapter covered the transfer of an ACL from one resource to
another. The SDDL is a text representation of an ACL. This enables you
to save an ACL to a file and later write the ACL back to the same or
another resource.

PART 111

APPENDICES

Appendix A PowerShell Commandlet Reference 429
Appendix B PowerShell 2.0 Preview 445

Appendix C Bibliography 449

This page intentionally left blank

APPENDIX A

POWERSHELL COMMANDLET
REFERENCE

This appendix contains a list of all commandlets that are part of Windows
PowerShell (WPS) 1.0, PowerShell Community Extensions Version 1.1.1
(PSCX), and www.IT-Visions.de PowerShell Extensions Version 2.0.

Commandlet Description Product/Version
Add-Content Adds content to the specified item(s). ~ WPS 1.0
Add-DirectoryEntry Adds a directory entry to a container. www.IT-Visions.de
PowerShell
Extensions 2.0
Add-History Appends entries to the session history. ~ WPS 1.0
Add-Member Adds a user-defined custom member WPS 1.0
to an instance of a WPS object.
Add-PSSnapin Adds one or more WPS snap-ins WPS 1.0
to the current console.
Add-User Adds a new user to a directory service. www.IT-Visions.de
PowerShell
Extensions 2.0
Clear-Content Deletes the contents of an item, such ~ WPS 1.0

as deleting the text from a file, but
does not delete the item.

Clear-Item Deletes the contents of an item, but WPS 1.0
does not delete the item.

Clear-ItemProperty Deletes the value of a property, but WPS 1.0
it does not delete the property.
Clear-Variable Deletes the value of a variable. WPS 1.0

429

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

430

APPENDIX A POWERSHELL COMMANDLET REFERENCE

Commandlet

Close-DBConnection

Compare-Object

ConvertFrom-Baseb64

ConvertFrom-

SecureString

Convert-Path

ConvertTo-Base64

ConvertTo-Html

ConvertTo-
MacOs9LineEnding

ConvertTo-
SecureString

ConvertTo-
UnixLineEnding

ConvertTo-
WindowsLineEnding
Convert-Xml
Copy-Item

Copy-ItemProperty

Disconnect-
TerminalSession

Description

Closes an ADO.NET database
connection.

Compares two sets of objects.

Converts base64 encoded string to
byte array.

Converts a secure string into an
encrypted standard string.

Converts a path from a WPS path
to a WPS provider path.

Converts byte array or specified file
contents to base64 string.

Creates an HTML page that repre-
sents an object or a set of objects.

Converts the line endings in the
specified file to Mac OS9 and
earlier style line endings \r.

Converts encrypted standard strings
to secure strings. It can also convert
plain text to secure strings. It is used
wdﬂlConvertFrom—SecureString

and Read-Host

Converts the line endings in the

specified file to UNIX line endings \n.

Converts the line endings in the
specified file to Windows line
endings \r\n.

Performs XSLT transforms on the
specified XML file or xm1Document.

Copies an item from one location
to another within a namespace.

Copies a property and value from a
specified location to another location.

Disconnects a specific remote desktop
session on a system running Terminal
Services/Remote Desktop.

Product/Version

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0
PSCX1.1.1

WPS 1.0

WPS 1.0

PSCX 1.1.1

WPS 1.0

PSCX 1.1.1

WPS 1.0

PSCX 1.1.1

PSCX1.1.1

PSCX 1.1.1

WPS 1.0

WPS 1.0

PSCX1.1.1

www.IT-Visions.de

APPENDIX A POWERSHELL COMMANDLET REFERENCE 431

Commandlet Description Product/Version
Export-Alias Exports information about currently = WPS 1.0
defined aliases to a file.
Export-Bitmap Exports bitmap objects to various PSCX1.1.1
formats.
Export-Clixml Creates an XML-based represen- WPS 1.0

tation of an object or objects and
stores it in a file.
Export-Console Exports the configuration of the WPS 1.0
current console to a file so that you
can reuse or share it.

.>
Il
=]
=
m
=
wv
=
m
fe]
=
(o)
o
=
=
=
=
=]
=
m
-
=
m
-
m
=
m
=
N
m

Export-Csv Creates a comma-separated values WPS 1.0
(CSV) file that represents the input
objects.

ForEach-Object Performs an operation against each ~ WPS 1.0
of a set of input objects.

Format-Byte Displays numbers in multiples of PSCX 1.1.1
byte units.

Format-Custom Uses a customized view to format WPS 1.0
the output.

Format-Hex Displays the contents of files or PSCX1.1.1
byte streams in hex format and
optionally ASCIL.

Format-List Formats the output as a list of WPS 1.0

properties in which each property
appears on a new line.
Format-Table Formats the output as a table. WPS 1.0
Format-Wide Formats objects as a wide table WPS 1.0
that displays only one property
of each object.
Format-Xml Pretty print for XML files and PSCX1.1.1
XmlDocument Objects.

Get-Acl Gets the security descriptor for a WPS 1.0
resource, such as a file or registry key.

Get-ADObject Search for objects in the Active PSCX1.1.1
Directory/Global Catalog.

432 APPENDIX A POWERSHELL COMMANDLET REFERENCE

Commandlet

Get-Alias

Get-

Get-BIOS

Get-CDRomdrive

Get-ChildItem

Get-Clipboard

Get-Command

Get-ComputerInfo

Get-Computername

Get-Content

Get-Credential

Get-Culture

Get-CurrentUser

Get-Date

Get-DbConnection

Description

Gets the aliases for the current session.

AuthenticodeSignature Gets information about the Authenti-

code signature in a file.

Gets information about the BIOS on
a local or remote computer

Gets information about the CD-ROM
drives on a local or remote computer

Gets the items and child items in one
or more specified locations.

Gets data from the clipboard.

Gets basic information about cmdlets
and about other elements of WPS

commands.

Gets information about the local

computer.

Gets the name of the local computer.

Gets the content of the item at the

specified location.

Gets a credential object based on a
username and password.

Gets information about the regional

settings on a computer.

Gets information about the current

user.

Gets the current date and time.

Opes a database connection.

Product/Version

WPS 1.0

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0

PSCX1.1.1
WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0

WPS 1.0

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

APPENDIX A POWERSHELL COMMANDLET REFERENCE 433

Commandlet

Get-DbRow

Get-DbTable

Get-DhcpServer

Get-DirectoryChildren

Get-DirectoryEntry

Get-DirectoryValue

Get-Disk

Get-DomainController

Get-EventLog

Get-ExecutionPolicy

Get-ExportedType

Get-FileVersionInfo

Description

Gets a single row from a database
table.

Gets a database table.

Gets a list of authorized DHCP
servers.

Gets the child items of a directory
service container.

Gets a single entry in a directory
service.

Gets a value from an entry in a
directory service.

Gets objects about all disks on a
local or remote computer.

Gets a list of available domain
controllers in the current forest/
domain.

Gets information about local
event logs or the entries stored in
those event logs.

Gets the current execution policy

for the shell.

Displays public types for a given
AssemblyNamebylowhngthe
associated assembly into a
reflection-only context and
dumping all publicly accessible
Type objects to the pipeline.
Gem:lFileVersionInfo(ﬂﬁect

for the specified path.

Product/Version

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0

PSCX1.1.1

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0

PSCX1.1.1

WPS 1.0

WPS 1.0

PSCX1.1.1

PSCX1.1.1

.>
Il
=]
=
m
=
wv
=
m
fe]
=
(o)
o
=
=
=
=
=]
=
m
-
=
m
-
m
=
m
=
N
m

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

434 APPENDIX A POWERSHELL COMMANDLET REFERENCE

Commandlet Description Product/Version

Get-ForegroundWindow Returns the hwnd or handle of the PSCX1.1.1
window in the foreground on the
current desktop. See also Set-
ForegroundWindow.

Get-Hash Gets the hash value for the specified ~PSCX 1.1.1
file or byte array via the pipeline.

Get-Help Displays information about WPS WPS 1.0
cmdlets and concepts.

Get-History Gets a list of the commands entered ~ WPS 1.0
during the current session.

Get-Host Gets a reference to the current WPS 1.0
console host object. Displays WPS
version and regional information by
default.

Get-Item Gets the item at the specified WPS 1.0
location.

Get-ItemProperty Retrieves the properties of a WPS 1.0
specified item.

Get-ITVisions Displays information about www.IT-
this extension and checks for Visions.de
updates using a web service. PowerShell

Extensions 2.0

Get-Keyboard Gets information about the key- www.IT-

board on a local or remote computer. Visions.de
PowerShell
Extensions 2.0

Get-Location Gets information about the current WPS 1.0
working location.

Get-Member Gets information about objects or WPS 1.0
collections of objects.

Get-MemoryDevice Gets information about the RAM on ~ www.IT-

a local or remote computer. Visions.de
PowerShell

Extensions 2.0

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

APPENDIX A POWERSHELL COMMANDLET REFERENCE

435

Commandlet

Get-Metadata

Get-MountPoint

Description

Gets metadata about the objects
in the pipeline.

Returns all mount points defined for
a specific root path.

Get-Networkadapter Gets objects about all network adapters

Get-PEHeader

Get-PfxCertificate

Get-PipelinelInfo

on a local or remote computer.

Gets the Portable Header information
from an executable file.

Gets information about PFX certificate
files on the computer.

Gets type information about the objects
in the pipeline.

Get-PointingDevice Gets objects about mouse devices on a

Get-Privilege

Get-Process

Get-Processor

Get-PSDrive

Get-PSProvider

Get-PSSnapin
Get-PSSnapinHelp

Get-Random

Get-ReparsePoint

Get-Service

local or remote computer.

Lists privileges held by the session and
their current status.

Gets the processes that are running on
the local computer.

Gets objects about all processors on a
local or remote computer

Gets information about WPS drives.

Gets information about the specified
WPS provider.

Gets the WPS snap-ins on the computer.

Generates an XML file containing all
documentation data.

Returns a random number or a byte
array.
Gets NTFS reparse point data.

Gets the services on the local
computer.

Product/Version

www.IT-Visions.de
PowerShell
Extensions 2.0

PSCX 1.1.1

www.IT-Visions.de
PowerShell
Extensions 2.0

PSCX 1.1.1

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0

PSCX 1.1.1

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0
WPS 1.0

WPS 1.0
PSCX 1.1.1

PSCX1.1.1

PSCX 1.1.1
WPS 1.0

.>
Il
=]
=
m
=
wv
=
m
fe]
=
(o)
o
=
=
=
=
=]
=
m
-
=
m
-
m
=
m
=
N
m

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

436

APPENDIX A POWERSHELL COMMANDLET REFERENCE

Commandlet

Get-ShortPath

Get-SoundDevice

Get-TabExpansion

Get-Tapedrive

Get-TerminalSession

Get-TraceSource

Get-UICulture

Get-Unique

Get-USBController

Get-Variable

Get-Videocontroller

Get-WmiObject

Group-Object

Import-Alias
Import-Bitmap

Import-Clixml

Import-Csv

Description

Gets the short, 8.3 name for the

given path.

Gets objects about all sound devices on
a local or remote computer.

Gets matching tab expansions.
Gets objects about all tape drives
on a local or remote computer.

Gets information on terminal services
sessions.

Gets the WPS components that are
instrumented for tracing.

Gets information about the current
user interface culture for WPS.
Returns the unique items from a
sorted list.

Gets objects about all USB controllers
on a local or remote computer.

Gets the variables in the current
console.

Gets objects about all video controllers
on a local or remote computer.

Gets instances of WMI classes or
information about available classes.

Groups objects that contain the same
value for specified properties.
Imports an alias list from a file.
Loads bitmap files.

Imports a CLIXML file and creates
corresponding objects within WPS.

Imports CSV files in the format
produced by the Export-csv cmdlet
and returns objects that correspond

Product/Version

PSCX1.1.1

www.IT-Visions.de
PowerShell
Extensions 2.0

PSCX1.1.1

www.IT-Visions.de
PowerShell
Extensions 2.0

PSCX1.1.1

WPS 1.0

WPS 1.0

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0

WPS 1.0

WPS 1.0
PSCX 1.1.1
WPS 1.0

WPS 1.0

to the objects represented in that CSV file.

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

APPENDIX A POWERSHELL COMMANDLET REFERENCE 437

Commandlet Description Product/Version
Invoke-DbCommand Invokes a command in a database. www.IT-Visions.de :
PowerShell e
Extensions 2.0 B
=
Invoke- Runs a WPS expression that is WPS 1.0 =
Expression provided in the form of a string. §
Invoke-History Runs commands from the session WPS 1.0 E
history. E
Invoke-Item Invokes the provider-specific default WPS 1.0 =3
action on the specified item. é
Invoke- Invokes a command in a database that e
ScalarDbCommand returns a single value. www.IT-Visions.de
PowerShell
Extensions 2.0
Join-Path Combines a path and child path into WPS 1.0
a single path. The provider supplies
the path delimiters.
Join-String Joins an array of strings into a single PSCX1.1.1
string.
Measure-Command Measures the time it takes to run script WPS 1.0
blocks and cmdlets.
Measure-Object Measures characteristics of objects and ~ WPS 1.0
their properties.
Move-Item Moves an item from one location to WPS 1.0
another.
Move- Moves a property from one location to WPS 1.0
ItemProperty another.
New-Alias Creates a new alias. WPS 1.0
New-Hardlink Creates file system hard links. The PSCX1.1.1
hardlink and the target must reside on
the same NTFS volume.
New-Item Creates a new item in a namespace. WPS 1.0
New- Sets a new property of an item at a WPS 1.0
ItemProperty location.
New-Junction Creates NTFS directory junctions. PSCX1.1.1
New-Object Creates an instance of a NET or WPS 1.0
COM object.

www.IT-Visions.de
www.IT-Visions.de

438

APPENDIX A POWERSHELL COMMANDLET REFERENCE

Commandlet

New-PSDrive

New-Service

New-Shortcut

New-Symlink

New-TimeSpan
New-Variable

Out-Clipboard

Out-Default

Out-File
Out-Host
Out-Null

Out-Printer
Out-String
Ping-Host

Pop-Location

Push-Location
Read-Host

Remove-

Remove-Item

Remove-
TtemProperty

Description

Installs a new WPS drive.

Creates a new entry for a Windows service
in the registry and the service database.

Creates shell shortcuts.

Creates file system symbolic links. Requires
Microsoft Windows Vista or later.

Creates a TimeSpan object.
Creates a new variable.

Formats text via Out-String before placing
in the clipboard.

Sends the output to the default formatter and
the default output cmdlet. This cmdlet has no
effect on the formatting or output. It is a
placeholder that lets you write your own
out-Default function or cmdlet.

Sends output to a file.
Sends output to the command line.

Deletes output instead of sending it to
the console.

Sends output to a printer.
Sends objects to the host as a series of strings.
Sends ICMP echo requests to network hosts.

Changes the current location to the location
most recently pushed onto the stack. You can
pop the location from the default stack or
from a stack that you create by using
Push-Location.

Pushes the current location onto the stack.
Reads a line of input from the console.

Removes a directory entry from a

DirectoryEntry directory service.

Deletes the specified items.

Deletes the property and its value from
an item.

Product/Version

WPS 1.0
WPS 1.0

PSCX 1.1.1
PSCX 1.1.1

WPS 1.0
WPS 1.0
PSCX1.1.1

WPS 1.0

WPS 1.0
WPS 1.0
WPS 1.0

WPS 1.0
WPS 1.0
PSCX 1.1.1
WPS 1.0

WPS 1.0
WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

WPS 1.0
WPS 1.0

www.IT-Visions.de

APPENDIX A POWERSHELL COMMANDLET REFERENCE

439

Commandlet

Description

Remove-MountPoint Removes a mount point, dismounting

Remove-PSDrive

Remove-PSSnapin
Remove-
ReparsePoint

Remove-Variable

Rename-Item
Rename-
ItemProperty

Resize-Bitmap

Resolve-Assembly

Resolve-Host

Resolve-Path

Restart-Service

Resume-Service

Select-Object

Select-String
Select-Xml

Send-SmtpMail

the current media if any. If used against
the root of a fixed drive, removes the
drive letter assignment.

Removes a WPS drive from its location.
Removes WPS snap-ins from the
current console.

Removes NTFS reparse junctions and
symbolic links.

Deletes a variable and its value.

Renames an item in a WPS provider
namespace.

Renames a property of an item.

Resizes bitmaps.

Resolves and optionally imports assemblies
by partial name with optional version.

Resolves host names to IP addresses.
Resolves the wildcard characters in a
path and displays the path contents.
Stops and then starts one or more
services.

Resumes one or more suspended
(paused) services.

Selects specified properties of an object
or set of objects. It can also select unique
objects from an array of objects or it can
select a specified number of objects from
the beginning or end of an array of
objects.

Identifies patterns in strings.

Selects elements in XML files and
XmlDocument Objects with XPath
expressions.

Sends e-mail via specified SMTP server
to specified recipients.

Product/Version

PSCX1.1.1

WPS 1.0
WPS 1.0

PSCX 1.1.1

WPS 1.0
WPS 1.0

WPS 1.0

PSCX 1.1.1
PSCX 1.1.1

PSCX 1.1.1
WPS 1.0

WPS 1.0

WPS 1.0

WPS 1.0

WPS 1.0
PSCX 1.1.1

PSCX1.1.1

.>
Il
=]
=
m
=
wv
=
m
fe]
=
(o)
o
=
=
=
=
=]
=
m
-
=
m
-
m
=
m
=
N
m

440

APPENDIX A POWERSHELL COMMANDLET REFERENCE

Commandlet

Set-Acl

Set-Alias

Set-
AuthenticodeSignature

Set-Clipboard

Set-Content

Set-Date

Set-DbTable

Set-DirectoryValue

Set-
ExecutionPolicy

Set-FileTime

Set-ForegroundWindow

Set-Item

Set-ItemProperty

Description

Changes the security descriptor
of a specified resource, such as a
file or a registry key.

Creates or changes an alias
(alternate name) for a cmdlet or
other command element in the
current WPS session.

Uses an Authenticode signature to
sign a WPS script or other file.

Puts the specified object into the
system clipboard.

Writes or replaces the content in
an item with new content.

Changes the system time on the
computer to a time that you specify.
Saves the updated data of a data
table.

Sets a value in a directory entry.

Changes the user preference for
the execution policy of the shell.

Sets a file or folder’s created and
last accessed/write times.

Given an hind or window handle,
brings that window to the fore-
ground. Useful for restoring a
window to uppermost after an
application that seizes the fore-
ground is invoked. See also
Get-ForegroundWindow.

Changes the value of an item to
the value specified in the command.

Sets the value of a property at the
specified location.

Product/Version

WPS 1.0

WPS 1.0

WPS 1.0

PSCX 1.1.1

WPS 1.0

WPS 1.0

www.IT-Visions.de
PowerShell
Extensions 2.0

www.IT-Visions.de
PowerShell
Extensions 2.0
WPS 1.0

PSCX 1.1.1

PSCX1.1.1

WPS 1.0

WPS 1.0

www.IT-Visions.de
www.IT-Visions.de

APPENDIX A POWERSHELL COMMANDLET REFERENCE 441

Commandlet Description

Sets the current working location
to a specified location.

Set-Location

Adjusts privileges held by the

session.

Set-Privilege
Set-PSDebug Turns script debugging features on
and off, sets the trace level and
toggles strict mode.

Changes the display name, descrip-
tion, or starting mode of a service.

Set-Service

Conlfigures, starts, and stops a trace
of WPS components.

Set-TraceSource

Sets the value of a variable. Creates
the variable if one with the requested
name does not exist.

Modifies the label shown in Windows
Explorer for a particular disk volume.

Set-Variable

Set-VolumeLabel

Sort-Object Sorts objects by property values.

Split-Path Returns the specified part of a path.

Split-String Splits a single string into an array

of strings.

Start-Process Starts a new process.

Start-Service Starts one or more stopped services.

Start-Sleep Suspends shell, script, or runspace
activity for the specified period of
time.

Start-TabExpansion Initializes the tab expansion caches.

Creates a record of all or part of a
WPS session in a text file.

Start-Transcript

Stop-Process Stops one or more running processes.

Stop-Service Stops one or more running services.

Stop-TerminalSession Logs off a specific remote desktop
session on a system running Terminal
Services/Remote Desktop.

Stop-Transcript Stops a transcript.

Product/Version

WPS 1.0

PSCX 1.1.1

WPS 1.0

WPS 1.0

WPS 1.0

WPS 1.0

PSCX1.1.1

WPS 1.0
WPS 1.0
PSCX 1.1.1

PSCX1.1.1
WPS 1.0
WPS 1.0

PSCX 1.1.1

WPS 1.0

WPS 1.0
WPS 1.0
PSCX 1.1.1

WPS 1.0

.>
Il
=]
=
m
=
wv
=
m
fe]
=
(o)
o
=
=
=
=
=]
=
m
-
=
m
-
m
=
m
=
N
m

442

APPENDIX A POWERSHELL COMMANDLET REFERENCE

Commandlet

Suspend-Service

Tee-Object

Test-Assembly

Test-DbConnection

Test-Path

Test-Xml

Trace-Command

Update-FormatData

Update-TypeData

Where-Object

Write-BZip2

Write-Clipboard

Write-Debug

Write-Error

Write-GZip

Write-Host

Description

Suspends (pauses) one or more
running services.

Pipes object input to a file or variable,
and then passes the input along the
pipeline.

Tests whether the specified file is a
NET assembly.

Tests the availability of a database.

Determines whether all elements of a
path exist.

Tests for well formedness and optionally
validates against XML Schema.

Configures and starts a trace of the
specified expression or command.

Updates and appends format data files.
Updates the current extended type

configuration by reloading the *.types.

pslxml files into memory.

Creates a filter that controls which
objects will be passed along a command
pipeline.

Creates BZIP2 format archive files from
pipeline or parameter input.

Writes objects to the clipboard using
their string representation, bypassing
the default WPS formatting.

Writes a debug message to the host
display.
Writes an object to the error pipeline.

Creates GNU Zip (Gzip) format files
from pipeline or parameter input.

Displays objects by using the host

user interface.

Product/Version

WPS 1.0

WPS 1.0

PSCX1.1.1

www.IT-Visions.de
PowerShell
Extensions 2.0
WPS 1.0

PSCX 1.1.1

WPS 1.0

WPS 1.0

WPS 1.0

WPS 1.0

PSCX1.1.1

PSCX 1.1.1

WPS 1.0

WPS 1.0
PSCX1.1.1

WPS 1.0

www.IT-Visions.de

APPENDIX A POWERSHELL COMMANDLET REFERENCE 443

Commandlet Description Product/Version
Write-Output Writes objects to the success pipeline. WPS 1.0 :
Write-Progress Displays a progress bar within a WPS WPS 1.0 %
command window. o
Write-Tar Creates Tape Archive (TAR) format files PSCX1.1.1 E
from pipeline or parameter input. =
s
Write-Verbose Writes a string to the verbose display of ~ WPS 1.0 g
the host. 5
Write-Warning Writes a warning message. WPS 1.0 E
Write-Zip Creates Zip format archive files from PSCX 1.1.1 2

pipeline or parameter input.

This page intentionally left blank

POWERSHELL 2.0 PREVIEW

At their TechEd Europe 2007 conference, Microsoft announced Windows
PowerShell 2.0 and made available a very early prerelease version. WPS
2.0 will be compatible with WPS 1.0 and will include some major advances
and a lot of minor advances.

Major advances in WPS 2.0 include the following:

A graphical user environment for WPS, including a script editor

with syntax highlighting and IntelliSense (see Figure B.1).

m Remote execution of commands and scripts (on a remote co