

ESSENTIAL POWERSHELL

This page intentionally left blank

ESSENTIAL POWERSHELL

Holger Schwichtenberg

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content partic-
ular to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data

Schwichtenberg, Holger.
Essential PowerShell / Holger Schwichtenberg.

p. cm.
ISBN 978-0-672-32966-1

1. Windows PowerShell (Computer programming language) 2. Command languages
(Computer science) 3. Scripting languages (Computer science) 4. Systems programming
(Computer science) 5. Microsoft Windows (Computer file) I. Title.

QA76.73.W56S39 2008
005.4’2—dc22

2008020010

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-672-32966-1
ISBN-10: 0-672-2966-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing June 2008

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Keith Cline

Indexer
Publishing Works,
Inc.

Proofreader
Paula Lowell

Technical Editor
Tony Bradley

Publishing
Coordinator
Cindy Teeters

Cover Designer
Gary Adair

Compositor
Nonie Ratcliff

www.informit.com/aw
http://www.informit.com/onlineedition

To Heidi, the woman I love.

This page intentionally left blank

vii

CONTENTS

Preface . xv

Acknowledgments . xix

About the Author . xxi

PART I: GETTING STARTED WITH POWERSHELL . 1

Chapter 1: First Steps with Windows PowerShell 3

What Is Windows PowerShell? . 3
Downloading and Installing PowerShell Community Extensions 16
Testing the PowerShell Extensions . 18
Downloading and Installing the PowerShellPlus 19
Testing the PowerShell Editor . 20
Summary . 22

Chapter 2: Commandlets . 25

Introducing Commandlets . 25
Aliases . 29
Expressions . 32
External Commands . 33
Getting Help . 35
Summary . 41

Chapter 3: Pipelining . 43

Pipelining Basics . 43
Pipeline Processor . 47
Complex Pipelines . 48
Output . 49
Getting User Input . 56
Summary . 58

Chapter 4: Advanced Pipelining . 59

Analyzing Pipeline Content . 59
Filtering Objects . 70
Castrating Objects . 73
Sorting Objects . 74
Grouping Objects . 74
Calculations . 76
Intermediate Steps in the Pipeline . 76
Comparing Objects . 78
Ramifications . 78
Summary . 79

Chapter 5: The PowerShell Navigation Model 81

Navigation through the Registry . 81
Providers and Drives . 83
Navigation Commandlets . 84
Paths . 85
Defining Drives . 87
Summary . 88

Chapter 6: The PowerShell Script Language 89

Getting Help . 90
Command Separation . 90
Comments . 90
Variables . 91
Available Types . 92
Numbers . 96
Random Numbers . 98

viii Contents

Strings . 99
Date and Time . 102
Arrays . 105
Associative Arrays (Hash Tables) . 106
Operators . 108
Control Structures . 110
Summary . 113

Chapter 7: PowerShell Scripts . 115

A First PowerShell Script Example . 115
Start a PowerShell Script . 117
Including Scripts . 118
Scripting Security . 118
Signing of Scripts . 120
Letting a Script Sleep . 122
Errors and Error Treatment . 122
Summary . 128

Chapter 8: Using Class Libraries . 129

Using .NET Classes . 129
Using COM Classes . 133
Using WMI Classes . 135
Date and Time . 145
Summary . 150

Chapter 9: PowerShell Tools . 151

PowerShell Console . 151
PowerTab . 156
PowerShell IDE . 156
Windows PowerShellPlus . 158
PowerShell Analyzer . 164
PrimalScript . 165
PowerShell Help . 169
Summary . 170

Contents ix

Chapter 10: Tips, Tricks, and Troubleshooting 171

Debugging and Tracing . 171
Command History . 186
System and Host Information . 187
PowerShell Profiles . 189
Graphical User Interfaces . 196
Summary . 201

PART II: WINDOWS POWERSHELL IN ACTION . 203

Chapter 11: File Systems . 205

Available Commandlets for File System Administration 205
Drives . 206
Directory Content . 210
Reading and Writing File Properties . 213
Properties of Executables . 214
File System Links . 216
Compression . 220
File Shares . 221
Summary . 234

Chapter 12: Managing Documents . 235

Text Files . 235
Binary Files . 238
CSV Files . 239
XML Files . 241
HTML Files . 251
Summary . 252

Chapter 13: Registry and Software . 253

Registry . 253
Software Administration . 259
Summary . 266

x Contents

Chapter 14: Processes and Services . 267

Processes . 267
Windows Services . 271
Summary . 280

Chapter 15: Computers and Hardware . 281

Computer Settings . 281
Hardware . 284
Event Logs . 290
Performance Counters . 292
Summary . 293

Chapter 16: Networking . 295

Pinging Computers . 295
Network Configuration . 296
Name Resolution . 299
Retrieving Files from an HTTP Server . 300
E-Mail . 302
Microsoft Exchange Server 2007 . 302
Internet Information Services . 305
Summary . 311

Chapter 17: Directory Services . 313

Overview of Directory Services Access . 313
Managing Users and Groups Using WMI . 314
System.DirectoryServices and the ADSI Adapter 315
Deficiencies in the ADSI Adapter . 321
Object Identification in Directory Services (Directory Services Paths) . 323
Overview of the Common Programming Tasks 325
Summary . 333

Chapter 18: User and Group Management in the
Active Directory . 335

Directory Class User . 335
Creating a User Account . 339

Contents xi

Authentication . 341
Deleting Users . 342
Renaming User Accounts . 342
Moving User Accounts . 343
Group Management . 343
Organizational Units . 346
Summary . 347

Chapter 19: Searching in the Active Directory 349

LDAP Query Syntax . 349
LDAP Queries in PowerShell . 351
Search Tips and Tricks . 354
LDAP Query Examples . 358
Using the Commandlet Get-ADObject . 358
Summary . 359

Chapter 20: Additional Libraries for Active Directory
Administration . 361

Navigating the Active Directory Using the PowerShell Community
Extensions . 361
Using the www.IT-Visions.de Active Directory Extensions 362
Using the Quest Active Directory Extensions 365
Getting Information about the Active Directory Structure 365
Group Policies . 367
Summary . 372

Chapter 21: Databases . 373

Introducing ADO.NET . 373
Example Database . 379
Data Access with PowerShell . 380
Summary . 388

Chapter 22: Advanced Database Operations 389

Data Access Using a DataSet . 389
Data Access with the www.IT-Visions.de PowerShell Extensions 396
Summary . 400

xii Contents

www.IT-Visions.de
www.IT-Visions.de

Chapter 23 Security Settings . 401

Windows Security Basics . 402
Classes . 406
Reading ACLs . 408
Reading ACEs . 410
Summary . 412

Chapter 24: Advanced Security Administration 413

Account Identifier Translation . 413
Reading the Owner . 417
Adding a New ACE to an ACL . 418
Removing an ACE from an ACL . 421
Transferring ACLs . 424
Setting ACLs Using SDDL . 425
Summary . 426

PART III: APPENDICES . 427

Appendix A: PowerShell Commandlet Reference 429

Appendix B: PowerShell 2.0 Preview . 445

Appendix C: Bibliography . 449

Index . 453

Contents xiii

This page intentionally left blank

PREFACE

Windows PowerShell is one of the most amazing products Microsoft has
released in recent years, because it brings console-based system adminis-
tration and scripting to the next level of abstraction. PowerShell is an excel-
lent replacement for classic Windows shell commands and for Windows
Script Host (WSH). PowerShell copies a lot of good features from UNIX
shells and combines them with the power of the .NET Framework. In
contrast to WSH, PowerShell enables consistent, straightforward,
command-line system administration that does not require much software
development knowledge.

Unfortunately, in the first version of PowerShell, the number of high-
level commands is limited. For many tasks, lower-level concepts are
required, especially the .NET Framework and Windows Management
Instrumentation (WMI).

What Does This Book Cover?

This book covers the standard PowerShell commandlets, additional free
commandlets (for example, PowerShell Community Extensions), and the
direct use of classes from the .NET Framework, the Component Object
Model (COM), WMI, and the Active Directory Service Interface (ADSI).

Because PowerShell is an extensive topic, this book cannot provide an
exhaustive reference of all PowerShell commands and solutions for all pos-
sible administrative tasks. However, you will find a concise introduction to
the most common command and scenarios. For more detailed information
about PowerShell, refer to the Microsoft documentation for PowerShell,
WMI, ADSI, and the .NET Framework (approximately 100,000 pages) as
an additional source.

xv

Who Should Read This Book?

The primary target audience comprises Windows administrators seeking a
method of automated system administration that is more powerful than the
classic Windows Shell but less complex than WSH and the associated
COM components. After reading this book, administrators will be able to
use PowerShell as their day-to-day command-line interface for all admin-
istrative tasks.

As a prerequisite, aside a good knowledge of the Windows operation
system, you should have a basic understanding of object-oriented pro-
gramming languages. Basic concepts of object orientation such as classes,
objects, attributes, and methods are not explained in this book.

How This Book Is Structured

This book is organized into 24 chapters, some of which, based on your pre-
vious experience and knowledge of certain concepts, you might find easier
to understand than others. The 24 chapters are split into two parts:

■ Part I: Getting Started with PowerShell. Part I introduces the
PowerShell architecture, all basic concepts (such as pipelining and
navigation), the PowerShell Script Language, and the tools you
should know.

■ Part II: Windows PowerShell in Action. Part II covers
PowerShell script solutions for day-to-day administrative tasks
related to Windows services and Windows application, such as file
system, processes, event logs, registry, networking, printers, docu-
ments, databases, Active Directory, and software installation. Each
chapter contains dozens of self-contained examples.

The appendixes contain a list of all commandlets from PowerShell 1.0,
the PowerShell Community Extensions 1.1.1, and the www.IT-Visions.de
PowerShell Extensions 2.0. You will also find a short preview of the next
version of Windows PowerShell (Version 2.0).

Throughout the text, you will find codes that match up to codes in
Appendix C, “Bibliography.” These codes are encased in brackets (for
example, [MS01]). The appendix lists the code, the correlating subject, and

xvi Preface

www.IT-Visions.de

a link that will provide you with more information.
Occasionally, when a line of code is too long to fit on one line in the

printed text, a code-continuation character has been used to show that the
line continues. For example

"{0} can be reached at {1}.

➥This information is dated: {2:D}." -f $a, $b, $c

This Book’s Website

Many of the scripts are available for download from its website,
www.Windows-Scripting.com. This website also contains errata for this
book and the option to offer feedback to the author.

Preface xvii

www.Windows-Scripting.com

This page intentionally left blank

ACKNOWLEDGMENTS

Thanks to Dr. Regina Schymiczek who helped me to translate parts of this
book from my previously published German book. Thanks to the entire
editorial team at Addison-Wesley who gave me the opportunity to publish
this book. Many thanks to Heidi, who gives me great support at work and
in my private life.

xix

This page intentionally left blank

ABOUT THE AUTHOR

Dr. Holger Schwichtenberg holds a Master’s
degree and a Ph.D. in business informatics,
both from the University Duisburg-Essen in
Germany. He has had more than ten years
experience as a lead developer and trainer.
With his company IT-Visions.de, based in
Germany, he works as a software architect,
technology consultant, and trainer for leading
companies throughout Europe.

Holger is one of Europe’s well-known
experts for .NET and Windows Scripting
technologies, recognized by Microsoft as a
Most Valuable Professional (MVP), a .NET

Code Wise Member, a board member of codezone.de, an MSDN Online
Expert, and a speaker for the International .NET Association (INETA).
Based on his expertise in software development and the Windows operat-
ing system, Holger is one of the experts in the European Union versus
Microsoft antitrust case.

He has published more than 30 books for Addison-Wesley and
Microsoft Press in Germany, in addition to more than 400 journal articles,
notably for the IT journals iX, DOTNET Pro, and Windows IT Pro. His
community websites www.dotnetframework.de and www.windows-script-
ing.com are members of the Codezone Premier Website program.

Holger regularly speaks at professional conferences (for example,
Microsoft TechEd, Microsoft IT Forum, Advanced Developers
Conference, OOP, Net.Object Days, Online, BASTA, and DOTNET
Conference).

Holger can be reached at hs@windows-scripting.com.

xxi

www.dotnetframework.de
www.windows-scripting.com
www.windows-scripting.com

This page intentionally left blank

P A R T I

GETTING STARTED WITH
POWERSHELL

Chapter 1 First Steps with Windows PowerShell . 3

Chapter 2 Commandlets . 25

Chapter 3 Pipelining . 43

Chapter 4 Advanced Pipelining . 59

Chapter 5 The PowerShell Navigation Model . 81

Chapter 6 The PowerShell Script Language . 89

Chapter 7 PowerShell Scripts . 115

Chapter 8 Using Class Libraries . 129

Chapter 9 PowerShell Tools . 151

Chapter 10 Tips, Tricks, and Troubleshooting . 171

This page intentionally left blank

3

C H A P T E R 1

FIRST STEPS WITH WINDOWS
POWERSHELL

In this chapter:
What Is Windows PowerShell? . 3
Downloading and Installing PowerShell Community Extensions 16
Testing the PowerShell Extensions . 18
Downloading and Installing the PowerShellPlus 19
Testing the PowerShell Editor . 20

This chapter introduces Windows PowerShell and helps you set up your
environment. In addition, the chapter provides a few easy examples that
demonstrate how to use PowerShell.

What Is Windows PowerShell?

Windows PowerShell (WPS) is a new .NET-based environment for
console-based system administration and scripting on Windows platforms.
It includes the following key features:

■ A set of commands called commandlets
■ Access to all system and application objects provided by Component

Object Model (COM) libraries, the .NET Framework, and
Windows Management Instrumentation (WMI)

■ Robust interaction between commandlets through pipelining based
on typed objects

■ A common navigation paradigm for different hierarchical or flat
information stores (for example, file system, registry, certificates,
Active Directory, and environment variables)

■ An easy-to-learn, but powerful scripting language with weak and
strong variable typing

■ A security model that prevents the execution of unwanted scripts
■ Tracing and debugging capabilities
■ The ability to host WPS in any application

This book includes syntax and examples for these features, except the
last one, which is an advanced topic that requires in-depth knowledge of a
.NET language such as C#, C++/CLI, or Visual Basic .NET.

A Little Bit of History
The DOS-like command-line window survived many Windows versions in
almost unchanged form. With WPS, Microsoft now provides a successor
that does not just compete with UNIX shells, it surpasses them in robust-
ness and elegance. WPS could be called an adaptation of the concept of
UNIX shells on Windows using the .NET Framework, with connections
to WMI.

Active Scripting with Windows Script Host (WSH, pronounced
“wish”) is much too complex for many administrators because it presup-
poses much knowledge about object-oriented programming and COM.
The many exceptions and inconsistencies in COM make WSH and the
associated component libraries hard to learn.

Even during the development of Windows Server 2003, Microsoft
admitted that it had asked UNIX administrators how they administer their
operating system. The short-term result was a large number of additional
command-line tools included in Windows Server 2003. However, the long-
term goal was to replace the DOS-like command-line window of Windows
with a new, much more powerful shell.

Upon the release of the Microsoft .NET Framework in 2002, many
people were expecting a “WSH.NET.” However, Microsoft stopped the
development of a new WSH for the .NET Framework because it foresaw
that using .NET-based programming languages such as C# and Visual
Basic .NET would require administrators to know even more about object-
oriented software development.

4 Chapter 1 First Steps with Windows PowerShell

Microsoft recognized the popularity of and satisfaction with UNIX
shells and decided to merge the pipelining concept of UNIX shells with
the .NET Framework. The goal was to develop a new shell that was sim-
ple to use but nearly as robust as a .NET program. The result: WPS.

In the first beta version, the new shell was presented under the code
name Monad at the Professional Developer Conference (PDC) in October
2003 in Los Angeles. After the intermediate names Microsoft Shell (MSH)
and Microsoft Command Shell, the shell received its final name,
PowerShell, in May 2006. The final version of WPS 1.0 was released on
November 11, 2006 at TechEd Europe 2006.

NOTE The main architect of WPS 1.0 was Jeffrey Snover. He is always willing
to discuss his “baby” and answer questions. At large international Microsoft
technical conferences, such as the Professional Developer Conference (PDC) and
TechEd, you can easily find him; he is the only person at the Microsoft booths
wearing a tie.

Why Use WPS?
If you need a reason to use WPS, here it comes. Just consider the follow-
ing solution for one common administrative task in both the old WSH and
the new WPS.

An inventory script for software is to be provided that will read the
installed MSI packages using WMI. The script will get the information
from several computers and summarize the results in a CSV file
(softwareinventory.csv). The names (or IP addresses) of the computers to
be queried are read from a TXT file (computers.txt).

The solution with WSH (Listing 1.1) requires 90 lines of code (includ-
ing comments and parameterizing). In WPS, you can do the same thing in
just 13 lines (Listing 1.2). If you do not want to include comments and
parameterizing, you need just one line (Listing 1.3).

Listing 1.1 Software Inventory Solution 1: WSH

Option Explicit

' --- Settings

Const InputFileName = "computers.txt"

Const OutputFileName = "softwareinventory.csv"

What Is Windows PowerShell? 5

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

(continues)

Listing 1.1 Software Inventory Solution 1: WSH (continued)

Const Query = "SELECT * FROM Win32_Product where not

➥Vendor like '%Microsoft%’"

Dim objFSO ' Filesystem Object

Dim objTX ' Textfile object

Dim i ' Counter

Dim Computer ' Current Computer Name

Dim InputFilePath ' Path for InputFile

Dim OutputFilePath ' Path of OutputFile

' --- Create objects

Set objFSO = CreateObject("Scripting.FileSystemObject")

' --- Get paths

InputFilePath = GetCurrentPath & "\" & InputFileName

OutputFilePath = GetCurrentPath & "\" & OutputFileName

' --- Create headlines

Print "Computer" & ";" & _

"Name" & ";" & _

"Description" & ";" & _

"Identifying Number" & ";" & _

"Install Date" & ";" & _

"Install Directory" & ";" & _

"State" & ";" & _

"SKU Number" & ";" & _

"Vendor" & ";" & _

"Version"

' --- Read computer list

Set objTX = objFSO.OpenTextFile(InputFilePath)

' --- Loop over all computers

Do While Not objTX.AtEndOfStream

Computer = objTX.ReadLine

i = i + 1

WScript.Echo "=== Computer #" & i & ": " & Computer

GetInventory Computer

Loop

' --- Close Input File

6 Chapter 1 First Steps with Windows PowerShell

objTX.Close

' === Get Software inventory for one computer

Sub GetInventory(Computer)

Dim objProducts

Dim objProduct

Dim objWMIService

' --- Access WMI

Set objWMIService = GetObject("winmgmts:" &_

"{impersonationLevel=impersonate}!\\" & Computer &_

"\root\cimv2")

' --- Execeute WQL query

Set objProducts = objWMIService.ExecQuery(Query)

' --- Loop

For Each objProduct In objProducts

Print _

Computer & ";" & _

objProduct.Name & ";" & _

objProduct.Description & ";" & _

objProduct.IdentifyingNumber & ";" & _

objProduct.InstallDate & ";" & _

objProduct.InstallLocation & ";" & _

objProduct.InstallState & ";" & _

objProduct.SKUNumber & ";" & _

objProduct.Vendor & ";" & _

objProduct.Version

Next

End Sub

' === Print

Sub Print(s)

Dim objTextFile

Set objTextFile = objFSO.OpenTextFile(OutputFilePath, 8, True)

objTextFile.WriteLine s

objTextFile.Close

End Sub

' === Get Path to this script

Function GetCurrentPath

GetCurrentPath = objFSO.GetFile (WScript.ScriptFullName).ParentFolder

End Function

What Is Windows PowerShell? 7

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

Listing 1.2 Software Inventory Solution 2: WPS Script

Settings

$InputFileName = "computers.txt"

$OutputFileName = "softwareinventory.csv"

$Query = "SELECT * FROM Win32_Product where not

➥Vendor like '%Microsoft%’"

Read computer list

$Computers = Get-Content $InputFileName

Loop over all computers and read WMI information

$Software = $Computers | foreach { get-wmiobject -query $Query -

computername $_ }

Export to CSV

$Software | select Name, Description, IdentifyingNumber, InstallDate,

➥InstallLocation, InstallState, SKUNumber, Vendor, Version |

➥export-csv $OutputFileName -notypeinformation

Listing 1.3 Software Inventory Solution 3: WPS Pipeline Command

Get-Content "computers.txt" | Foreach {Get-WmiObject -computername

➥$_ -query "SELECT * FROM Win32_Product where not

➥Vendor like '%Microsoft%’" } | Export-Csv "Softwareinventory.csv"

➥–notypeinformation

Downloading and Installing WPS
Windows Server 2008 is the first operating system that includes WPS on
the DVD. However, it is an additional feature that can be installed through
Add Feature in the Windows Server 2008 Server Manager.

WPS can be downloaded (see Figure 1.1) and installed as an add-on to
the following operating systems:

■ Windows XP for x86 with Service Pack 2
■ Windows XP for x64 with Service Pack 2
■ Windows Server 2003 for x86 with Service Pack 1

8 Chapter 1 First Steps with Windows PowerShell

■ Windows Server 2003 for x64 with Service Pack 1
■ Windows Server 2003 for Itanium with Service Pack 1
■ Windows Vista for x86
■ Windows Vista for x64

Note that WPS is not included in Windows Vista, although Vista und
WPS were released on the same day. Microsoft decided not to ship any
.NET-based applications with Vista. Only the .NET Framework itself is
part of Vista.

POWERSHELL DOWNLOAD PAGE www.microsoft.com/
windowsserver2003/technologies/management/powershell/download.mspx

What Is Windows PowerShell? 9

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

Figure 1.1 WPS download website

www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx

WPS requires that .NET Framework 2.0 or later be installed before
running WPS setup. Because Vista ships with .NET Framework 3.0 (which
is a true superset of 2.0), no .NET installation is required for it. However,
on Windows XP and Windows Server, you must install .NET Framework
2.0, 3.0, or 3.5 first (if they are not already installed by another application).

MICROSOFT .NET FRAMEWORK 3.0 REDISTRIBUTABLE PACKAGE
www.microsoft.com/downloads/details.aspx?FamilyId=10CC340B-F857-
4A14-83F5-25634C3BF043&displaylang=en

The setup routine installs WPS to the directory %systemroot%\
system32\WindowsPowerShell\V1.0 (on 32-bit systems) or %systemroot%\
Syswow64\WindowsPowerShell\V1.0 (for 64-bit systems). You cannot
change this folder during setup.

TIP If for any reason you want to uninstall WPS, note that WPS is considered a
software update to the Windows operating system (that is, not a normal applica-
tion). Therefore, in the Add or Remove Programs control panel applet, it is not
listed as a program; instead, it is listed as an update called Hotfix for Windows
(KB x). The Knowledge Base (KB) number varies on different operating systems.
However, you can identify WPS installation in the list by its icon (see Figure
1.2). On Windows XP and Windows Server 2003, you must check the Show
Updates check box to see the WPS installation.

Taking WPS for a Test Run
This section includes some commands to enable you to try out a few WPS
features. WPS has two modes, interactive mode and script mode, which
are covered separately.

10 Chapter 1 First Steps with Windows PowerShell

www.microsoft.com/downloads/details.aspx?FamilyId=10CC340B-F857-4A14-83F5-25634C3BF043&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=10CC340B-F857-4A14-83F5-25634C3BF043&displaylang=en

What Is Windows PowerShell? 11

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

Figure 1.2 The uninstall option for WPS is difficult to find. (This screenshot is
from Windows Server 2003.)

WPS in Interactive Mode
First, you’ll use WPS in interactive mode.

Start WPS. An empty WPS console window will display (see Figure
1.3). At first glance, you might not see much difference between it and the
traditional Windows console. However, there is much more power in WPS,
as you will soon see.

At the command prompt, type get-process and then press the
Return key. A list of all running processes on your local computer will dis-
play (see Figure 1.4). This was your first use of a simple WPS commandlet.

NOTE Note that the letter case does not matter. WPS does not distinguish
between uppercase and lowercase letters in commandlet names.

Figure 1.3 Empty WPS console window

12 Chapter 1 First Steps with Windows PowerShell

Figure 1.4 The Get-Process commandlet output

At the command prompt, type get-service i*. A list of all installed
services with a name that begins with the letter I on your computer will

display (see Figure 1.5). This was your first use of a commandlet with
parameters.

What Is Windows PowerShell? 13

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

Figure 1.5 A filtered list of Windows services

Type get- and then press the Tab key several times. You will see WPS
cycling through all commandlets that start with the verb get. Microsoft
calls this feature tab completion. Stop at Get-Eventlog. When you press
Enter, WPS prompts for a parameter called LogName (see Figure 1.6).
LogName is a required parameter. After typing Application and press-
ing Return, you will see a long list of the current entries in your Application
event log.

Figure 1.6 WPS prompts for a required parameter.

The last example in this section introduces you to the pipeline features
of WPS. Again, we want to list entries from a Windows event log, but this
time we want to get only some entries. The task is to get the most recent
ten events that apply to printing. Enter the following command, which
consists of three commandlets connected via pipes (see Figure 1.7):

Get-EventLog system | Where-Object { $_.source -eq "print" }

➥ | Select-Object -first 10

Note that WPS seems to get stuck for a few seconds after printing the
first ten entries. This is the correct behavior because the first commandlet

(Get-EventLog) will receive all entries. The filtering is done by the sub-
sequent commandlets (Where-Object and Select-Object). Unfortu-
nately, Get-EventLog has no included filter mechanism.

14 Chapter 1 First Steps with Windows PowerShell

Figure 1.7 Filtering event log entries

WPS in Script Mode
Now it’s time to try out PowerShell in script mode and incorporate a WPS
script. A WPS script is a text file that includes commandlets/elements of
PowerShell Script Language (PSL). The script in this example creates a
new user account on your local computer.

Open Windows Notepad (or any other text editor) and enter the fol-
lowing lines of script code (which consists of comments, variable declara-
tions, COM library calls, and shell output):

Listing 1.4 Create a User Account

PowerShell Script

Create local User Acount

Variables

$Name = "Dr. Holger Schwichtenberg"

$Accountname = "HolgerSchwichtenberg"

$Description = "Author of this book / Website: www.windows-scripting.com"

$Password = "secret+123"

$Computer = "localhost"

"Creating User on Computer $Computer"

Access to Container using the COM library

➥"Active Directory Service Interface (ADSI)"

$Container = [ADSI] "WinNT://$Computer"

Create User

$objUser = $Container.Create("user", $Accountname)

$objUser.Put("Fullname", $Name)

$objUser.Put("Description", $Description)

Set Password

$objUser.SetPassword($Password)

Save Changes

$objUser.SetInfo()

"User created: $Name"

Save the text file with the name createuser.ps1 into the directory
c:\temp. Note that the file extension must be .ps1.

Now start WPS. Try to start the script by typing c:\temp\
createuser.ps1. (You can use tab completion for the directory and file-
names.) This attempt will fail because script execution is, by default, not
allowed in WPS (see Figure 1.8). This is not a bug; it is a security feature.
(Remember the Love Letter worm for WSH?)

What Is Windows PowerShell? 15

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

Figure 1.8 Script execution is prohibited by default.

For our first test, we will weaken the security a little bit (just a little).
We will allow scripts that reside on your local system to run. However,
scripts that come from network resources (including the Internet) will
need a digital signature from a trusted script author. Later in this book you
learn how to digitally sign WPS scripts. You also learn to restrict your sys-
tem to scripts that you or your colleagues have signed.

To allow the script to run, enter the following:

Set-ExecutionPolicy remotesigned

Then, start the script again (see Figure 1.9). Now you should see a
message that the user account has been created (see Figure 1.10).

16 Chapter 1 First Steps with Windows PowerShell

Figure 1.9 Running your first script to create a user account

Figure 1.10 The newly created user account

Downloading and Installing PowerShell Community
Extensions

WPS 1.0 includes only 129 commandlets. You might ask why I wrote only.
You will notice soon that the most important commandlets are those with
the verbs get and set. And the number of those commandlets is quite
small compared to the large number of objects that Windows operating
systems provide. All the other commandlets are, more or less, related to
WPS infrastructure (for example, filtering, formatting, and exporting).

PowerShell Community Extensions (PSCX) is an open source project
(see Figure 1.11) that provides additional functionality with commandlets
such as Get-DhcpServer, Get-DomainController, Get-MountPoint,
Get-TerminalSession, Ping-Host, Write-GZip, and many more.
Microsoft leads this project, but any .NET software developer is invited to
contribute. New versions are published on a regular basis. At the time of
this writing, version 1.1.1 is the current stable release.

DOWNLOAD POWERSHELL COMMUNITY EXTENSIONS
www.codeplex.com/PowerShellCX

PSCX is provided as a setup routine that should be installed after WPS
has been installed successfully.

Downloading and Installing PowerShell Community Extensions 17

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

Figure 1.11 PowerShell Community Extension website

www.codeplex.com/PowerShellCX

You can incorporate additional functionality of PSCX into WPS by
using a profile script (see Figure 1.12). Just copy this profile script to your
My Documents/Windows PowerShell directory, if you want, during PSCX
setup. As a beginner, you should use this option.

18 Chapter 1 First Steps with Windows PowerShell

Figure 1.12 The PSCX profile script that was created during PSCX setup

Testing the PowerShell Extensions

The installation of PSCX changes the WPS console just a bit. Instead of the
current path, the prompt now contains a counter. However, the path does
display in the window’s title.

Start WPS and type Get-DomainController (if your computer is a
member of an Active Directory) or test PSCX by using Ping-Host with
any computer on your network (see Figure 1.13).

Figure 1.13 Testing Get-DomainController and Ping-Host

Downloading and Installing the PowerShellPlus

Unfortunately, Microsoft does not provide a script editor for WPS yet.
However, a few third-party editors support WPS (see Chapter 9,
“PowerShell Tools”). Throughout this book, we use PowerShellPlus Editor,
which is free for noncommercial use.

A previous editor called PowerShell IDE from the same author was
free even for commercial use. However, PowerShell IDE never made it to
a final release and was discontinued.

The PowerShellPlus Editor is part of PowerShellPlus. PowerShellPlus
consists of the editor and a console that provides IntelliSense while using
the PowerShell interactively.

POWERSHELLPLUS WEBSITE www.powershell.com

PowerShellPlus does not need any setup. It is a true .NET application
with XCopy deployment. You just unpack the ZIP file to the directory of
your choice and start the PowerShellPlus.exe that is part of the
package.

Downloading and Installing the PowerShellPlus 19

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

www.powershell.com

Testing the PowerShell Editor

The PowerShellPlus has, according to the WPS console, two modes: an
interactive mode and a script mode (see Figure 1.14). After starting the
PowerShellPlus, you will see the interactive mode. You can use any com-
mandlet (or pipeline). When you press Return, the commandlet is exe-
cuted, and the result displays in the same window. The handy feature is the
IntelliSense. If you enter Get-P, you will see a drop-down list of the avail-
able commandlets that start with these letters.

20 Chapter 1 First Steps with Windows PowerShell

Figure 1.14 WPS IDE in interactive mode

To use the PowerShellPlus in script mode, click Code Editor and cre-
ate a new script file (New/PowerShell Script) or open an existing script PS1
file (Open). Now open the script file CreateUser.ps1 that you created
earlier. You will see line numbers, and you will encounter the same
IntelliSense features that you have in interactive mode. To run the script,

click the Run symbol in the toolbar (see Figure 1.15). The result will dis-
play in the interactive Windows in the background.

WARNING Make sure the user account does not exist before running the
script. Otherwise the script will fail with the error “The account already exists.”

Testing the PowerShell Editor 21

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

Figure 1.15 WPS IDE in script mode

Another great feature is debugging. Place the cursor on any line in
your script and click the Debugging icon. Next, go to any line and press F9.
This creates a red circle next to that line, called a breakpoint. Now run the
script. You will see the PowerShellPlus Editor executing the script in slow
motion, marking the current line yellow and stopping at the line with the
breakpoint (see Figure 1.16). In the Variables Inspector window, you can
inspect the current value of all variables. In the interactive window, you
can type any WPS command that will be executed within the current con-
text. That is, you can interactively access all script variables. To continue
the script, press F8 or click the Continue icon in the toolbar.

Figure 1.16 Script debugging with the WPS IDE

Code snippets are also a nice feature of the PowerShellPlus. In a script
file, click Snippet/Insert on the toolbar or select Insert Snippet in the con-
text menu in the main Editor window. You will be able to select a snippet.
You can create you own snippets with the PowerShellPlus (via Snippets/
New on the toolbar).

Summary

Windows PowerShell is a new .NET-based environment for scripting and
is an interactive command-line shell. WPS is an optional feature on
Windows Server 2008 and an add-on for Windows XP, Vista, and Server
2008. Commands in WPS are called commandlets. The PSCX extends
WPS with additional commandlets.

22 Chapter 1 First Steps with Windows PowerShell

The PowerShellPlus is an alternative shell for WPS commands and an
editor for WPS scripts.

In the next chapter, you learn much more about commandlets and
pipelines. You also learn how to get help if you are seeking a command or
the available options for a commandlet.

Summary 23

1.
FIRST

STEPS
W

ITH
W

IN
DO

W
S

P
O

W
ERSHELL

This page intentionally left blank

25

C H A P T E R 2

COMMANDLETS

In this chapter:
Introducing Commandlets . 25
Aliases . 29
Expressions . 32
External Commands . 33
Getting Help . 35

Commands in Windows PowerShell (WPS) are called commandlets. This
chapter introduces the concept of commandlets and discusses their com-
mon parameters. It also covers aliases and the available options for getting
help.

Introducing Commandlets

A regular WPS command is called commandlet (cmdlet) or function. In
this chapter, we first deal only with commandlets. A function offers an
opportunity to create a command in WPS itself. Because the differences
between commandlets and functions are partly academic from a user point
of view, there will be no differentiation at this point.

A commandlet usually consists of three parts:

1. A verb
2. A noun
3. An (optional) parameter list

The verb and noun are separated by a hyphen (-), the optional param-
eters by spaces. Thus, the following composition is created:

Verb-noun [-parameter list]

The use of upper- or lowercase is irrelevant in commandlet names.
A simple example without parameters is the following:

Get-Process

This command retrieves a list of all processes.

TIP You can use tab completion in the WPS console with commandlets, when
the verb and hyphen have already been typed in (for example, Export-Tab).
You can also use placeholders. Entering Get-?e* and pressing Tab will show
you Get-Help Tab Get-Member Tab Get-Service.

Parameters
Entering one parameter will get you only those processes whose names
match the entered pattern:

Get-Process i*

Another example for a command with parameter is the following:

Get-ChildItem c:\Documents

Get-ChildItem lists all branches of the indicated object
(c:\Documents), in this case all files and directories listed below this file.

Parameters are regarded as a string, even when they are not explicitly
marked by quotation marks. Quotation marks are optional. Quotation
marks are mandatory only in case of a blank within a parameter itself,
because a blank serves as delimiter between parameters:

Get-ChildItem "C:\Program Files"

26 Chapter 2 Commandlets

All commandlets have numerous parameters, differentiated by their
names. In case no parameter names are indicated, predefined standard
properties are used (that is, the sequence is essential):

Get-ChildItem C:\temp *.doc

means the same as

Get-ChildItem -Path C:\temp -Filter *.doc

If a commandlet has more than one parameter, either the sequence of
the parameters is decisive or the user has to indicate the names of the
parameters, too. All the following commands have the same meaning:

Get-ChildItem C:\temp *.doc

Get-ChildItem -Path C:\temp -Filter *.doc

Get-ChildItem -Filter *.doc -Path C:\temp

When indicating parameter names, you can change their sequence:

Get-ChildItem -Filter *.doc -Path C:\temp

The following, however, is wrong, because the parameters are not
named and the sequence is incorrect:

Get-ChildItem *.doc C:\temp

Switches are parameters without any value. Using the parameter name
activates the function (for example, the recursive run through a data file
branch with –recurse):

Get-ChildItem h:\demo\powershell –recurse

Calculated Parameters
Parameters can be calculated (for example, combined out of substrings and
merged by a plus sign). (This makes sense especially in connection with
variables, which are discussed later in this book.)

Introducing Commandlets 27

2.
CO

M
M

AN
DLETS

The following syntax does not deliver the desired result, because here
the delimiter before and after the + is a parameter delimiter at the same
time:

Get-ChildItem "c:\" + "Windows" *.dll –Recurse

However, it also doesn’t work without the two delimiters before and
after the +. In this case, parentheses have to be used to ensure that the cal-
culation is carried out first:

Get-ChildItem ("c:\" + "Windows") *.dll –Recurse

Another example follows demonstrating the calculation of numbers.
The following command results in the process with the ID 2900:

Get-Process -id (2800+100)

More Examples
The following shows those system services whose names don’t start with
the letters K to Z:

Get-Service -exclude "[k-z]*"

Commandlet parameters may also limit (filter) the output. The follow-
ing command delivers only directory entries of type user of a certain
Active Directory path (the example presupposes the installation of PSCX).

Get-ADObject -dis "LDAP://E02/ou=Management,dc=IT-Visions,

➥dc=de"-class user

TIP Tab completion also works with parameters. Try the following input at the
WPS console:

Get-ChildItem -Tab

28 Chapter 2 Commandlets

Placeholders
Often, placeholders (wildcards) are allowed in parameters. You get a list of
all processes starting with the letter I as follows:

Get-Process i*

Other Aspects of Commandlets
Note that nouns used in commandlets are always used in the singular, even
when a number of objects are asked for. However, the result doesn’t always
have to be a number of objects. For example, when entering

Get-Location

you get only one object with the recent path. With

Set-Location c:\windows

you change the recent path. This operation doesn’t have any results.

NOTE The case of commandlet and parameter names (uppercase or lowercase)
is irrelevant.

When started, WPS creates a process. All commandlets run within this
process. This is difference from the classic Windows command shell,
where executable files (.exe) run in separate processes.

Aliases

By using so-called aliases, you can shorten what you have to type for com-
mandlets. For example, the aliases ps (for Get-Process) and help (for
Get-Help) are predefined. Instead of Get-Process i*, you can also
write ps i*.

Enumerating Aliases
With Get-Alias (or the relevant alias aliases), you receive a list of all
predefined abbreviations in the form of instances of the class System.
Management.Automation.AliasInfo.

Aliases 29

2.
CO

M
M

AN
DLETS

When you add a name to Get-Alias, you receive the meaning of
the alias:

Get-Alias pgs

However, if you want to know all aliases of a commandlet, you have to
write the following:

Get-Alias | Where-Object { $_.definition -eq "get-process" }

Here you need to use a pipeline, which we discuss in detail in the next
chapter.

Create a New Alias
The user can define a new alias with Set-Alias or New-Alias. For
example

Set-Alias procs Get-Process

New-Alias procs Get-Process

The difference between Set-Alias and New-Alias is marginal: New-
Alias creates a new alias and delivers a failure, when the alias to be cre-
ated already exists. Set-Alias creates a new alias or overwrites an alias
when the alias to be created already exists. You can use the parameter
–description to create relevant description text.

You can use aliases not only for commandlets, but also for classical
applications, such as the following:

Set-Alias np notepad.exe

WARNING When you create a new alias, the system does not check whether
the respective commandlet or application exists. The failure will not appear until
you call the new alias.

You cannot place any values on parameters via alias definitions. For
example, if you want to define that the entering of Temp executes the

30 Chapter 2 Commandlets

action Get-ChildItem c:\Temp, you need a function to do so. This
doesn’t work with an alias.

Function Temp { get-childitem c:\temp }

Later on, we discuss functions in detail (see Chapter 7, “PowerShell
Scripts”). WPS contains numerous predefined functions (for example, c:,
d:, e:, mkdir, and help).

The newly defined aliases are valid only for the recent instance of the
WPS console. You can, however, export your own alias definitions with
Export-Alias and import them later with Import-Alias (see Table
2.1). As storage formats, the CSV format and the WPS script file format
(PS1, see later chapters) are available. When you use the PS1 format, you
must choose the script with dot sourcing to reimport your file.

Table 2.1 Importing and Exporting CSV

File Format CSV File Format PS1

Save Export-Alias Export-Alias c:\meinealias.ps1

c:\meinealias.csv -as script

Load Import-Alias

c:\meinealias.csv . c:\meinealias.ps1

The number of aliases is, as standard, limited to 4,096. You can change
this by using the variable $MaximumAliasCount.

Aliases are also defined as features. Instead of

Get-Process processname, workingset

you can also write

Get-Process name, ws

These aliases are defined in the file types.ps1xml in the installation
dictionary of WPS (see Figure 2.1).

Aliases 31

2.
CO

M
M

AN
DLETS

Figure 2.1 The content of the predefined file types.ps1xml

Expressions

Single WPS commands may also consist of (mathematical) expressions,
such as the following:

10* (8 + 6)

or

"Hello "+ " " + "World"

32 Chapter 2 Commandlets

Microsoft calls this the expression mode of WPS, in contrast to the
command mode, which is used when you write the following:

Write-Output 10* (8 + 6)

WPS knows two command-processing modes: command mode and
expression mode. In command mode, all input is treated as a string. In
expression mode, numbers and operations are processed. You may mix
command mode and expression mode.

You can integrate an expression in a command by using parentheses.
Furthermore, a pipeline can start with an expression. Table 2.2 shows dif-
ferent examples of expressions.

Table 2.2 Expressions in WPS

Example Meaning

2+3 It’s an expression. WPS executes the calculation and
writes 5.

echo 2+3 It’s a pure command. 2+3 is regarded as a string and is
shown without result on the screen.

echo (2+3) It’s a command with an integrated expression; 5 appears
on the screen.

2+3 | echo It’s a pipeline starting with an expression. The screen
shows 5.

echo 2+3 | 7+6 It’s an invalid entry. An expression may be used only as
the first element of a pipeline.

$a = Get-Process It’s an expression with an integrated command. The result
is directed to a variable.

$a | Get-Process It’s a pipeline starting with an expression. The content of
$a is passed on to Get-Process as parameter.

Get-Process | It’s an invalid entry. An expression may be used only as
the first element of a pipeline.

External Commands

All entries that are not recognized as commandlets or mathematical for-
mulas are treated as external applications. Classic command lines (such
as ping.exe, ipconfig.exe, and netstat.exe) can be executed, as can
Windows applications.

External Commands 33

2.
CO

M
M

AN
DLETS

The entry of c:\Windows\Notepad.exe is thus possible to start the
“popular” Windows Editor. Likewise, Windows Script WSH scripts may be
started from WPS.

Figure 2.2 shows the call of netstat.exe. At first, the output remains
unfiltered. In the second example, the commandlet Select-String has
also been implemented. As a result, only those lines are shown that contain
the term LDAP.

34 Chapter 2 Commandlets

Figure 2.2 Execution of netstat

WARNING Sometimes an internal command of WPS (commandlet, alias, or
function) will have the same name as an external command. In such a case,
WPS does not warn you of this ambiguity. Instead, it executes the command
according to the following preferences, in order:

1. Aliases
2. Functions
3. Commandlets
4. External commands

Filenames
According to Windows settings in the registry, the standard application
gets started and the document is downloaded when file paths are entered.
Filenames have to be marked by quotation marks only when they contain
blanks.

Getting Help

Knowing how to get help is of primary importance when you begin using
new software. This section describes the help functions included in the
WPS console and external help files, too.

Getting a list of Available Commands
To get a list of all available commandlets, enter the following:

Get-Command

Patterns are also valid:

■ Get-Command get-* delivers all commands starting with get.
■ Get-Command [gs]et-* delivers all commands starting with get

or set.
■ Get-Command *-Service delivers all commands containing the

noun Service.
■ Get-Command –noun Service also delivers all commands contain-

ing the noun Service.

You can also use the commandlet Get-Command to gather information
about what WPS regards as a command. Get-Command searches in com-
mandlet names, aliases, functions, script files, and executable files (see
Figure 2.3).

If you write the name of an .exe file after Get-Command, WPS shows
the path where you can find the executable file. The search takes place only
in paths that are included in the environment variable %Path%.

The following command shows a list of all directly callable executable
files:

Get-Command *.exe

Getting Commandlet Help
You can request help text about a specific commandlet with Get-Help
commandletname (for example, Get-Help Get-Process; see Figure 2.4).

Getting Help 35

2.
CO

M
M

AN
DLETS

Figure 2.3 Example for the use of Get-Command

By using the parameters –detailed and –full, you can get more
help. On the other hand, Get-Help get lists all commandlets that use the
verb get. Help text language is based on the installed language version of
WPS.

TIP Alternatively to calling Get-Help, you can also add the general parameter
-? to the commandlet (for example, Get-Process -?). If you do so, you get
a short version of help, but no option for the more detailed versions.

36 Chapter 2 Commandlets

Getting Help 37

2.
CO

M
M

AN
DLETS

Figure 2.4 Clipping from help text referring to the commandlet Get-Process

A graphic help file for WPS in CHM file format has been available
since the end of May 2007 (half a year after the official launch of WPS 1.0)
as a separate download at Microsoft.com. [MS01]

Figure 2.5 Help file for WPS

This CHM also contains advice about the manual transfer of VBScript
code to WPS (see Figure 2.6).

Documentation of .NET Classes
For more information about.NET classes with which WPS works, check
out the following resources:

■ WPS documentation for the namespace System.Management.
Automation

■ .NET Framework software development kit or Windows software
development kit for .NET 3.5 or Visual Studio 2008.

38 Chapter 2 Commandlets

■ Product-specific documentation (for example, Exchange Server
2007 documentation)

Getting Help 39

2.
CO

M
M

AN
DLETS

Figure 2.6 Help referring to the transfer of VBScript to WPS

The documentation shows the available class members (properties,
methods, events, constructors; see Figure 2.7).

NOTE Because the documentation concerning .NET classes has been written for
developers, it is often too detailed for WPS users. Unfortunately, there is cur-
rently no version in sight adapted to the needs of administrators.

Figure 2.7 shows the documentation of the class Process in the name-
space System.Diagnostics. In the left branch, you will recognize differ-
ent kinds of members: methods, properties, and events.

40 Chapter 2 Commandlets

Figure 2.7 Clipping from the documentation of the .NET class
System.Diagnostics.Process

Summary

A commandlet consists of a verb and noun separated by a hyphen.
Placeholders can be used and parameters can be calculated. You have also
learned that you can cut down on your typing by using aliases. A lot of
aliases are predefined, but you can define as many as you want.

You have also learned that you can start classic command-line tools and
Windows programs from the WPS console and that you can even use the
console as a calculator.

You have become familiar with the commandlet Get-Help, which is
one of the most important commandlets because it lists the contents of the
XML help files that are available for most commandlets.

Summary 41

2.
CO

M
M

AN
DLETS

This page intentionally left blank

43

C H A P T E R 3

PIPELINING

In this chapter:
Pipelining Basics . 43
Pipeline Processor . 47
Complex Pipelines . 48
Output . 49
Getting User Input . 56

Windows PowerShell (WPS) shows its real power through its object-
oriented pipeline (that is, the passing of typed data from one commandlet
to another). The pipeline in WPS contains structured objects, and the WPS
provides a few commandlets for working with these objects, (for example,
filtering, sorting, and calculating).

Pipelining Basics

To create a pipeline, you use the vertical line (|), as you would in UNIX
shells and the normal Windows console.

The command

Get-Process | Format-List

means that the result of the Get-Process commandlets will be passed
on to the commandlet Format-List. The standard output form of Get-
Process is a table. When you use Format-List, the single properties of
the listed processes are written one beneath the other rather than in
columns.

Object Orientation
Object orientation is the outstanding feature of WPS: Commandlets can be
linked to other commandlets by pipelines. In contrast to pipelines in UNIX
shells, WPS commandlets do not exchange strings, but typed .NET
objects. Object-oriented pipelining is, in contrast to string-based pipelin-
ing, common in UNIX shells and the normal Windows shell (cmd.exe),
not dependent on the position of the information in the pipeline.

In a pipeline such as

Get-Process | Where-Object { $_.name -eq "iexplore" } |

➥Format-Table ProcessName, WorkingSet

the third commandlet is therefore not dependent on a certain posi-
tioning and formatting of the previous commandlets, but has direct access
to the property of the objects via the so-called reflection mechanism (the
built-in inspection mechanism of the .NET Framework).

NOTE To be exact, Microsoft calls this procedure Extended Reflection or
Extended Type System (ETS), because WPS can add properties to objects that
actually do not exist in the class definition.

Object Types and Data Members
In the preceding example Get-Process puts a .NET object of the type
System.Diagnostics.Process in the pipeline for each running process.
System.Diagnostics.Process is a class (alias type) from the .NET
Framework class library; commandlets, however, can place any .NET
object in the pipeline, even ordinary numbers or strings. As in .NET, there
is no differentiation between elementary types and classes. However, to
place a string in a pipeline will remain an exception, because the typed
access to objects is much more robust against possible changes than the
string evaluation with regular outputs.

The object-orientation approach becomes clearer when you use a
number rather than a string. WorkingSet64 is a numeric value of 64 bits
that represents the recent cost of a process. All processes that currently
need more than 20MB of RAM are listed with the following command:

Get-Process | Where-Object {$_.WorkingSet64 -gt 20*1024*1024 }

44 Chapter 3 Pipelining

Instead of 20*1024*1024, you could also use the code 20MB. And you
can shorten Where-Object with a question mark. The short version of the
command is as follows:

ps | ? {$_.ws -gt 20MB }

When only one commandlet is used, the result is shown on the screen.
When several commandlets are combined in a pipeline, the result of the
last commandlet of the pipeline is also written on the screen. When the last
commandlet doesn’t deliver any data to the pipeline, however, you will see
no result.

Executing Methods
The object pipeline has another advantage: According to the object-
oriented paradigm, .NET objects not only have properties, they also have
methods. Therefore, as a WPS user, you can also call the methods of
objects in a pipeline. Objects of the type System.Diagnostics.
Process, for example, have a method Kill(). In WPS, the call of this
method is nested in the method Stop-Process.

The following WPS pipeline command ends all instances of Internet
Explorer on your local system; the commandlet Stop-Process receives
the instances of the relevant process from Get-Process:

Get-Process iexplore | Stop-Process

If you are an expert in .NET Framework, you may as well call the
method directly. In this case, however, you need an explicit ForEach loop.
Commandlets iterate automatically over all pipeline objects, whereas
method calls don’t. Note that the parentheses after the method name kill
are mandatory. If you omit them, you get information about the method,
but the method will not be executed.

Get-Process iexplore | Foreach-Object { $_.Kill() }

To abbreviate this, you can also use WPS aliases:

ps | ? { $_.name -eq "iexplore" } | % { $_.Kill() }

The application of the method Kill() was used only for demonstra-
tion purposes, to make clear that the pipeline really carries objects. In

Pipelining Basics 45

3.
P

IPELIN
IN

G

practice, you could perform the same more easily with the integrated
Stop-Process.

However, this works well only when there are instances of Internet
Explorer. If all of them have already been closed, Get-Process reports a
failure, which might not be the desired behavior. With another pipeline,
however, this failure can be prevented:

Get-Process | Where-Object { $_.Name -eq "iexplore" }

➥| Stop-Process

The second pipeline differs from the first. The filtering of the pro-
cesses from the process list are now not executed by the Get-Process, but
by a commandlet named Where-Object in the pipeline itself. Where-
Object is more tolerant than Get-Process concerning the possibility that
there might not be an adequate object.

ps is an alias for Get-Process, Kill for Stop-Process. Further-
more, Get-Process has an integrated filter function. To end all instances
of Internet Explorer, you can either write

Get-Process | Where-Object { $_.Name -eq "iexplore" }

➥| Stop-Process

or

ps -p "iexplore" | Kill

Pipelining of Parameters
The pipeline can carry all kinds of information—not only complex objects,
but also elementary data. Some commandlets support the fetching of
parameters out of the pipeline. The following pipeline command creates a
listing of all Windows system services starting with the letter I:

"i*" | Get-Service

Pipelining of Classic Command
Generally, you may as well use classic command-line applications in WPS.
When you execute a command such as netstat.exe or ping.exe, they
transfer a number of strings to the pipeline: Each line of output is an object
of type System.String.

46 Chapter 3 Pipelining

You can analyze these strings with the commandlet Select-String.
Select-String allows only those lines to pass the pipeline that match the
written regular expression (see Figure 3.1)

In the following example, only those lines of the expression of
netstat.exe will be filtered that have an uppercase E followed by two
numbers.

NOTE The syntax of regular expressions in .NET is not discussed in detail in
this book. You can find good documentation in [MSDN08].

Pipeline Processor 47

3.
P

IPELIN
IN

G

Figure 3.1 Use of Select-String for the filtering of expressions of classical
command-line tools

Pipeline Processor

Responsible for the transfer of .NET objects to commandlets is the
PowerShell Pipeline Processor (see Figure 3.2). The commandlets them-
selves do not have to worry about either object transfer or parameter eval-
uation.

NOTE As you can see Figure 3.2, the commandlet next in line immediately
starts to work when it receives its first object from the pipeline. Sometimes, there-
fore, the first commandlet has not yet created all objects when the commandlets
next in line start processing the first objects. A commandlet is immediately called
as soon as the first object is ready.

Figure 3.2 The PowerShell Pipeline Processor transfers objects from the
downstream commandlet to the upstream commandlet.

Complex Pipelines

Users can define the length of a pipeline (that is, the number of commands
in a single pipeline is unlimited). Here’s an example for a more complex
pipeline:

Get-ChildItem h:\Documents –r -filter *.doc

| Where-Object { $_.Length -gt 40000 }

| Select-Object Name, Length

| Sort-Object Length

| Format-List

Get-ChildItem identifies all Microsoft Word files in the directory
h:\Documents and its children. The second commandlet (Where-Object)
reduces the result to those objects where the property Length is greater
than 40000. Select-Object cuts all properties from Name and Length.
The fourth commandlet in the pipeline sorts the expression according to
the property Length. Finally, the last commandlet creates a list format.

The sequence of the single commands, however, is not optional. You
cannot, for example, put sorting after formatting in the preceding com-
mand; even though there is an object after the formatting, this object rep-
resents a text stream. Where-Object and Sort-Object could be
exchanged; for reasons of resource use, however, it is wiser to limit the out-
put first and sort the limited list after this.

48 Chapter 3 Pipelining

Commandlet #1
get-service

Commandlet #2
 where-object

Commandlet #3
out-file

PowerShell Pipeline Processor

O
ut

pu
t P

ip
el

in
e

In
pu

t P
ip

el
in

e

O
ut

pu
t P

ip
el

in
e

In
pu

t P
ip

el
in

e

U
pstream

C
om

m
andlet

D
ow

nstream
C

om
m

andlet

get-service | Where-Object {$_.status -eq "running"} | out-file

.NET Objects of Type
System

ServiceProcess..
ServiceController

Selection

Storing

You can access all properties and methods of .NET objects that have
been placed by an earlier commandlet in the pipeline. Members of the
objects can be used either via parameters of the commandlets (for exam-
ple, in Sort-Object Length) or by an explicit reference to the recent
pipeline object ($_) in a loop or condition (for example, Where-Object {
$_.Length -gt 40000 }).

NOTE Not all sequences of commandlets make sense. Some sequences aren’t
even valid. A commandlet may expect certain kinds of input objects. Therefore,
you should use commandlets that can process any kind of entry object.

Output

A regular commandlet should not create its own screen output, but should
put a number of objects in the pipeline. Only certain commandlets are pre-
defined to create an output, including the following:

■ Out-Default Standard output according to WPS configuration
(DotNetTypes.Format.ps1xml).

■ Out-Host Same as Out-Default with additional option for
pagewise output.

■ Out-Null Pipeline objects are not transferred.
■ Format-Wide Two-column list (see Figure 3.3)
■ Format-List Detailed list (see Figure 3.4)
■ Format-Table Table (see Figure 3.5)

NOTE Unfortunately, after the beta versions, Microsoft removed some com-
mandlets that offered an output on a higher abstraction level. Therefore, the fol-
lowing commandlets are not available in WPS 1.0:

■ Windows Forms data grid (Out-Grid)
■ Excel chart (Out-Excel)
■ E-mail (Out-Email)
■ Column diagram (Out-Chart)

However, Microsoft has announced that at least a commandlet named Out-
GridView will be available in WPS 2.0.

Output 49

3.
P

IPELIN
IN

G

50 Chapter 3 Pipelining

Figure 3.3 Format-Wide output

Figure 3.4 Format-List output

Output 51

3.
P

IPELIN
IN

G

Figure 3.5 Format-Table output

Standard Output
When you do not name a format function at the end of a pipeline, WPS
automatically uses the commandlet Out-Default. Out-Default uses a
predefined output standard that is stored in DotNetTypes.Format.
ps1xml in the installation directory of WPS. There, you can get the infor-
mation that, for example, type System.Diagnostics.Process produces
an output in an eight-column table (see Figure 3.6).

Pagewise Output
Often, output is too long to be presented on one screen page. Some out-
put is even longer than the standard buffer of the WPS window (for exam-
ple, Get-Command | Get-Help). You enforce the pagewise output with
the parameter –p in the Out-Host commandlet. In this case, Out-Host
has to be written as follows:

Get-Command | Get-Help | Out-Host -p

Figure 3.6 Clipping from the description of the standard output for type
System.Diagnostics.Process in DotNetTypes.Format.ps1xml

Restricting the Output
The output commands allow specifications of object properties to be pre-
sented. For example

Get-Process | Format-Table -p id,processname,workingset

52 Chapter 3 Pipelining

creates a table of processes with process ID, name of processes, and
use of space. Names of properties can also be abbreviated with placeholder
*, as follows:

Get-Process | Format-Table -p id,processn*,working*

NOTE You can get the same output when you use Select-Object:

Get-Process | Select-Object id, processname,

➥workingset | Format-Table

Output of Single Values
To display specific text or the content of a variable, you just have to write
this on the console (see Figure 3.7). Alternatively, you can use the com-
mandlets Write-Host, Write-Warn, and Write-Error. The command-
lets Write-Warn and Write-Error create highlighted output.

With Write-Host, you can specify colors:

Write-Host "Hello Holger" -foregroundcolor red -backgroundcolor

➥white

Output 53

3.
P

IPELIN
IN

G

Figure 3.7 Output of constants and variables

To mix literals and variables in an output, you must either link them
with +

$a + " can be reached at " + $b + ".

➥This information is dated: " + $c + "."

or integrate the variables directly in the string. In contrast to other lan-
guages, WPS evaluates the string and searches for he dollar sign ($) (vari-
able resolution):

"$a can be reached at $b. This information is dated: $c."

You can also use placeholders and format markers common in .NET
(for example, d = date in the long version). In addition, include the param-
eter –f after the string. Based on the format possibilities, this option is the
most powerful:

"{0} can be reached at {1}.

➥This information is dated: {2:d}." -f $a, $b, $c

The following list summarizes the three equivalent possibilities:

$a = "Holger Schwichtenberg"

$b = "hs@windows-scripting.com"

$c = get-Date

possibility 1

$a + " can be reached at " + $b + ".

➥This information is dated: " + $c + "."

possibility 2

"$a can be reached at $b. This information is dated: $c."

possibility 3

"{0} can be reached at {1}.

➥This information is dated: {2:D}." -f $a, $b, $c

54 Chapter 3 Pipelining

Listing 3.1 Formatted Output (of the preceding script)

Holger Schwichtenberg can be reached at hs@windows-scripting.com.

➥This information is dated: 14.09.2007 16:53:13.

Holger Schwichtenberg can be reached at hs@windows-scripting.com.

➥This information is dated: 14.09.2007 16:53:13.

Holger Schwichtenberg can be reached at hs@windows-scripting.com.

➥This information is dated: Thursday, 14. September 2007.

Suppressing the Output
Because the standard output is in place, all return values of commandlet
pipelines also display. This is not always desired.

You have three alternatives to suppress the output:

1. At the end of the pipeline, use Out-Null:
Commandlet | Commandlet | Out-Null

2. Transfer the result of the pipeline to a variable:
$a = Commandlet | Commandlet

3. Convert the result of the pipeline to type [void]:
[void] (Commandlet | Commandlet)

Other Output Functions
The following list shows further output possibilities in WPS 1.0:

■ With the commandlet Out-Printer, send the output to the printer.
■ With Out file, you can write the content to a file.
■ Output the process list to the standard printer:
Get-Process | Out-Printer

■ Output the process list to a specific printer:
Get-Process | Out-Printer "HP LaserJet PCL6 on E02"

■ Output the process list in a text file (overwriting existing content):
Get-Process | Out file "c:\temp\processlist.txt"

Output 55

3.
P

IPELIN
IN

G

■ Output the process list in a text file (adding to existing content):
Get-Process | Out file "c:\temp\processlist.txt"
-Append

Getting User Input

Text input by the user may be received via Read-Host:

PS C:\Documents\hs> $name = read-host "Please enter username"

Please enter username: HS

PS C:\Documents\hs> $kennwort = read-host -assecurestring

➥"Please enter password"

Please enter password: ****

Input Dialog
A simple input box is provided by the function InputBox() (see Listing 3.2
and Figure 3.8); you might already be familiar with this input box from
Visual Basic/VBScript. This function also exists in the .NET Framework in
the class Microsoft.VisualBasic.Interaction. To use this function,
you must load the assembly Microsoft.VisualBasic.dll. More details
about loading assemblies and executing .NET methods directly are cov-
ered in a later chapter.

Listing 3.2 Simple Graphic Data Input in WPS

[System.Reflection.Assembly]::LoadWithPartialName

➥("Microsoft.Visual Basic")

$input = [Microsoft.Visual Basic.Interaction]::InputBox("Please

➥enter your name!")

"Hello $input!"

56 Chapter 3 Pipelining

Figure 3.8 An input box in action

Dialog Boxes
To use dialog boxes, you can apply .NET classes. The script in Listing 3.3
asks the user for a decision within a dialog box (Yes/No).

Listing 3.3 Use of the Class MessageBox in WPS

[System.Reflection.Assembly]::LoadWithPartialName

➥("System.windows.forms")

[System.Console]::Beep(100, 50)

[System.Windows.Forms.MessageBox]::Show("We will ask you a

question","Advanced Warning", [System.Windows.Forms.MessageBoxKeys]::OK)

$answer = [System.Windows.Forms.MessageBox]::Show("Do you like

➥Windows PowerShell?","Headline",

➥[System.Windows.Forms.MessageBoxKeys]::YesNo)

if ($answer-eq "Yes")

{ "You agreed!" }

else

{ "You disagreed!" }

Getting User Input 57

3.
P

IPELIN
IN

G

Authentication Dialog Box
A Windows authentication dialog box opens WPS with Get-Credential
(see Figure 3.9). The result is an instance of System.Management.
Automation.PSCredential with the username in plain text in UserName
and the password coded in Password. In Chapter 14, “Processes and
Services,” you can see an example of how to use the entered credentials to
start a process with a different identity.

58 Chapter 3 Pipelining

Figure 3.9 Use of Get-Credential

Summary

WPS commandlets can be connected through pipelines. One commandlet
places objects into the pipeline, and other commandlets can access these
objects. In contrast to classic shells, WPS pipelining is object oriented.
This means that WPS pipelines carry structured objects rather than
unstructured strings. Structured objects not only contain data, they also
provide methods that can be executed.

59

C H A P T E R 4

ADVANCED PIPELINING

In this chapter:
Analyzing Pipeline Content . 59
Filtering Objects . 70
Castrating Objects . 73
Sorting Objects . 74
Grouping Objects . 74
Calculations . 76
Intermediate Steps in the Pipeline . 76
Comparing Objects . 78
Ramifications . 78

This chapter includes advanced Windows PowerShell (WPS) pipelining
features such as filtering, sorting, grouping, comparing, and calculating.
The chapter introduces a few commandlets that are commonly used (for
example, Where-Object, Sort-Object, Group-Object, and Get-
Member).

Analyzing Pipeline Content

One of the greatest challenges in working with WPS is to answer the fol-
lowing two questions:

1. Which type do the objects, which are placed in the pipeline by a
commandlet, have?

2. Which properties and methods do these objects have?

The commandlets’ help is not always “helpful” here. In Get-Service,
you can read the following:

RETURN TYPE

System.ServiceProcess.ServiceController

But in Get-Process, it is not much help; it says only this:

RETURN TYPE

Object

The WPS documentation ([MS01] and [MS02]) will not help you at all
with the properties and methods of the resulting objects. You will find
these only in the MSDN documentation about .NET Framework.

The following two helpful commandlets are introduced, which will
help you in everyday work with WPS to learn what you really have in the
pipeline:

Get-PipelineInfo
Get-Member

Get-PipelineInfo
The commandlet Get-PipelineInfo from the PowerShell Extensions
of www.IT-Visions.de, delivers three important pieces of information about
the pipeline contents (see Figure 4.1):

■ Number of objects in the pipeline (the objects are numbered)
■ Type of objects in the pipeline (name of .NET class)
■ String representations of objects in the pipeline

The phrase string representation needs to be explained: Each .NET
object has a method ToString(), which changes the object into a string,
as ToString() is implemented in the “mother of all .NET classes,”
System.Object, and is passed on to all .NET classes and thus to all their
instances. Whether ToString() delivers a sensible output depends on the
relative class. In the case of System.Diagnostics.Process, the class
name and process name are delivered. You can easily get this with gps |
foreach { $_.ToString() } (see Figure 4.2). On the other hand, the
conversion of class System.ServiceProcess.ServiceController,
whose instances are delivered by Get-Service, is not so good, because

60 Chapter 4 Advanced Pipelining

www.IT-Visions.de

the string contains only the class name, so the single instances cannot be
diversified (see Figure 4.3).

Analyzing Pipeline Content 61

4.
A

DVAN
CED

P
IPELIN

IN
G

Figure 4.1 Get_PipelineInfo tells us that there are 11 objects in the data
directory, 7 of which are subregistries (class DirectoryInfo) and 4 which
are files (class FileInfo).

NOTE The conversion into the class name is the standard behavior, inherited
from System.Object, and this standard behavior unfortunately is customary,
because the developers of most of the .NET classes at Microsoft did not take the
initiative to define a sensible string representation.

ToString() generally is not a serialization of the complete object content,
but only mirrors the prime key of the object.

Figure 4.2 Use of ToString() on instances of class
System.Diagnostics.Process

62 Chapter 4 Advanced Pipelining

Figure 4.3 Use of ToString() on instances of class System.
ServiceProcess.ServiceController

Get-Member
The commandlet Get-Member (alias gm) is another helpful commandlet: It
shows the .NET class name of the objects in the pipeline and the proper-
ties and methods of this class. The output of Get-Process | Get-
Member is so long that you need two screenshots for the presentation (see
Figures 4.4 and 4.5). Get-Member is included in the basic WPS 1.0 com-
mandlet set.

NOTE If there are different kinds of object types in the pipeline, members of all
types are displayed, grouped according to the head section, starting with
TypeName.

The output shows that from a WPS point of view, a .NET class has
seven kinds of members:

■ Methods
■ Properties
■ Property sets
■ Note properties

■ Script properties
■ Code properties
■ Alias properties

Analyzing Pipeline Content 63

4.
A

DVAN
CED

P
IPELIN

IN
G

Figure 4.4 Part 1 of the output of Get-Process | Get-Member

NOTE Concerning the previously mentioned member forms, only Method and
Property are actual members of the .NET class. All other kinds of members are
extensions, which WPS has added to the .NET object via the previously men-
tioned Extended Type System (ETS).

Figure 4.5 Part 2 of the output of Get-Process | Get-Member

Methods are operations that you can call on an object and that will start
an action, such as Kill(), which ends the process. Methods, however, may
also display data or change data within an object.

WARNING To call a method, you must use parentheses at all times, even if
there are no parameters. Without parentheses, you will get only information
about the method; you will not call the method itself.

64 Chapter 4 Advanced Pipelining

Properties are data elements that contain information about an object
or with which information can be transferred to an object (for example,
MaxWorkingSet). In the screenshots with the output of Get-Process |
Get-Member, it is remarkable that there are two methods for each prop-
erty (for example, get_MaxWorkingSet() and set_MaxWorkingSet()).
The cause for this lies within the internals of the .NET Framework: Here
properties (not fields) are mapped by a pair of methods—one method to
fetch the data (called “get” method or Getter), and another method to set
the data (called “set” method or Setter).

This means that for you, as the WPS user, you have two possibilities to
call data:

■ By using the property

Get-Process | Where-Object { $_.name -eq "iexplore" } |

Foreach-Object { $_.MaxWorkingSet }

■ By using the relevant “get” method

Get-Process | Where-Object { $_.name -eq "iexplore" } |

Foreach-Object { $_.get_MaxWorkingSet() }

Likewise, you have the option to use the property as follows:

Get-Process | Where-Object { $_.name -eq "iexplore" } |

Foreach-Object { $_.MaxWorkingSet = 1413120 }

Alternatively, you can use the relevant “set” method:

Get-Process | Where-Object { $_.name -eq "iexplore" } |

Foreach-Object { $_.set_MaxWorkingSet(1413120) }

TIP The beginner might not be so happy about these options as they inflate the
output; the advanced user will like it. In the end, there is a great advantage pro-
vided by the listing of getters and setters, besides the syntactical freedom. You
can recognize which actions are possible on a property. If the setter is missing,
the property cannot be changed (for example, StartTime in the class
Process). If the getter is missing, you can set only one property. There is no
example for this scenario in the class Process. Furthermore, this scenario is
much rarer, but becomes evident with keywords, which cannot be regained
because they were not saved in plain text, but only as hash values.

Analyzing Pipeline Content 65

4.
A

DVAN
CED

P
IPELIN

IN
G

Property sets are a summary of a number of properties under one
umbrella. For example, the property set psRessources covers all proper-
ties that refer to the resource use of a process. Therefore, you do not have
to name the single property. You can write the following instead:

Get-Process | Select-Object psRessources | Format-Table

The developers of WPS thought of many things, but did not cover
everything. For instance, for one process the preceding command leads to
the failure report “Access is denied”; the pseudo-process “Idle” cannot be
asked for TotalProcessorTime (see Figure 4.6).

66 Chapter 4 Advanced Pipelining

Figure 4.6 The WPS developers didn’t address the special status of the pseudo-
process “Idle.”

Property sets do not exist in .NET Framework; they are a specialty of
WPS and are defined in the file types.ps1xml in the installation directory
of WPS (see Figure 4.7).

Figure 4.7 Definition of the property sets for the class System.
Diagnostics.Process in types.ps1ml

Note properties are additional data elements that do not come from the
data source, but have been added by the WPS infrastructure. In the class
process, it’s __NounName, which gives a shortened name to the class. Other
classes have numerous note properties. Note properties do not exist in
.NET Framework; they are a specialty of PowerShell.

A script property is a calculating property that is not saved within the
object itself. This does not mean that the calculation has to be a mathe-
matical one; it can also be the access to the properties of a subobject. The
following command lists all processes with those products belonging to the
relevant processes (see Figure 4.8):

Get-Process | Select-Object name, product

This is good to keep in mind when you are looking in your system at a
process that you do not know and that you might take for a virus.

The information about the product cannot be found in the process
(Windows does not list this information in the Task Manager either), but in
the file, which contains the program code for the process. The .NET
Framework offers access to this information via MainModule.
FileversionInfo.ProductName. Microsoft offers a shortcut of the
command:

Get-Process | Select-Object name,

➥Mainmodule.FileVersionInfo.ProductName

Analyzing Pipeline Content 67

4.
A

DVAN
CED

P
IPELIN

IN
G

Figure 4.8 Listing of the calculating property Product

Microsoft offers this shortcut via the script property. This shortcut is
defined in the file types.ps1xml in the installation directory of WPS (see
Figure 4.9).

Script properties do not exist in .NET Framework; they are a specialty
of WPS.

A code property equals a script property; the program code, however,
is not given as script in WPS language, but as .NET code.

An alias property is a short form for a property. It is not based on a
calculation, but on a shortening of the name. For example, WS is short for
WorkingSet. The alias properties are also defined in the file types.
ps1xml in the installation directory of WPS. Alias properties are also a
WPS specialty.

68 Chapter 4 Advanced Pipelining

Figure 4.9 Definition of a script property in types.ps1xml

More Information about Get-Member
You can reduce the output of Get-Member by limiting it to a certain kind
of members. You can accomplish this with the parameter –Membertype
(or –m). The following command lists only properties:

Get-Process | Get-Member -Membertype Properties

Furthermore, you can set a name filter:

Get-Process | Get-Member *set*

The preceding command lists only those members of the class
Process whose names contain the word set.

Extended Type System (ETS)
As already pointed out, WPS shows for many .NET objects more members
than there are actually defined in the class. In some cases, however, mem-
bers are suppressed. This is accomplished through the ETS.

The extension of members via ETS is applied to enable the WPS user
to display data directly from some .NET classes, which are meta classes
for the actual data (for example, ManagementObject for WMI objects,
ManagementClass for WMI classes, DirectoryEntry for entries in
directory services, and DataRow for data rows).

Members are suppressed when they are not usable in WPS or if there
are better alternatives via extensions.

In the documentation, you find the following commentary from the
WPS development team: “Some .NET object members are inconsistently
named, provide an insufficient set of public members, or provide insuffi-
cient capability. ETS resolves this issue by introducing the ability to extend
the .NET object with additional members.” [MSDN04] Simply put, this
means that the WPS team is not really satisfied with the development
team’s work with the .NET class library.

Analyzing Pipeline Content 69

4.
A

DVAN
CED

P
IPELIN

IN
G

The ETS generally packs each object, which had been placed in the
pipeline by a commandlet, into a WPS object, type PSObject. Then,
the implementation of the class PSObject decides what remains visible for
the following commandlets and commands.

This decision is influenced by different instruments:

■ WPS object adapters that have been implemented for certain types,
such as ManagementObject, ManagementClass, DirectoryEntry,
and DataRow

■ Declarations in the types.ps1xml file
■ Members added in the commandlets
■ Members added through the use of the commandlet Add-Member

Filtering Objects

Often, you will not process all objects displayed by a commandlet.
Limitation criteria are conditions (for example, only processes with a cost
greater than 10000000 bytes) or positions (for example, only the five
processes with the greatest cost). As a means of limitation, you can use the
commandlet Where-Object (alias where).

You can define limitations via conditions with Where-Object:

Get-Process | Where-Object {$_.ws -gt 10000000 }

Limitations via the position are defined with Select-Object. (In the
following command, for the previously named example, an additional sort-
ing is integrated, to get a sensible output.)

Get-Process | Sort-Object ws -desc | Select-Object -first 5

Likewise, you can display the process with lowest cost as follows:

Get-Process | Sort-Object ws -desc | Select-Object -last 5

70 Chapter 4 Advanced Pipelining

You might find it difficult to get used to the syntax of the relational
operators. Instead of >= you write –ge (see Tables 4.1 and 4.2). The use of
regular expressions is possible with the operator –Match. (For example,
the following expression lists all Windows services with a display name that
consists of exactly two words separated by a white space; see Figure 4.10.)

Get-Service | Where-Object { $_.DisplayName -match

➥"^\w* \w*$" }

Filtering Objects 71

4.
A

DVAN
CED

P
IPELIN

IN
G

Figure 4.10 Services with two words in the display name

The syntax of regular expressions in .NET is not discussed in detail in
this book. For more information about such, refer to [MSDN08].

Table 4.1 Relational Operators in WPS Syntax

Comparison with Comparison with

Case Sensitivity Case Insensitivity Meaning

-lt -ilt Smaller
-le -ile Smaller or even
-gt -igt Greater
-ge -ige Greater or even
-eq -ieq Even
-ne -ine Not even
-like -ilike Similarity between strings, use of

placeholders (* and ?) possible
-notlike -inotlike No similarity between strings, use

of placeholders (* and ?) possible
-match Comparison with regular expression
-notmatch Does not comply with regular

expression
-is Type comparison

Table 4.2 Logical Operators in WPS Syntax

Logical Operator Meaning

-not or ! Not
-and And
-or Or

Aggregation of Pipeline Content
The number of objects in the pipeline may be heterogeneous. For exam-
ple, this is automatically the case when Get-ChildItem is executed in the
file system: The result contains FileInfo and DirectoryInfo objects.

You can also link two commands, which both send objects to the
pipeline, so that the content of the pipeline looks like this (see Figure 4.11):

$(Get-Process ; Get-Service)

72 Chapter 4 Advanced Pipelining

But this is only sensible when the following commands in the pipeline
are able to handle heterogeneous pipeline content correctly. The standard
expression can do this. In other cases, the type of the first object conditions
the kind of processing in the pipeline (for example, with Export-Csv).

Castrating Objects 73

4.
A

DVAN
CED

P
IPELIN

IN
G

Figure 4.11 Use of GetPipelineInfo on a heterogeneous pipeline

Castrating Objects

The analysis of the pipeline content shows that there are often many mem-
bers in the objects in the pipeline. Generally, however, you need only a few.
Not only for reasons of space saving, but also because of concern for clar-
ity, it is worth the effort to “castrate” objects in the pipeline.

With the command Select-Object, you can castrate an object in the
pipeline. (that is, (almost) all object members are deleted from the pipeline,
except those members explicitly mentioned behind Select-Object).

For example, the command

Get-Process | Select-Object processname, get_minworkingset,

➥ws | Get-Member

keeps only the members processname (property), get_minwork-
ingset (method), and workingset (alias) of the Process objects in the
pipeline (see Figure 4.12). As Figure 4.12 shows, castrating doesn’t work
without pain:

■ Get-Member does not show the actual class name any longer, but
instead shows PSCustomObject, a special class of WPS.

■ All members are degraded to note properties.

That there are four more members in the list besides the three desired
ones is easily explained. Each (that means really each single .NET object)
has these four methods because they are derived from the basic class
System.Object and inherited by each .NET class and thus each .NET
object.

74 Chapter 4 Advanced Pipelining

Figure 4.12 Effect of Select-Object

TIP With the parameter –exclude, you can also exclude single members in
Select-Object.

Sorting Objects

With Sort-Object (alias sort), you can sort objects in the pipeline based
on the properties previously mentioned. The standard sorting direction is
in ascending order.

The following command sorts processes in a descending order accord-
ing to their cost:

Get-Process | sort ws -desc

Grouping Objects

With Group-Object, you can group objects in the pipeline according to
their properties.

With the following command, you can display how many system serv-
ices are running and how many have been stopped:

PS B:\Scripte> Get-Service | Group-Object status

Count Name Group

----- ---- -----

64 Running {AeLookupSvc, ALG, AppMgmt, appmgr...}

54 Stopped {Alerter, aspnet_state, ClipSrv,

➥clr_optimiz...

The second example groups the files in the System32 directory accord-
ing to the file extension and sorts the grouping afterward in a descending
order according to the number of files in each group (see Figure 4.13).

Get-ChildItem c:\windows\system32 | Group-Object Extension |

Sort -Object count –desc

Grouping Objects 75

4.
A

DVAN
CED

P
IPELIN

IN
G

Figure 4.13 Use of Group-Object and Sort-Object

TIP When the only purpose is to display groups and not to determine the fre-
quency of group elements, you can use Select-Object with the parameter
–unique for grouping:

Get-ChildItem | Select-Object extension -Unique

Calculations

Measure-Object executes various calculations (number, average, sum,
minimum, maximum) for objects in the pipeline. Here you should name
the property that is the subject of the calculation, because the first prop-
erty is a often text that cannot be processed mathematically.

For example, to access information about the files in c:\Windows use
the following (see Figure 4.14):

Get-ChildItem c:\windows | Measure-Object -Property

➥length -min -max -average -sum

76 Chapter 4 Advanced Pipelining

Figure 4.14 Example for the use of Measure-Object

Intermediate Steps in the Pipeline

A command in the pipeline may be as long as you want, and therefore also
as complex. When a command becomes unclear or you want to have a
closer look at the intermediate steps in the pipeline, you should buffer the

content of the pipeline. WPS offers to file the content of the pipeline in
variables. Variables are marked by a preceding dollar sign ($). Instead of

Get-Process | Where-Object {$_.name -eq "iexplore"} |

➥Foreach-Object { $_.ws }

you can also enter the following commands one after another in sepa-
rate lines in the shell window:

$x = Get-Process

$y = $x | Where-Object {$_.name -eq "iexplore"}

$y | Foreach-Object { $_.ws }

The result is the same in both cases.
The access to variables without content does not produce a failure as

long as you do not use commandlets later in the pipeline, where objects in
the pipeline will definitely be anticipated (see Figure 4.15).

Intermediate Steps in the Pipeline 77

4.
A

DVAN
CED

P
IPELIN

IN
G

Figure 4.15 Access to variables without content

TIP A filled variable can be cleared with the commandlet Clear-Variable.
Here, you should write the name of the variable without the dollar sign, as
follows:

Clear-Variable x

Comparing Objects

With Compare-Object, you can compare the content of two pipelines.
The following command sequence displays all processes started during a
certain interim (see Figure 4.16):

$before = Get-Process

Start a new process

$after = Get-Process

Compare-Object $before $after

78 Chapter 4 Advanced Pipelining

Figure 4.16 Comparison of two pipelines

Ramifications

Sometimes you want to pass on the result not only in the pipeline, but also
in a variable or within the file system. The commandlet Tee-Object is
used for ramifications within the pipeline, with the Tee standing for ram-
ify. Tee-Object passes the content of the pipeline on in an unchanged
condition to the next commandlet, but also offers to file the content of the
pipeline in a variable or in the file system, according to your choice.

The following command uses Tee-Object two times for both use
cases:

Get-Service | Tee-Object -var a | Where-Object { $_.Status

➥-eq "Running" } | Tee-Object -filepath g:\services.txt

After execution of the command, the variable $a provides a list of all
services, and the TXT file services.txt has a list of all running services.

WARNING Note that when using Tee-Object with the parameter
–variable, you must write the name of the variable without the usual
variable marker $.

Summary

This chapter introduced you to some commandlets that provide helpful
functions in WPS pipelines, including the following:

■ Where-Object for filtering
■ Sort-Object for sorting
■ Group-Object for grouping
■ Measure-Object for calculating sum, average, minimum, and

maximum
■ Compare-Objects for comparing pipelines

In addition, we discussed various WSP variables. You learned about the
dollar sign ($) variable, for example, which enables you to store any content,
including the full content of a pipeline. As discussed, you use variables to
compare pipelines and to store the content of a pipeline for later use.

Summary 79

4.
A

DVAN
CED

P
IPELIN

IN
G

This page intentionally left blank

81

C H A P T E R 5

THE POWERSHELL NAVIGATION
MODEL

In this chapter:
Navigation through the Registry . 81
Providers and Drives . 83
Navigation Commandlets . 84
Paths . 85
Defining Drives . 87

Besides object pipelining, Windows PowerShell (WPS) has another interest-
ing concept to offer: the uniform navigation paradigm for all kinds of data.
The call of the command Get-PSDrive not only lists expected drives but
also environment variables (env), the registry (HKCU, HKLM), Windows cer-
tificate store (cert), PowerShell aliases (Alias), PowerShell variables
(Variable), and PowerShell functions (Function). WPS interprets this
data also as drives. Consequently, you have to use a colon in the call: Get-
ChildItem Alias: lists all defined aliases, just like Get-Alias.

Navigation through the Registry

In the registry, the administrator can work with the same commands as in
the file system. Examples for valid registry commands include the follow-
ing (see Figure 5.1):

■ Navigation to HKEY_LOCAL_MACHINE/Software:

cd hklm:\software

This is the short form of the following:

Set-Location hklm:\software

■ Listing of the subkeys of the current key:

Dir

This is an abbreviation for the following:

Get-ChildItem

■ Creating a subkey with the name IT-Visions:

md IT-Visions

■ Creating a subkey with a standard value:

New-Item -Name "Website" –Value "www.IT-Visions.de"

➥–type String

82 Chapter 5 The PowerShell Navigation Model

Figure 5.1 Navigation in and manipulation of the registry

Providers and Drives

Get-PSDrive shows that there are different “drive” providers. Normal
drives belong to the provider FileSystem (FS). Microsoft calls the
providers navigation providers or commandlet providers, and wants to
treat all data equally with the same basic verbs (Get, Set, New, Remove,
and so on), regardless of whether they are flat or hierarchical. The number
of providers and the number of drives can be extended.

WPS 1.0 contains the following drives (see Figure 5.2):

■ Windows file system (A, B, C, D, E, and so on)
■ Windows registry (HKCU, HKLM)
■ Windows environment variables (env)
■ Windows certificate store (cert)
■ Functions of PowerShell (function)
■ Variables of PowerShell (variable)
■ Aliases of PowerShell (alias)

Providers and Drives 83

5.
THEP

O
W

ERSHELLN
AVIGATIO

N
M

O
DEL

Figure 5.2 From the point of view of WPS, environment variables, aliases, and
registries are drives, too.

The Active Directory can also be ruled by this navigation paradigm.
Earlier beta versions of WPS contained a provider for this; however, it did
not make it into the final version. The Active Directory provider is now
available as part of the PowerShell Community Extensions (PCSX)
[CODEPLEX01].

TIP You can see all installed providers with Get-PSProvider.

Table 5.1 Available WPS Providers

Provider Source Drives

Alias WPS 1.0 Alias
Environment WPS 1.0 Env
File system WPS 1.0 A, B, C, D, and so on
Function WPS 1.0 Function
Registry WPS 1.0 HKLM, HKCU
Variable WPS 1.0 Variable
Certificate WPS 1.0 cert
RSS feed store PCSX 1.1.1 [CODEPLEX01] Feed
Assembly cache PCSX 1.1.1 [CODEPLEX01] Gac
Directory services PCSX 1.1.1 [CODEPLEX01] Windows NT 4.0-compatible

name of domain
Windows SharePoint WPS SharePoint provider Any name
services or
SharePoint [CODEPLEX02]
Portal Server

Navigation Commandlets

Table 5.2 shows the commandlets applicable for navigation.

84 Chapter 5 The PowerShell Navigation Model

Table 5.2 Navigation Commandlets

Commandlet Aliases Description

Get-ChildItem dir, ls Listing of children
Get-Cwd cd, pwd Change of location
Get-Content type, cat Call of element content
New-Item mkdir Creation of an item (branch or leave)
Get-Location Call of the current location
Set-Location Cd Setting of the current location

Paths

Path indications in WPS support two different placeholders as well as the
following:

■ One dot (.) stands for the current directory.
■ Two dots (..) stand for the parent directory.
■ The tilde (˜) stands for the profile directory of the current user

(shown Figure 5.4).
■ Brackets stand for one of the characters within the bracket.

Consider this example. The following command lists all files of a
Windows directory that begin with the letter A, B, C, or W (see Figure 5.3):

Get-ChildItem c:\windows\[abcw]*.*

Alternatively you can also write the following:

Get-ChildItem c:\windows\[a-cw]*.*

Several commandlets offer support to navigate through WPS drives.

Paths 85

5.
THEP

O
W

ERSHELLN
AVIGATIO

N
M

O
DEL

Figure 5.3 Use of placeholders

Test-Path checks whether there is a path. The result is True or
False (System.Boolean):

Test-Path c:\temp

Test-Path HKLM:\software\IT-Visions

Resolve-Path resolves placeholders in paths and displays the result-
ing path as an object of the type System.Management.Automation.
PathInfo (see Figure 5.4).

Many commandlets display path indications of the type System.
Management.Automation.PathInfo. To convert this into a simple string
(which, however, will be provider specific), you can use the commandlet
Convert-Path.

86 Chapter 5 The PowerShell Navigation Model

Figure 5.4 Use of Resolve-Path

Defining Drives

The navigation model of WPS allows the definition of new drives, which
can then be used as shortcuts for (complex) paths.

The following command defines a new drive, Scripts, as an alias for a
file system path:

New-PSDrive -Name Scripts -PSProvider FileSystem -Root

"h:\Scripts\PowerShell\"

After this, you can access the path by just writing the following:

Dir Scripts:

WARNING The newly defined drive functions only within WPS and is not
applicable in other Windows applications. To be precise, the new drive func-
tions only within the current instance of WPS. Two WPS windows do not share
such declarations! If you like to have certain custom drives by default in all WPS
consoles, you must add the New -Drive command to the WPS profile script
(see Chapter 10, “Tips, Tricks, and Troubleshooting”).

Defining Drives 87

5.
THEP

O
W

ERSHELLN
AVIGATIO

N
M

O
DEL

You can define shortcuts for the registry, too:

New-PSDrive -Name Software -PSProvider Registry -Root

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

The number of drives is by default limited to 4,096. You can change
this with the variable $MaximumDriveCount.

Summary

After object-oriented pipelining, the navigation model is the second
biggest innovation of WPS. The navigation model enables you to use dif-
ferent stores, such as the registry, environment variables, the certificate
store, and even the variables in WPS to be treated as a file system, where
you can navigate and operate with well-known commands such as dir, cd,
md, and rd. These well-known commands, however, are just short forms
(aliases or functions) for WPS commandlets.

88 Chapter 5 The PowerShell Navigation Model

89

C H A P T E R 6

THE POWERSHELL SCRIPT
LANGUAGE

In this chapter:
Getting Help . 90
Command Separation . 90
Comments . 90
Variables . 91
Available Types . 92
Numbers . 96
Random Numbers . 98
Strings . 99
Date and Time . 102
Arrays . 105
Associative Arrays (Hash Tables) . 106
Operators . 108
Control Structures . 110

Besides the commandlet infrastructure, Windows PowerShell (WPS)
offers its own scripting language for the creation of command sequences
in the classic imperative programming style. The PowerShell Script
Language (PSL) includes variables, loops, conditions, functions and error
handling.

Microsoft did not use an existing script language as the basis for this
new creation, but was, according to their own words, “inspired” by the
UNIX shell languages, PERL, PHP, Python, and C#. As a consequence,
the language uses curly brackets; semicolons, however, are not needed as
separators.

Getting Help

The language constructs of WPS, just like the WPS commandlets, is
explained in simple, purely text-based help documents that are installed
along with WPS. Help documents for the language constructs begin with
“About.” For example, the command

Get-Help About_for

displays help for the for loop.
The command

Get-Help About

shows a list of all “About” documents.

Command Separation

Each line in WPS script is a command. A command may consist of several
commandlets, separated by the pipe symbol (|). You can place several
commands in one line, separated by a semicolon (;). You can also use the
semicolons at the end of each line, just as in C++ und C#, but you do not
have to.

Should one command fill several lines, the use of an inverted comma
(‘) at the end of a line indicates that the next line should be added to the
command:

gps | ‘

format-list

Comments

Comments are marked with the symbol #:

Comment

90 Chapter 6 The PowerShell Script Language

Variables

Variables start with the variable symbol $. Variable names can consist of
letters and numbers, as well as an underscore. Names, which have already
been given to predefined variables, especially the name $_, are not valid.

Set the Type
Variables are either untyped

$a = 5

or explicitly typed on a WPS data type (also known as type accelerator) or
any .NET class:

$a = [int] 5

$a = [System.DateTime] "1.8.1972"

You can use all .NET class names as type names, as well as some pre-
defined WPS type names. For example, [int], [System.Int32], and
[int32] are completely identical. [int] is the integrated WPS type indi-
cator for whole numbers with a length of 32 bits. Internally, this is the
.NET class [System.Int32]. This name, however, can be shortened to
[int32].

TIP The use of a type name in front of a variable assignment (for example,
[int] $a = 5) limits the variable to accept only data of this type, and is thus
related to the classic syntax in languages such as C++, Java und C#.

A variable is implicitly declared by an assignment of a value and is valid
within the relevant scope in which it had been declared (for example, a
block, a subroutine, or within the whole script). With Remove-Variable,
you can remove a variable declaration.

If variables do not have to be declared explicitly, there is always the
danger that typing errors may cause undesired effects. With the command
Set-PSDebug –Strict, you can make sure that WPS reports a failure if
you use a variable that has not yet been assigned a value.

Variables 91

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

In the following example, WPS reports a failure in the last command,
because $y is valid only within the block marked by curly brackets:

Set-PSDebug -Strict

$x = 5

{

$y = 5

$x

}

$y

Available Types

Table 6.1 shows all available type accelerators. You will find descriptions of
some of them (for example, [WMI] and [ADSI]) later in this book.

Table 6.1 WPS Type Accelerators

[int] typeof(int)

[int[]] typeof(int[])

[long] typeof(long)

[long[]] typeof(long[])

[string] typeof(string)

[string[]] typeof(string[])

[char] typeof(char)

[char[]] typeof(char[])

[bool] typeof(bool)

[bool[]] typeof(bool[])

[byte] typeof(byte)

[double] typeof(double)

[decimal] typeof(decimal)

[float] typeof(float)

[single] typeof(float)

[regex] typeof(System.Text.RegularExpressions.Regex)

[array] typeof(System.Array)

92 Chapter 6 The PowerShell Script Language

[xml] typeof(System.Xml.XmlDocument)

[scriptblock] typeof(System.Management.Automation.ScriptBlock)

[switch] typeof(System.Management.Automation.

SwitchParameter)

[hashtable] typeof(System.Collections.Hashtable)

[type] typeof(System.Type)

[ref] typeof(System.Management.Automation.PSReference)

[psobject] typeof(System.Management.Automation.PSObject)

[wmi] typeof(System.Management.ManagementObject)

[wmisearcher] typeof(System.Management.ManagementObjectSearcher)

[wmiclass] typeof(System.Management.ManagementClass)

Getting the Type
You can always get the data type of the variable, whether the variable has
been explicitly typed or not. Untyped variables automatically take over the
type of the last assigned value.

The method GetType() retrieves the data type in the form of a .NET
object of the type System.Type. Because each WPS variable is an instance
of a .NET class, each WPS variable owns the method GetType(), handed
down to all .NET objects by the mother of all .NET classes, which is
System.Object. In most cases, you will be interested only in the class
name, returned from the property Fullname (including namespace) or
Name (without namespace):

$b = [System.DateTime] "1.8.1972"

"$b has the type: " + $b.GetType().Fullname

Predefined Variables
WPS knows several predefined variables (also called integrated variables
or internal variables). Table 6.2 shows only some of these variables.

Available Types 93

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

Table 6.2 Predefined WPS Variables (Selection)

Variable Meaning

$true Value true
$false Value false
$OFS Separator for displaying object collection
$Home Home directory of the entered user
$PSHome Installation directory of the WPS host
$Args Parameter (to be used in functions)
$Input Current content of the pipeline (to be used in functions)
$_ Current object of the pipeline (to be used in loops)
$StackTrace Current call sequence
$Host Information about the WPS host
$LastExitCode Return value of the last executed external Windows or console

application
$Error Complete list of all errors that have occurred since the start of

WPS (maximum of errors saved is set by $MaximumErrorCount)

Example
Consider this example for the use of $OFS:
The command

$OFS="/" ; [string] ("a","b","c")

displays the following output:

a/b/c

TIP All declared variables, integrated and user defined, are listed by the com-
mand Get-ChildItem Variable (alias Dir Variable:).

Dir Variable:p* lists all variables that start with the letter P (uppercase
or lowercase). Get-Variable p* has the same effect.

94 Chapter 6 The PowerShell Script Language

Constant Values
Some of the integrated variables cannot be changed. You can “lock” your
own variables as follows:

Set-Variable variablename -Option readonly

WARNING Note that in this scenario, you must use the variable name without
the dollar sign!

Variable Resolution
Variables are not only resolved in expressions, but also within strings. If you
declare

[int] $count = 1

[string] $Computer = "E01"

then, instead of

$count.ToString() +". Access to Computer " + $Computer

you can write this shortcut:

"$count. Access to Computer $Computer"

In both cases, the result is the same:

"1. Access to Computer E01"

Variable resolution also works in parameters of commandlets. The fol-
lowing two commands have the same meaning (that is, in both cases the
directory path WinNT://E01 is called):

Get-DirectoryEntry ("WinNT://" + $Computer)

Get-DirectoryEntry "WinNT://$Computer"

Available Types 95

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

The variable resolution is not just a resolution of variables, but a reso-
lution of expressions. The dollar sign can also start any expression (see
Figure 6.1). For example

"1+3=$(1+3)"

"Current Time: $((Get-Date).ToShortTimeString())"

96 Chapter 6 The PowerShell Script Language

Figure 6.1 Output of the preceding examples

WARNING A variable resolution does not take place when the string is set in
simple quotation marks:

'$count. Access to computer $Computer'.

Numbers

In WPS, you can write numbers as simple numbers, formulas, or as value
ranges (see Figure 6.2). You can express hexadecimal numbers by prefix-
ing 0X (for example, 0Xff = 255); you can then use them just as you use
decimal numbers (for example, 0Xff+1 = 256).

When assigning a number literal to an untyped variable, WPS creates
an instance of the type System.Int32. If the value range of Int32 is not
sufficient, Int64 or Decimal is created. If the number literal is a fraction
(with a dot as separator for the internal decimal places), WPS creates
Double or Decimal.

Figure 6.2 Numbers in WPS

If you want to have control over the data type of the variables, you
must type the variable explicitly (for example, with [Byte] or
[Decimal]). For Decimal, you have another option. You can also add the
letter D to the literal (for example, 5.1d):

Implicit Integer

$i = 5

$i.GetType().Name

Implicit Long

$i = 5368888888888888

$i.GetType().Name

Implicit Decimal

$i = 53688888888888888888888888888

$i.GetType().Name

Explicit Long (i.e. 64-bit integer)

[Int64] $l = 5

$l.GetType().Name

Explicit Byte

[Byte] $b = 5

$b.GetType().Name

Implicit Double

$d = 5.1

$d.GetType().Name

Numbers 97

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

Implicit Decimal

$d = 5.1d

$d.GetType().Name

Explicit Decimal

[Decimal] $d = 5.1

$d.GetType().Name

When you explicitly set the type, you can choose whether you use the
WPS types [int] and [long] or the corresponding .NET class names
[System.Int32] and [System.Int64].

WARNING With the short forms KB, MB, and GB, you can assign the units of
measure kilobyte, megabyte, and gigabyte (for example, 5MB stands for the
number 5242880, 5 * 1024 * 1024).

These units of measure are valid starting with WPS 1.0 RC2. Before that,
the short forms M, K, and G were used.

Random Numbers

You can create a random number with the commandlet Get-Random,
which is part of the PowerShell Community Extensions (PSCX) [CODE-
PLEX01]. Get-Random creates a number between 0 and 1. You can influ-
ence the range with the parameters –Min and –Max (see Figure 6.3).

98 Chapter 6 The PowerShell Script Language

Figure 6.3 Use of Get-Random for the creation of random numbers 100
and 200

Strings

Strings exist in the WPS as instances of the .NET class System.String.
They are marked by quotation marks or by @ at each end of the string. The
last option, which also allows including line breaks, is called Here-String.

Listing 6.1 Here-String Example

#Here-String

@'

Long text

can be split

into different lines

using a specific separator

'@

In both cases, the strings may contain variables or expressions, which
are automatically resolved.

Listing 6.2 Variable Resolution within a String

$a = 10

$b= "The current value is $a!"

Write-Warn $b

NOTE When you want to transfer parameters to commandlets, remember that
you can surround strings with quotation marks only; otherwise, the parameter-
separation would become unclear (for example, if there is a blank).

Working with Strings
WPS provides all processing options for strings of the class System.
String (for example, Insert(), Remove(), Replace(), and Split());
see the list of members in Figure 6.4.

Strings 99

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

Figure 6.4 Methods of the class System.String

Listing 6.3 shows the following string operations:

■ Changing all letters to capital letters
■ Inserting text
■ Extracting a portion of text as single characters

Listing 6.3 Changing Strings

Convert to uppercase letters

$a = "Dr. Schwichtenberg"

$a.ToUpper()

$b

100 Chapter 6 The PowerShell Script Language

Insert a string at a certain position

$a = $a.Insert(4, "Holger ")

$a

Extract text parts

$c = $a[4..9]

$c

Strings 101

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

Figure 6.5 Output of the preceding script

Splitting and Joining Strings
Sometimes, you have to split a string (for example, "Holger;
Schwichtenberg;Essen;Germany;www.IT-Visions.de").

For this case, the .NET Framework offers the method Split() in the
class System.String (see Listing 6.4).

Listing 6.4 Use of the Method Split()

System.String.
[String] $CSVString =

➥"Holger;Schwichtenberg;Essen;Germany;www.IT-Visions.de"

$CSVArray = $CSVString.Split(";")

$Surname = $CSVArray[1]

$Surname

Alternatively, you can use the commandlet Split-String from
PSCX. This shortens things a bit (see Listing 6.5).

Listing 6.5 Use of the Commandlet Split-String

[String] $CSVString =

➥"Holger;Schwichtenberg;Essen;Germany;www.IT-Visions.de"

$CSVArray = Split-String $CSVString -Separator ";"

$Surname = $CSVArray[1]

$Surname

The counterparts for the joining of strings are the method Join() and
the commandlet Join-String (see Listings 6.6 and 6.7). When you use
Join(), keep in mind that this is a static method of the class
System.String.

Listing 6.6 Use of the Static Method Join()

$Array = "Holger", "Schwichtenberg", "Essen", "Germany",

➥"www.IT-Visions.de"

$CSVString = [System.String]::Join(";", $Array)

$CSVString

Listing 6.7 Use of the Commandlet Join-String

$Array = "Holger", "Schwichtenberg", "Essen", "Germany",

➥"www.IT-Visions.de"

$CSVString = Join-String $Array -Separator ";"

$CSVString

Date and Time

The commandlet Get-Date creates an instance of the .NET class
System.DateTime, which contains the current date and time.

Get-Date

You reduce the output to the date as follows:

Get-Date -displayhint date

102 Chapter 6 The PowerShell Script Language

You reduce the output to the time as follows:

Get-Date -displayhint time

You can also use Get-Date to create a specific date/time and to save
this in a variable:

$a = Get-Date "8/1/1972 12:11:10"

You can calculate the difference between the current date and the
date/time saved in a variable by calling the method Subtract():

(Get-Date).Subtract((Get-Date "8/1/1972 12:11:10"))

Alternatively, you can simply use the minus operator:

(Get-Date) - (Get-Date "8/1/1972 12:11:10")

The preceding examples create the following output:

Days : 12662

Hours : 11

Minutes : 56

Seconds : 57

Milliseconds : 927

Ticks : 10940398179276185

TotalDays : 12662,4978926808

TotalHours : 303899,949424338

TotalMinutes : 18233996,9654603

TotalSeconds : 1094039817,92762

TotalMilliseconds : 1094039817927,62

Internally, WPS processes periods of time as instances of the class
System.TimeSpan. You can also create periods of time by yourself with
New-TimeSpan and use this to calculate, for example, the following:

$period = New-TimeSpan -Days 10 -hours 4 -minutes 3

➥-seconds 50

$now = Get-Date

$future = $now + $period

Date and Time 103

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

NOTE With New-TimeSpan, you can indicate the period only in days, hours,
minutes, and seconds. An indication in months or years in not possible.

Remote Computers
You cannot get the time from a remote system with the commandlet Get-
Date. You can do so only with assistance of the Windows Management
Instrumentation (WMI) class Win32_Currenttime, as follows:

Get-Wmiobject Win32_CurrentTime -computername E02

The result of the preceding operation is not, however, a .NET object
of the type System.DateTime, but a .NET object of the type System.
Management.ManagementObject, which wraps a WMI object of the type
root\cimv2\Win32_LocalTime.

Changing the Date and Time
You can set the current time on the local system with Set-Date (see
Figure 6.6).

104 Chapter 6 The PowerShell Script Language

Figure 6.6 Use of Set-Date to start an application with a different date

Arrays

An array is declared by assigning a value set, separated by commas:

$a = 01,08,72,13,04,76

The array can also be declared explicitly with the WPS type identifier
[Array]:

[Array] $b

$b = 1,2,3

If you want to define an array with only one element, you have to start
the list with a comma or declare the array explicitly:

$a = ,"Only one element"

[Array] $a = "Only one element"

To list an array, you can use the commandlet Foreach-Object, but
you do not have to. If an array is the output of the last commandlet in the
pipeline, the array is displayed (see Figure 6.7).

The property Count delivers the number of elements in the array:

[array] $b

$b = 1,2,3

$b.Count

To access elements, you must set an index (starting with 0) or an index
range in brackets. The index range has to be separated by two dots (for
example, $a[3..6]). The operator += completes an element at the end of
an array (see Figure 6.7). The removal of elements is not possible. (You can
only copy the elements into another array.)

You can join two arrays with the plus operator:

$DomainControllers = "E01", "E02", "E03"

$MemberServers = "E04", "E05", "E06"

$AllServers = $DomainControllers + $MemberServers

$AllServers.Count # Result: 6 !

Arrays 105

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

Figure 6.7 Output of an array

Multidimensional arrays are possible, when you surround the elements
with parentheses. The following example shows the creation of a two-
dimensional array. The elements of the first dimension contain arrays with
three elements each. In this scenario, you can also complete the collection
with the plus operator:

$DomainControllers = ("E01", "192.168.1.10", "Building 1"),

➥("E02", "192.168.1.20", "Building 2"),

➥("E03", "192.168.1.30", "Building 3")

"Number of Computers: " + $DomainControllers.Count

"IP Address of Computer 2: " + $DomainControllers[1][1]

➥# 192.168.1.20

"Building of Computer 2: " + $DomainControllers[1][2]

➥# Building 3

$DomainControllers += ("E04", "192.168.1.40", "Building 4")

"Building of Computer 4: " + $DomainControllers[3][2]

➥# Building 4

Associative Arrays (Hash Tables)

Besides the arrays, WPS also supports named (associative) lists in the form
of so-called hash tables. Elements in a hash table are not identified by their

106 Chapter 6 The PowerShell Script Language

position, but by a distinct marker (called a key). You can find this concept in
other languages, too, where it is often called an associative array. The basic
concept for this is the .NET class System.Collections.Hashtable.

To define a hash table, you have to use the @ sign, followed by an ele-
ment list in curly brackets ({}). You must use a semicolon (;) to separate
each element. Each element consists of an element name and an element
value, which have to be separated by an equals sign (=). The element name
must not be set in quotation marks. If you want to explicitly indicate the
data type, use [Hashtable].

Implicit Hash Table

$Computers = @{ E01 = "192.168.1.10"; E02 = "192.168.1.20";

➥E03 = "192.168.1.30"; }

Explicit Hash Table

[Hashtable] $Computers = @{ E01 = "192.168.1.10"; E02 =

➥"192.168.1.20"; E03 = "192.168.1.30"; }

Hash tables can be accessed both via the notation with square brack-
ets as simple arrays and via the dot operator. This makes working with hash
tables rather elegant:

Get IP Address of Computer E02

$Computers["E02"]

$Computers.E02

You can also write to the elements directly:

Change on Element

$Computers.E02 = "192.168.1.21"

It is very convenient that a new element is created when you write a
value to this element. Thus, you can also create a hash table step by step
(that is, you can start with an empty list). An empty list is expressed with
@{ }, as follows:

Add a new Element

$Computers.E04 = "192.168.1.40"

Start with an empty list

$MoreComputers = @{ }

Associative Arrays (Hash Tables) 107

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

$MoreComputers.E05 = "192.168.1.50"

$MoreComputers.E06 = "192.168.1.60"

$MoreComputers.Count # Result = 2

You can join two hash tables just as you can join two arrays. However,
this works only when each element name appears only once in both lists.
If there are duplicates, a runtime error is generated:

Add two hash tables

$AllComputers = $Computers + $MoreComputers

$AllComputers.Count # Result = 6

You can use hash tables not only for real lists, but also for a simple def-
inition of your own data structures (for example, to save information about
a person):

Use a hash table as a custom data structure

$Author = @{ Name="Dr. Holger Schwichtenberg";

➥Age=35; Country="Germany" }

$Author.Name

$Author.Age

$Author.Country

Operators

WPS supports the basic arithmetic operators +, -, *, /, and % (modulo
operation, alias division remainder). The plus sign (+) is used in addition
and in the linking of strings. Even lists (arrays, hash tables) can be linked.
The star operator (*) is used in multiplication, but also has another mean-
ing: You can multiply a string as well as an array with this sign. Therefore,
signs or elements are repeated as often as necessary. However, it lies in the
nature of a hash table that elements cannot be multiplied, because this
would lead to doubled element names, which is invalid:

Multiply a string

$String = "abcdefghijklmnopqrstuvwxyz"

$LongString = $String * 20

"Count: " + $LongString.Length # = 520

108 Chapter 6 The PowerShell Script Language

Multiply an Array

$a = 1,2,3,4,5

$b = $a * 10

"Count: " + $b.Count # = 50

The equals sign (=) is used as an assignment operator. Of special inter-
est are cross-assignments, which enable you to elegantly exchange the con-
tents of two variables. Normally, you need an interim variable to do this. In
WPS, however, you can just write $x, $y = $y, $x (see Figure 6.8).

Operators 109

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

Figure 6.8 Cross-assignments for the exchange of variables in WPS

Another interesting operator is the ampersand (&). You can use it to
execute a string as a command, thus enabling you to write dynamic and
self-modifying program code.

Here’s an example:

$What = "Process"

& ("Get-"+$What)

The preceding command sequence leads to the execution of the com-
mandlet Get-Process. You could get the content of the variable $What
from another source, too (for example, a user input).

Alternatively, you can use the commandlet Invoke-Expression
rather than the operator &:

$UserEntry = "Process"

invoke-expression("Get-"+$UserEntry)

WARNING Keep in mind that dynamic code execution raises a safety risk
when user entries are processed directly in commands. You could get the impres-
sion from the preceding example that the risk is limited, because the Get com-
mand is always executed. However, it is not, as the following script shows:

$UserEntry = "Process | Stop-Process"

invoke-expression("Get-"+$UserEntry)

Control Structures

The PowerShell Script Language (PSL) contains the following control
structures:

if (condition) {...} else {...}

switch ($var) {value {...} value {...} default {..} } }

while(condition) { ... }

do { ... } while (condition)

do { ... } until (condition)

foreach ($var in $collection) {...}

function name {...}

break

continue

return

exit

trap failure class { ... } else { ... }

throw "failure text"

throw failure class

NOTE You can find more information about the commands in WPS help docu-
ments. In this book, we avoid a detailed description of these basic constructs in
favor of other content, specifically because their functioning is quite similar to
other programming languages. Throw and Trap are discussed separately in
Chapter 7, “PowerShell Scripts.”

Loops
Listing 6.8 shows self-explanatory examples for the constructs for, while,
and foreach.

110 Chapter 6 The PowerShell Script Language

Listing 6.8 Loops

Loops from 1 to 5

"for:"

for ($i = 1; $i -lt 6; $i++) { $i }

"While:"

$i = 0

while($i -lt 5)

{ $i++

$i

}

"Foreach:"

$i = 1,2,3,4,5

foreach ($z in $i) { $z }

Conditions
Listing 6.9 shows self-explanatory examples for the use of if and switch.

Listing 6.9 Conditions

if ($i -lt 10)

{ "Smaller than 10" }

else

{ "Greater than 10" }

switch ($i)

{

1 {"one"}

5 {"five"}

10 {"ten"}

default { "other" }

}

Control Structures 111

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

Subroutines
Listing 6.10 shows self-explanatory examples for subroutines with parame-
ters and return values.

Listing 6.10 Subroutines

function UnnamedParameter()

{

"To this functions has been given: $args[0] and $args[1]"

return $args[0] + $args[1]

}

UnnamedParameter 1 2

function NamedParameter([int] $a, [int] $b)

{

"To this function has been given: $a and $b"

return $b + $a

}

NamedParameter 1 4

TIP WPS has several integrated functions (see Figure 6.9). The installation of
PSCX adds even more. The execution of the command dir function: lists all
functions and demonstrates that even some commands, such as C: and Dir,
retained for backward compatibility with the classic Windows console, are real-
ized as integrated functions.

112 Chapter 6 The PowerShell Script Language

Figure 6.9 List of integrated functions (including PCSX)

Summary

PowerShell Script Language (PSL) does not use the exact same syntax as
any other existing programming language, but it is very similar to PERL,
PHP, Python, and C#. Variables can be typed or untyped. All used types
are classes from the .NET Framework class library, even basic types such

Summary 113

6.
THEP

O
W

ERSHELLSCRIPT
LAN

GUAGE

as string and int have a corresponding class in the .NET Framework.
Therefore, the whole functionality for manipulation of types (for example,
string functions) is available to the WPS user.

Variables can contain single values or an array of values. An array can
be accessed via a numeric index or distinct marker.

In addition to variables, WPS supports all the important syntax con-
structs for structured programming (for example, conditions, loops, and
subroutines).

114 Chapter 6 The PowerShell Script Language

115

C H A P T E R 7

POWERSHELL SCRIPTS

In this chapter:
A First PowerShell Script Example . 115
Start a PowerShell Script . 117
Including Scripts . 118
Scripting Security . 118
Signing of Scripts . 120
Letting a Script Sleep . 122
Errors and Error Treatment . 122

Command sequences can be saved as Windows PowerShell (WPS) scripts
in the file system and executed later (with or without observation by any
user). These scripts are pure text files and have the file extension .ps1.
The number 1 here stands for version 1.0 of WPS. Regarding longevity of
many scripts, Microsoft provided the possibility that different versions of
WPS with different script file formats can coexist on one system.

A First PowerShell Script Example

Listing 7.1 shows a script that files a hierarchy of keys in the registry. The
simple addition of numbers is here intentionally contained in a subroutine,
to show the return of values to the caller with the return command.
Literals and expressions, which are in the script without a commandlet,
display at the console.

Listing 7.1 A PowerShell Script to Manipulate the Registry

##

PowerShell Script

The script creates a key hierarchy in the registry.

(C) Dr. Holger Schwichtenberg

##

=== Subroutine, executing an addition

function Addition

{

return $args[0] + $args[1]

}

=== Subroutine, creating a key in the registry.

function CreateEntry

{

"Create entry..."

New-Item -Name ("Eintrag #{0}" -f $args[0]) -value $args[1]

➥-type String

}

=== Major routine

"PowerShell Registry Script (C) Dr. Holger Schwichtenberg 2006"

Navigation in the Registry

cd hklm:\software

Check, if entry \software\IT-Visions exists

$b = Get-Item IT-Visions

if ($b.childName -eq "IT-Visions")

{ # Delete existing entry with all sub-keys

"Key already exists, delete..."

cd hklm:\software

del IT-Visions -force -recurse

}

Create new entry "IT-Visions"

"Create IT-Visions..."

md IT-Visions

116 Chapter 7 PowerShell Scripts

cd IT-Visions

Create subkey

for($a=1;$a -lt 5;$a++)

{

$result = Addition $a $a

CreateEntry $a $result

}

Start a PowerShell Script

Jeffrey Snover, leading architect of WPS, called the fact that a WPS script
cannot be started with a double-click on the symbol in Windows a “top-
security function.” Basically, you can add this start option, but it is not con-
tained in the standard WPS installation.

A WPS script is started by entering the filename with or without the
file extension. Moreover, the prefaced commandlet Invoke-Expression
or the operator & are optional. You can use a relative or an absolute path:

ScriptName or
ScriptName.ps1 or
& ScriptName.ps1 or
Invoke-Expression ScriptName.ps1

Alternatively, you can start a WPS script out of the normal Windows
command-line window via a link from the Windows desktop or as login
script by prefacing the following:

powershell.exe:
powershell.exe ScriptName

WARNING WPS scripts are subject to the same limitations and workarounds
as WSH scripts, as far as Vista user account control (User Account Control,
UAC) is concerned.

Start a PowerShell Script 117

7.
P

O
W

ERSHELLSCRIPTS

Including Scripts

Dot sourcing describes a possibility to call a script and to make the defini-
tions included in this script permanently available in the current WPS con-
sole. The difference to the previously mentioned possibilities of starting a
script is that after dot sourcing all variables declared in the script, all WPS
functions contained in the script are available for later operations outside
the script. Dot sourcing is an easy way to extend the functionality of WPS.
Dot sourcing is activated by a pre-positioned dot followed by a blank space:

. ScriptName.ps1

NOTE When a dot-sourced script contains “free” commands (that is, commands
that are not part of a function), these commands are executed immediately.

You can also integrate one script into others with dot sourcing:

Listing 7.2 A WPS Script That Exists Only to Integrate and to Call Other Scripts

Demo User Management

Include three scripts

. ("H:\demo\PowerShell\ADS\Localuser_Create.ps1"

. ("H:\demo\PowerShell\ADS\LocalGroup.ps1")

. ("H:\demo\PowerShell\ADS\Localuser_Delete.ps1")

Scripting Security

Active Scripting via scripting features in Internet Explorer, Outlook, and
Windows Script Host (WSH) raised security concerns. In contrast, how-
ever, and according to Microsoft documentation, WPS is “by default a
secure environment.” [MS02] When you try to use the WPS console either
interactively or to start a script, you will soon notice that no script can be
executed (see Figure 7.1). The execution policy does not accept any scripts
whatsoever. In the following pages, you learn how to change this behavior.

118 Chapter 7 PowerShell Scripts

Scripting Security 119

7.
P

O
W

ERSHELLSCRIPTS

Figure 7.1 At first, script execution has to be activated explicitly in WPS.

Even before the final launching of WPS, intended WPS viruses were
reported. However, these were only a threat if started explicitly.
[MSSec01]

Security Policy
A user can use WPS interactively only after lowering the security level on
the execution policy via the commandlet Set-Executionpolicy. The fol-
lowing modes are available:

■ Restricted. This is the default value and prevents execution of any
script.

■ AllSigned. Only signed scripts of trusted sources can start.
■ RemoteSigned. A trusted signature is needed only for scripts from

the Internet (via browsers, Outlook, and Messenger) and other net-
work resources; local scripts also start without a signature.

■ Unrestricted. All scripts can run.

You (I hope) do not want to use Unrestricted; the Unrestricted mode
opens the door to “evil” scripts that might be transferred as e-mail attach-
ments, for instance. In the long run, you should opt for AllSigned.
However, if you don’t want to delve into the complex process of digital
signing, the option RemoteSigned is a compromise.

The security policy is stored in the registry, on system level and
user level, in the keys HKEY_CURRENT_USER\Software\Microsoft\
PowerShell\1\ShellIds\Microsoft.PowerShell\ExecutionPolicy and HKEY_
LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\ShellIds\
Microsoft.PowerShell\ExecutionPolicy (see Figure 7.2).

Figure 7.2 Persisting of the security policy in the registry

WARNING Note that the storing of the security policy in the registry under
Windows Vista can be changed only when the console runs under elevated
rights.

Signing of Scripts

When used within companies, digital signatures are adequate. For the sign-
ing of scripts, WPS offers the commandlet Set-AuthenticodeSignature.
To sign a script, follow these steps (also see Figure 7.3):

1. If you do not have a digital certificate to sign code, you must
create a certificate (for example, with the command-line tool
makecert.exe).

2. List your own Windows certificates in the WPS console:

dir cert:/currentuser/my

3. Display the position of the certificate that you want to use, and
save this certificate in a variable. (Note that the counting starts
with 0!)

$cert = @(dir "cert:/currentuser/my/")[1]

120 Chapter 7 PowerShell Scripts

4. Sign the script:

Set-AuthenticodeSignature scriptname.ps1 $cert

Signing of Scripts 121

7.
P

O
W

ERSHELLSCRIPTS

Figure 7.3 Signing of a WPS script

Now, if you write

Set-AuthenticodeSignature AllSigned

the WPS script signed by you should run; no other scripts will run.

WARNING If WPS prompts asking whether you really want to start the script
(see Figure 7.4), this is a sign that the script has been signed by somebody, the
issuing certificate authority is known in your regular certificate authority, but you
do not yet explicitly trust this script author. If you choose the option Always Run,
the script author is added to the list of trustworthy publishers in the certificate
management console.

Figure 7.4 Prompt at script start

Letting a Script Sleep

You can pause a WPS script for a while. The time is counted in millisec-
onds or seconds.

To make a script sleep for 10 milliseconds, add the following:

Start-Sleep -m 10

To make a script sleep for 10 seconds, add this:

Start-Sleep -s 10

Errors and Error Treatment

WPS differentiates between errors where the termination of an execution
is mandatory (terminating error) and errors where the execution may be
continued with the next command (nonterminating error). Terminating
errors can be caught with Trap commands. Nonterminating errors, on the
other hand, can be changed into terminating ones.

Trap catches occurring terminating errors and executes the indicated
code (see Table 7.1). In the error handling code, the variable $_ contains
information about the error in the form of an instance of the .NET
class System.Management.Automation.ErrorRecord. The subobject

122 Chapter 7 PowerShell Scripts

$_.Exception is the actual error in the form of an instance of an error
class that inherits from System.Exception. Via $_.Exception.
GetType().FullName, you get the error type. Via $_.Exception.
Message, you display the error text.

With the statements Break or Continue, the error handler is told
whether the script will be continued after the error. The default procedure
is Continue. With Exit, you can cause a definite immediate ending of the
whole script.

Example
With Listing 7.3, you can test WPS error behavior and experiment with the
different reaction options. The error is resolved by the call Copy-Item
with a wrong path (a nonterminating error) and Get-Dir. (This com-
mandlet does not exist; it’s a terminating error.)

Listing 7.3 Script for Testing the Trap Statement

Example for the testing of error trapping

trap {

Write-Host ("### trapped ERROR: " +

$_.Exception.Message)

#Write-Error ("Fehler: " + $_.Exception.Message)

#continue

#break

#exit

#throw "test"

}

"Example for the testing of error trapping "

"At first, everything works fine..."

copy g:\Documents\Suppliers c:\temo\Documents

"Then it doesn’t work so fine anymore (false path)"

copy g:\Documents\Suppliers k:\Documents\Suppliers

"And then an unknown commandlet follows"

Get-Dir k:\Documents\Suppliers

"End of Script"

Errors and Error Treatment 123

7.
P

O
W

ERSHELLSCRIPTS

Table 7.1 Reaction of WPS to Errors When Trap Is Used

Trap Reaction

Not existing WPS shows error reports for Copy-Item (“drive does not
exist”) and Get-Dir (“not recognized as a cmdlet, function,
program, or script file”) and continues the execution until the
end of the script.

124 Chapter 7 PowerShell Scripts

Existing, only with In addition to the WPS error report, the Trap block reports
Write-Host its own error text.

Existing, with Just the error text from the Trap block displays.
continue

Errors and Error Treatment 125

7.
P

O
W

ERSHELLSCRIPTS

Existing, with break The terminating error results first in its own error text,
followed by a WPS error text display. After that, the script is
terminated (i.e., the output “End of Scripts” does not display).

Existing, with exit The terminating error results first in its own error text. Then
the execution stops immediately.

Individual Reactions to Errors
The options vary even more because each single commandlet can decide
via the parameter –ErrorAction (or –ea) how errors will be handled:

Trap Reaction

■ Stop The error is displayed, and the execution is terminated (all
nonterminating errors thus become terminating errors).

■ Continue The error is displayed, and the execution is continued.
■ SilentlyContinue The error is not displayed, and the execution

is continued.
■ Inquire Users are asked whether they want to continue the exe-

cution despite the error.

All the possible combinations of –ErrorAction and Trap are beyond
the scope of this book. Therefore, this text contains just sample cases (see
Table 7.2).

NOTE The application of –ErrorAction has an effect only on existing com-
mandlets. The nonexisting commandlet Get-Dir, which is used in the example,
would not be able to react.

Table 7.2 WPS Reaction to Errors When Trap and –ErrorAction Are Used

Trap ErrorAction Reaction

Not existing -ErrorAction An error report for the path error does
silentlycontinue not appear any longer with Copy-Item.

The problem will be further reported
with Get-Dir.

126 Chapter 7 PowerShell Scripts

Existing, with -ErrorAction A standard WPS error report doesn’t
continue silentlycontinue appear at all, but only the user-defined

report from the Trap block for the
nonexisting commandlet.

Not existing -ErrorAction stop The execution is terminated with a
WPS error report, directly after the first
nonexecutable Copy command.

Errors and Error Treatment 127

7.
P

O
W

ERSHELLSCRIPTS

Existing, with -ErrorAction stop For both errors, just the error text
continue from the Trap block displays.

Further Options
WPS offers us even more with regard to error treatment:

■ Via the global integrated variable $ErrorActionPreference, you
can set the standard reaction –ErrorAction for all commandlets.
This is in the standard setting Continue.

Trap ErrorAction Reaction

■ $Error contains the complete history of errors in the form of
objects that belong to error classes (for example, System.
Management.Automation.CommandNotFoundException).

■ Trap blocks can be limited to certain error groups by indicating an
error type in square brackets (error class). Therefore, one script can
contain several Trap blocks.

■ With Throw, you can create any error of your own within or outside
of Trap blocks. Throw creates a terminating error of the class
System.Management.Automation.RuntimeException. You can
also name another error class in square brackets. The class has to be
a class that derives from System.Exception.

throw "error text"
throw [System.ApplicationException] "error text"

Summary

WPS scripts are text files with the extension .ps1, and you can start a script
in several different ways. And although the default security restrictions in
WPS prevent all scripts from executing, you can use the commandlet Set-
Executionpolicy to lower the security settings on the execution policy.
Instead of allowing all scripts to run, you should use WPS modes that
require digitally signed scripts.

The second big topic in this chapter was error treatment, which is
important in scripts. This chapter examined the differences between ter-
minating errors and nonterminating errors. The chapter also provided
numerous examples that showed how to catch an error with the Trap state-
ment and how to configure the error behavior (reaction) of commandlets
with the parameter ErrorAction.

128 Chapter 7 PowerShell Scripts

129

C H A P T E R 8

USING CLASS LIBRARIES

In this chapter:
Using .NET Classes . 129
Using COM Classes . 133
Using WMI Classes . 135
Date and Time . 145

Microsoft enabled Windows PowerShell (WPS) to access different appli-
cation programming interfaces (APIs)—specifically, class libraries based
on the .NET Framework, the Component Object Model (COM), and
Windows Management Instrumentation (WMI). These class libraries
enable you to perform additional functions within WPS. However, they
require at least a basic understanding of object-oriented programming.

NOTE WPS offers a special treatment for WMI (System.Management), ADSI
(System.DirectoryServices), and ADO.NET (System.Data). Objects
from these libraries are shown simplified by the object adapter to the user.
Collaboration data objects (CDOs) for access to Microsoft Exchange are not yet
supported in a special way by WPS 1.0.

Using .NET Classes

With the commandlet New-Object, the administrator can create an
instance of any class from the .NET class library (or a COM class, see the
next chapter).

Creating Instances
The following example creates an instance of the .NET class System.
Net.WebClient and then calls its method DownloadString()(see
Figure 8.1):

$wc = (new-object System.Net.WebClient)
$wc.DownloadString("http://www.windows-scripting.com")

130 Chapter 8 Using Class Libraries

Figure 8.1 PowerShell IDE and PowerShellPlus offer IntelliSense-like input
support for .NET class names after New-Object

Constructors with Parameters
A constructor is a special piece of program code in a class that is called
when a class is instantiated. .NET classes can expect parameters in the
constructors. These can be declared with or without parentheses after the
class name:

$o = New-Object

➥System.Directoryservices.DirectoryEntry("LDAP://E02")

or

$o = new-object System.Directoryservices.DirectoryEntry

➥"LDAP://E02"

Static Members in .NET Objects/Static .NET Classes
.NET classes know the concept of their static members (class members),
which can be called without creating an instance. Some of these classes are

also static classes (that is, they have only static members). Such classes do
not have a constructor. Therefore, the commandlet New-Object is not
applicable to static classes.

This does not work:

#(New-Object System.Console).Beep(100,50)

For this case, WPS has another construct, which asks you to set the
.NET class name in square brackets and separate the name of the member
with two colons. The following command uses the static method Beep()
in the static .NET class System.Console to create a sound:

correct:

[System.Console]::Beep(100, 50)

Loading Additional Assemblies
You can only instantiate .NET classes via New-Object and the notation in
square brackets when the corresponding software component (assembly),
where they are located, has been loaded into memory. Some assemblies
are loaded automatically by WPS. In other cases, you have to request load-
ing of the assembly via the class System.Reflection.Assembly.
Therefore, to display a dialog window, you first have to load System.
Windows.Forms.dll. Because this assembly is located in the so-called
Global Assembly Cache (GAC) of .NET, you do not have to indicate a
path:

[System.Reflection.Assembly]::LoadWithPartialName

➥("System.Windows.Forms")

[System.Windows.Forms.MessageBox]::Show("Text","Heading",

[System.Windows.Forms.MessageBoxCases]::OK)

TIP Instead of the notation with square brackets, you can also use the inte-
grated WPS type [Type], which creates a .NET type object based on a
string. Therefore, you can write the preceding example in the following way:

([Type] "System.Reflection.Assembly")::LoadWithPartialName
➥("System.Windows.Forms")
$msg = [Type] "System.Windows.Forms.MessageBox"
$msg::Show("test")

Using .NET Classes 131

8.
U

SIN
G

CLASS
LIBRARIES

Object Analysis
With the help of the commandlet Get-Member, which has previously been
used in this book to analyze pipeline contents, you can also analyze the
content of a variable containing an object instance. You have to keep in
mind, however, that the object has to be sent either in a pipeline to
Get-Member (that is, $Variable | Get-Member) or that you have to
use the parameter name –InputObject (Get-Member –InputObject
$Variable). Not only for Get-Member, but for most of the commandlets,
it does not matter whether there are a number of objects in the pipeline or
just a single object.

Enumerations
When using some .NET classes (for example, FileSystemRights), you
must combine different flags with a binary or operation. If you repeat the
name of the listing in which the flag is defined with each flag, you’re really
overworking your fingertips.

WPS can pick the respective flag values in the enumeration out of a
string with comma separators and link them with a binary or. So, instead of

$Rights= [System.Security.AccessControl.FileSystemRights]::

➥Read `

-bor [System.Security.AccessControl.FileSystemRights]::

➥ReadExtendedProperties `

-bor [System.Security.AccessControl.FileSystemRights]::

➥ReadProperties `

-bor [System.Security.AccessControl.FileSystemRights]::

➥ReadPermissions

you can use the following abbreviation:

$Rights = [System.Security.AccessControl.FileSystemRights]

➥"ReadData, ReadExtendedProperties,

➥ReadProperties, ReadPermissions"

132 Chapter 8 Using Class Libraries

Using COM Classes

This section examines the basic mechanisms for accessing COM objects.

Create an Instance
The commandlet New-Object is also used for instantiating classes defined
within the Component Object Model (see Figure 8.2). In this case, the
name of the COM class has to be preceded by the parameter –comobject
(short, -com). The programmatic identifier (ProgID) has to be indicated as
Name. The COM class must be listed in the registry of the local system.
New-Object complies with CreateObject() in Visual Basic/VBScript.

Listing 8.1 shows the call of the method GetTempName() from the
COM class Scripting.FileSystemObject. This method creates a name
for a temporary file.

Listing 8.1 com.ps1

$fso = new-object -com "scripting.filesystemobject"

$fso.GetTempName()

With Listing 8.2, you open Internet Explorer with a specific website.

Listing 8.2 Creating an Instance of a COM Class

$ie = new-object -com "InternetExplorer.Application"

$ie.Navigate("http://www.windows-scripting.com")

$ie.visible = $true

NOTE You do not have to load COM components (COM components are not
called assemblies) because the COM infrastructure automatically loads the
appropriate DLLs based on the data stored in the registry when the COM com-
ponent was installed. So, you can access all public classes in all installed COM
components.

Using COM Classes 133

8.
U

SIN
G

CLASS
LIBRARIES

Figure 8.2 Instantiation of a COM object in WPS

Get an Existing Instance
A direct equivalent for GetObject() from VB/VBScript to activate an
existing object is not available in WPS. However, you can load the assem-
bly for Visual Basic .NET and use the method GetObject(), which is
available there for compatibility reasons.

Listing 8.3 shows a document in Microsoft Word on the screen and
writes some text in the document:

Listing 8.3 Getting an Existing Instance of a COM Class

$doc = [microsoft.visualbasic.interaction]::

➥GetObject("C:\temp\document.doc")

$doc.application.visible = $true

$doc.application.selection.typetext("You successfully

➥created an instance of Word!")

134 Chapter 8 Using Class Libraries

Using COM Objects
After instantiation, accessing COM objects is the same as accessing .NET
objects, with two exceptions:

■ COM objects do not have constructors with parameters.
■ COM objects do not have static members.

Using WMI Classes

The commandlet Get-WmiObject and the integrated WPS types [WMI],
[WMICLASS], and [WMISEARCHER] open the world of mighty Windows
Management Instrumentation (WMI), which offers almost all modules of
modern Windows operating systems in an object-oriented manner.

NOTE This chapter assumes that you have a basic knowledge of WMI.

System.Management

Windows WPS uses the .NET assembly System.Management.dll with
the namespace System.Management to access WMI. Therein, a meta
object model for access to WMI objects is realized. However, access to
WMI using COM classes is also possible; it is just more cumbersome and
is not covered in this book.

Central classes of the object model (see Figure 8.3) of System.
Management are as follows:

■ ManagementObject
This class represents a WMI object.

■ ManagementClass
This class represents a WMI class. ManagementClass is derived
from ManagementObject.

■ ManagementBaseObject
Both classes are derived from ManagementBaseObject. This class
is not abstract, but is also used at different places within the object
model.

Using WMI Classes 135

8.
U

SIN
G

CLASS
LIBRARIES

Figure 8.3 Object model of System.Management

In System.Management.dll, the class ManagementObject serves
as the meta class for all WMI classes (that is, an instance of
ManagementObject is mapped to a WMI object during its creation via a
WMI path and consequently displays this). Unfortunately, this mapping is
not as easy to handle as one would want, because all properties have to be
called via PropertyDataCollection (refer to Figure 8.3) and method
calls must be made cumbersomely via InvokeMethod().

NOTE In the following sections, you will see that WPS extremely simplifies the
access to COM by providing a WPS object adapter.

WMI Support in WPS
WPS offers the option to access the local WMI repository, and WMI repos-
itories on remote systems, too.

For this purpose, WPS offers the following constructs:

■ The commandlet Get-WmiObject (alias gwmi)
■ The integrated WPS type indicators [WMI], [WMICLASS], and
[WMISEARCHER]

■ The WPS WMI object adaptor, which simplifies the access to WMI
objects

136 Chapter 8 Using Class Libraries

Management
Class

MethodData
Collection

Item

Methods

MethodData

ManagementPath
Path
ClassPath

Management
BaseObject

PropertyData
Collection

Properties
SystemProperties

PropertyData

InParameters
OutParameters

ManagementScope
Scope

ObjectGetOptions
Options

Properties
SystemProperties

Management
ObjectCollection

GetInstances()
GetSubClasses ()
GetRelatedClasses()

Management
Object

CreateInstance ()
GetRelationships

Item

Subclass
Of

Item

Subclass
Of

Accessing WMI Objects
To access a WMI object, you have three options:

■ Use of the commandlet Get-WmiObject with a filter and option-
ally with the indication of a computer name

■ Use of the integrated WPS types [WMI] and [WMIClass] with
WMI paths

■ Direct instantiation of the classes System.Management.
ManagementObject (that is, System.Management.
ManagementClass with respective indication of a WMI path in
the constructor)

TIP Classes, which can have only one instance anyway, can be called without
any filter (see Figure 8.4):

Get-WmiObject Win32_ComputerSystem

Get-WmiObject Win32_OperatingSystem

Using WMI Classes 137

8.
U

SIN
G

CLASS
LIBRARIES

Figure 8.4 Win32_Computersystem and Win32_OperatingSystem exist
only once in the WMI repository.

Table 8.1 Accessing Single WMI Objects

Get-WmiObject Integrated Direct

with Filter WPS Types Instantiating

WMI Object of a Get-WmiObject [WMI] New-Object

WMI Class with Win32_LogicalDisk "\\.\root\cimv2: System.Management.

One Key Property -Filter "DeviceID='C:'" Win32_LogicalDisk. ManagementObject("\\.

DeviceID='C:'" \root\cimv2:Win32_

LogicalDisk.DeviceID='C:'")

WMI Object of a Get-WmiObject [WMI] New-Object

WMI Class with Win32_Account "\\.\root\cimv2: System.Management.

Two Key -filter "name='hs' Win32_UserAccount. ManagementObject("\\.\root\

Properties and domain='itv'" Domain='ITV', cimv2:Win32_UserAccount.

Name='hs'" Domain='ITV',Name='hs'")

WMI Object on Get-WmiObject [WMI] New-Object

System.Management.

a Remote System Win32_LogicalDisk "\\E02\root\cimv2: ManagementObject("\\E02\

-Filter Win32_UserAccount. root\cimv2:

"DeviceID='C:'" Domain='ITV', Win32_UserAccount.

-computer "E02" Name='hs'" Domain='ITV',Name='hs'")

WMI Class Not possible [WMICLASS] "\\.\root\ New-Object

cimv2:Win32_ System.Management.

UserAccount" ManagementClass("\\E01\

root\cimv2:Win32_

UserAccount")

1
3
8

C
h
a
p
t
e
r
 8

U
s
in

g
 C

l
a
s
s
 L

ib
r
a
r
ie

s

NOTE A fundamental difference between Get-WmiObject and New-Object

is that Get-WmiObject displays all existing instances of a WMI class (for
example, all processes), whereas New-Object creates a new instance. The
semantics of Get-WmiObject do not apply to COM and .NET objects
because a central directory for instances does not exist. Instead, WMI has the
WMI repository. How to display a list of all instances in COM and .NET classes
depends on the structure of the respective classes and cannot be expressed
generally in WPS.

Type Indicators
When using the type indicators [WMI] and [WMIClass], users often for-
get to set the path name in parentheses when it is a composite name. The
type indicators have a stronger binding than the plus operator (+).

Wrong:

$Computer = "E01"

[WMI] "Win32_PingStatus.Address='"+ $Computer + "‘"

Right:

$Computer = "E01"

[WMI] ("Win32_PingStatus.Address='"+ $Computer + "‘")

The WMI Object Adapter
The normal access to WMI objects via .NET is not really “smooth” because
you always have to cumbersomely call PropertyDataCollection. Here,
WPS offers a simplification based on Extended Type System (ETS); WPS
dynamically creates objects via the integrated WMI object adapter that
comply with the WMI classes. Figure 8.5 shows this complex relationship.

Using WMI Classes 139

8.
U

SIN
G

CLASS
LIBRARIES

NOTE To answer the question, why you, as WPS user, have to know this mech-
anism, there are three answers:

1. To be able to transfer code examples that use WSH or .NET to WPS
2. To understand in which documentation you have to look
3. To find the cause if something does not work
WMI is not the only component for which WPS offers such a WPS object

adapter. The access to directory services, databases, and XML documents works
similarly.

140 Chapter 8 Using Class Libraries

Win32_ComputerSystem
Name='Mars'

Win32_SystemDevices

Metaobjectmodel
(System.Management)

CIM-Repository

Management
Object

PropertyDataCollection

ManagementObject
Collection

Win32_LogicalDisk
Name='C'

Wrapping

Computer "Mars" Drive "C:"

Resources

Read/Write

PropertyData

Win32_LogicalDiskRoot
Directory

Win32_Directory
Name='C://'

Folder "c:\"

Windows PowerShell
Extended Type System
WMI-Adapter

Win32_ComputerSystem
Name='Mars'

Win32_LogicalDisk
Name='C' Win32_Directory

Name='C://'

Wrapping

Figure 8.5 Architecture of the WMI in WPS

Analyzing WMI Objects
You can display all available properties and methods in WMI objects with
Get-Member, just as you can for .NET objects. Although the members of

a WMI class (for example, Win32_Videocontroller) are not at the same
time members of the .NET meta class that packs the WMI class
(System.Management.ManagementObject), Get-Member nevertheless
lists the members of both abstraction levels.

WPS has its own way to name classes created by the WMI object
adapter. It uses the name of the .NET meta class (System.Management.
ManagementObject) and the path of the WMI class, separated by the
hash sign (#):

System.Management.ManagementObject#root\cimv2\Win32_LogicalDisk

Figure 8.6 shows the commandlet Get-Member displaying such type
names.

Using WMI Classes 141

8.
U

SIN
G

CLASS
LIBRARIES

Figure 8.6 Listing of the pipeline content with Get-Member when there are
WMI objects in the pipeline

WARNING The properties and methods displayed by Get-Member are not
members of the .NET class ManagementObject, but of the WMI class
Win32_LogicalDisk. When you search for help information about the
objects in the pipeline, you consequently have to consult the documentation of
the WMI schema [MSDN05], not the documentation of System.Management
[MSDN06].

Accessing WMI Members
You can access the properties and the methods of WMI classes just as you
access members of .NET classes. WPS abstracts from the meta object
model implementation in the .NET class System.Management.
ManagementObject. The complicated access to the property Properties
and the method Invokemethod() is thus not necessary.

Both the access to single objects and to collections, display a long out-
put list. By default, Format-List lists the numerous properties of the dis-
played WMI objects (see Figure 8.7).

An output with the commandlet Format-Table does not help either.
True, it makes the output a bit shorter, but also much broader. It would be
great to “cut down” the resulting object to its interesting properties with
Select-Object:

Get-WmiObject Win32_VideoController |

Select-Object name,installeddisplaydrive

Also, for some WMI classes, there is a definition within the
types.ps1xml file that properties are to be displayed. There is no such set-
ting for Win32_Videocontroller; therefore, all properties display.
Figures 8.8 and 8.9, however, show the effect of the declarations for the
WMI class Win32_CDROMDrive.

142 Chapter 8 Using Class Libraries

Figure 8.7 Properties of the class Win32_VideoController

Using WMI Classes 143

8.
U

SIN
G

CLASS
LIBRARIES

Figure 8.8 Standard output of the command Get-WmiObject Win32_
CDRomDrive

Figure 8.9 Setting of the displayed properties for WMI class
Win32_CDRomDrive

Listing 8.4 shows further examples for the use of Get-WmiObject in
cooperation with commandlets for the pipeline control.

Listing 8.4 Using Get-WmiObject

Name and free bytes on all drives

Get-WmiObject Win32_logicaldisk | Select-Object

➥deviceid,freespace

Name and domain of the user accounts, whose names

➥never become invalid

Get-WmiObject Win32_account | Where-Object

➥{$_.Passwordexpires -eq 0 } | Select-Object Name,Domain

Static Class Members

In contrast to the handling of .NET objects, WPS does not make any syntactic
differences between static methods and instance methods in WMI (that is, you
always have to use the simple dot operator; in .NET objects, the colon has to be

144 Chapter 8 Using Class Libraries

used for static methods). As far as WMI is concerned, the WPS type
[WMIClass] refers only to the WMI path of the WMI class, not to a precise
instance.

For example:

([WMIClass] "Win32_Product").Install("c:\name.msi")

Date and Time

In WMI, date and time are saved as a string in the form of
yyyymmddHHMMSS.mmmmmmsUUU; in this rather self-explanatory short form,
mmmmmm stands for the number of milliseconds, and UUU stands for the
number of minutes. The local time differs from the universal coordinated
time (UTC). UUU is the three-digit offset indicating the number of minutes
that the originating time zone deviates from UTC.

The static method ToDateTime() in the class System.Management.
ManagementDateTimeConverter is available for the conversion of a
WMI date format into a normal date format of WPS (class System.
DateTime):

Listing 8.5 Converting WMI Date Formats to an Instance of System.DateTime

$cs = Get-WMIObject -Class Win32_OperatingSystem

"Starting time of the system in WMI format: " + $cs.LastBootUpTime

[System.DateTime] $starting time =

➥[System.Management.ManagementDateTimeConverter]::

➥ToDateTime($cs.LastBootUpTime)

"Starting time of the system in normal format: " + $starting time

With the PowerShell Community Extensions installed, the class
ManagementObject possesses the additional method ConvertToDate
Time(), which can perform the conversion:

Listing 8.6 Another Option for Converting a WMI Date Format to an Instance of
System.DateTime

$cs = Get-WMIObject -Class Win32_OperatingSystem -property

LastBootUpTime

$cs.ConvertToDateTime($cs.LastBootUpTime)

Date and Time 145

8.
U

SIN
G

CLASS
LIBRARIES

Accessing WMI Collections
The use of Get-WmiObject with a WMI class name

Get-WmiObject WMIClassname

displays all instances of the indicated WMI class (if the WMI class exists
on the local system).

For example, the following

Name and drive for all graphic cards in this computer

Get-WmiObject Win32_VideoController

displays all installed video cards.
This is the short form for

Get-WmiObject –class Win32_VideoController

If the class is not declared in the standard namespace root\cimv2,
you have to indicate the namespace explicitly with the parameter
–Namespace:

Get-WmiObject IISwebserver -Namespace root\microsoftIISv2

You can also access the WMI schema on remote systems with the param-
eter –Computer:

Get-WmiObject -class Win32_VideoController -computer E02

Filtering and Selecting
If you do not want to display all instances, but only selected ones that
adhere to special criteria, you can use these alternative options:

■ Use of a filter in the commandlet Get-WmiObject
■ Use of WQL queries with the parameter –Query in the com-

mandlet Get-WmiObject
■ Use of WQL queries with the type indicator [WMISEARCHER]
■ Use of WQL queries with the .NET class System.Management.
ManagementObjectSearcher

146 Chapter 8 Using Class Libraries

Filtering with Get-WmiObject
With the commandlet Get-WmiObject, you can filter objects as soon as
they are called. You have to insert the criteria after the parameter -Filter
in a string.

Consider these examples:

■ All user-accounts from the domain ITV
Get-WmiObject Win32_account -filter "domain='itv'"

■ All user accounts whose name starts with H from the domain ITV
Get-WmiObject Win32_account -filter "domain='itv' and
name like 'h%'"

WQL Queries
Queries written in WMI Query Language (WQL) can be executed in WPS
with the parameter –Query in the commandlet Get-WmiObject or with
the WPS type indicator [WMISEARCHER] (see Figures 8.10 and 8.11).

The following command selects all network adapters that contain the
number 802 in the network card type:

Get-WmiObject -query "Select * from Win32_Networkadapter

➥where adaptertype like '%802%'" | select

➥adaptertype,description

Alternatively, you can execute this query with the type indicator
[WMISearcher]:

([WmiSearcher] "Select * from Win32_Networkadapter where

➥adaptertype like '%802%'").get()| select

➥adaptertype,description

Date and Time 147

8.
U

SIN
G

CLASS
LIBRARIES

Figure 8.10 Execution of a WMI query

Figure 8.11 Object model for searching via [WMISearcher] or
System.Management.ManagementObjectSearcher

List of All WMI Classes
You can display a list of all available WMI classes on one system with the
parameter –List in the commandlet Get-WmiObject. Here, a class name
may not be indicated.

Get-WmiObject –list

If not indicated otherwise, the namespace "root\cimv2" is used. You can
also indicate a namespace explicitly:

Get-WmiObject -list -Namespace

➥root/cimv2/Anwendungs/microsoftIE

148 Chapter 8 Using Class Libraries

Management
Object

PropertyData
CollectionProperties

SystemProperties

PropertyData

QualifierData
CollectionQualifiers

QualifierData
ManagementPath

ManagementScope

ObjectGetOptions

Path
ClassPath
Put()
CopyTo ()

Scope

Options

Path

Management
ObjectCollection

Management
ObjectSearcher

ObjectQuery
Query

Get()

ConnectionOptions
Options

Qualifiers

GetRelated()
GetRelationships()

Item

You can access the WMI repository of a specific computer because all
classes are dependent on the drive and on the installed applications:

Get-WmiObject -list -Computer E02

Creating New Instances of WMI Classes
Many WMI classes are structured in such a way that a new instance of a
class has to be instantiated for the creation of a new system element. For
this purpose, static methods with the name Create() are provided on
class level (see Figure 8.12).

Date and Time 149

8.
U

SIN
G

CLASS
LIBRARIES

Figure 8.12 Methods of the class Win32_Share

Listing 8.7 shows the creation of a file share with standard rights. The
creation of file share with specific permission is a more complex matter,
and is discussed later in this book.

Listing 8.7 Creating a New Share with Default Permissions

Create Win32_Share

$class = [WMIClass] "ROOT\CIMV2:Win32_Share"

$Access = $Null

$R = $class.Create($pfad, $Sharename, 0, 10, $Comment, "", $Access)

if ($R.ReturnValue -ne 0) { Write-Error "Error in creating:

➥"+ $R.ReturnValue; Exit}

"Clearance is created!"

Summary

Microsoft does not provide commandlets for all administrative tasks yet.
In this chapter, you have learned how to use classes defined with the

.NET Framework class library, with COM components, and with WMI.

.NET and COM libraries can be used though the commandlet New-
Object. WMI objects are received accessible via Get-WmiObject.

Using class libraries is more difficult than using commandlets (espe-
cially because with class libraries you must have knowledge of object-
oriented programming). However, because Microsoft provides only a small
number of commandlets for accessing the Windows infrastructure, in
many cases using a class library is the only way to perform certain actions
within WPS.

In contrast to .NET and COM, the classes in WMI are accessed
through a meta model. This makes the understanding of the modus
operandi of this library a little more difficult. On the other hand, the meta
model provides common approaches for accessing objects, members, and
collections that can be used for all classes.

150 Chapter 8 Using Class Libraries

151

C H A P T E R 9

POWERSHELL TOOLS

In this chapter:
PowerShell Console . 151
PowerTab . 156
PowerShell IDE . 156
Windows PowerShellPlus . 158
PowerShell Analyzer . 164
PrimalScript . 165
PowerShell Help . 169

This chapter discusses the Windows PowerShell (WPS) console provided
by Microsoft and useful tools from other vendors. So far, Microsoft does
not provide an editor for PowerShell scripts.

NOTE As far as external tools are concerned, keep in mind that most of the
tools implement their own hosting of WPS. Therefore, the tools have the same
functional power as the WPS console, but do not share a common declaration
space. Definitions of aliases, drives, and new script-based commandlets are
therefore relevant only for the respective current execution environment.

PowerShell Console

Speculation about a WPS console with IntelliSense did not become reality
because the WPS development team for version 1.0 put their focus strictly
on the WPS infrastructure. They gave very little attention to supporting
tools.

The WPS console offers only a little more input support than the clas-
sic command shell in Windows. Version 1.0 of the WPS console, however,

is far from reaching the support level of the development environment in
Visual Studio.

Console Functions
The WPS console offers the following functions:

■ The size and design of the window can be controlled via the prop-
erties of the console window (see Figure 9.1).

■ The Windows clipboard is only cumbersomely available via the
menu (see Figure 9.2); that is, via the so-called quick edit mode.
The key combinations Ctrl+C/X/V do not work.

■ Command and path input and class names and object member can
be completed with the Tab key.

■ A return to the last 64 commands (number is variable) is possible
(command history).

■ The last commands are shown using the key F7 (see Figure 9.3).
■ Callback of the last command can be performed completely with

the key F3 or sign-wise via F1.
■ The termination of a running command can be performed with the

key combination Ctrl+C.

152 Chapter 9 PowerShell Tools

Figure 9.1 Window properties for the WPS console

PowerShell Console 153

9.
P

O
W

ERSHELLTO
O

LS

Figure 9.2 Use of the cache in the WPS console

Figure 9.3 Output of the command history with F7

Tab Completion
For commandlets, parameters, and object properties, WPS supplies a
function already common in the classic command-line window. In the
DOS command-line window, you can run through the available files and
subdirectories with the Tab key (called Tab completion in developer talk)
after typing one or several letters. In WPS, this also works with command-
lets, their parameters, and the properties of objects in the pipeline (see
Figures 9.4 through 9.6).

Figure 9.4 Input of the beginning of a word

154 Chapter 9 PowerShell Tools

Figure 9.5 After you press the Tab key, the first alternative appears.

Figure 9.6 After you press the Tab key again, the second alternative appears.

Command Mode Versus Interpreter Mode
Generally, the console executes all commands immediately after you press
Enter. If, however, an incomplete command had been entered (for exam-
ple, a command ending with the pipeline symbol, |), the WPS console
changes to the so-called interpreter mode, where commands are not exe-
cuted immediately. The interpreter mode is indicated by the prompt >>
(see Figure 9.7). The interpreter mode is valid as long as you make a blank
entry (see Figure 9.8). Then the command is executed.

Figure 9.7 The console is in interpreter mode.

Figure 9.8 The interpreter mode has been left via a blank entry.

User Account Control in Windows Vista
WPS, as well as all other applications, is subject to Vista’s user account con-
trol and is therefore started with limited permissions. To start WPS with
full permissions, select Execute as Administrator in the context menu
under the application icon. After that, Vista will ask for confirmation of the
elevation of permissions.

In contrast to the classic Windows shell, WPS thereafter does not indi-
cate in the titles list that it now runs under administrative rights.

TIP To show the elevation status in the titles list of the WPS console and to affect
other adjustments of the display, if applicable (as shown in Figure 9.9), you can
write a WPS profile script. In Chapter 10, “Tips, Tricks, and Troubleshooting,”
you learn how to write such a script (as well as the script used to display the ele-
vation status).

PowerShell Console 155

9.
P

O
W

ERSHELLTO
O

LS

Figure 9.9 Two WPS instances with different rights

In addition, you can use the Windows command-line tool whoami.exe
with the option /all to check which permission a running console has.

PowerTab

PowerTab extends the WPS console capabilities, proposing possible com-
mands to the user when the user presses the Tab key. PowerTab especially
makes proposals for members of .NET classes.

PowerTab

Vendor Marc van Orsouw (short “MoW”)
Price Free of charge
URL http://thepowershellguy.com/blogs/posh/pages/powertab.aspx

PowerShell IDE

The preliminary version of the PowerShell IDE, which was available at the
time of this writing, offers IntelliSense for commandlets, parameters,
.NET classes, and class members.

PowerShell IDE

Vendor ScriptInternals—Dr. Tobias Weltner
Price Beta version free of charge
URL www.powershell.de

PowerShell IDE offers two modes:

■ In the interactive mode, all commands are executed immediately,
just like in the WPS console. The advantage of IDE, however, is that
syntax color highlighting and selection lists are available in a sepa-
rate editor. In a separate window, the user can see the current sta-
tus of all variables.

■ In the script mode, the user writes, also with IntelliSense-like func-
tions, complex command sequences in WPS language, which can be
saved under the file extension .ps1 and started at a later date.

156 Chapter 9 PowerShell Tools

http://thepowershellguy.com/blogs/posh/pages/powertab.aspx
www.powershell.de

.ps1 is the official file extension for WPS scripts, which can also be
understood by the WPS console. The PowerShell IDE user can also
save interactive recordings of interactive sessions in the form of
XML files with the file extension .brain. This format, however, is
understood only by the PowerShell IDE. The user can also save the
content of the output window by clicking the symbol Hardcopy.

■ Debugging in script mode is interesting. PowerShell IDE, just like
other modern IDEs, allows users to set breakpoints. Upon stopping,
the Variables window shows the currently valid values.

So far, according to its author, the PowerShell IDE is an “experimen-
tal editor.” The real product will be Windows PowerShell Plus. Many func-
tions in the PowerShell IDE, including help and the intended community
function for the exchange of source code, are not implemented yet.
Sometimes, for example, you get a system crash rather than help.
Nevertheless, working with the PowerShell IDE is clearly easier than
direct input at the WPS console (see Figure 9.10).

PowerShell IDE 157

9.
P

O
W

ERSHELLTO
O

LS

Figure 9.10 PowerShell IDE 1.0 for WPS 1.0

Windows PowerShellPlus

PowerShellPlus is the commercial enhancement of the PowerShell IDE.
PowerShellPlus consists of an improved WPS console (PowerShellPlus
Host) that directly supports IntelliSense and a related editor
(PowerShellPlus Editor).

PowerShellPlus

Vendor Shell Tools, LLC
Price $79
URL www.powershell.com

Notable functions of PowerShellPlus include the following:

■ The console is an enhancement of the WPS console and thus under-
stands all commands that are understood by the WPS console deliv-
ered by Microsoft.

■ In contrast to the classic Windows console, this console supports
copying and inserting via Ctrl+C and Ctrl+V.

■ The editor and console are integrated. The console and editor are
shown in two separate windows when a script is started, but the
script is shown in the console. A quick change is possible with
Ctrl+W.

■ IntelliSense exists in the console and in the editor for commandlet
names, commandlet parameters, variable names, path names, .NET
class names and .NET class members (see Figures 9.11 through 9.18).

■ Code editor with syntax highlighting.
■ Debugging with single-step mode (see Figure 9.19).
■ Use and administration of reusable code snippets.
■ Recording of console entries, which can be recalled via hot keys.
■ Display of current variables and details of their contents (see Figure

9.20).
■ Transparent display of console window (optional).
■ Direct edit of WPS profile scripts.

158 Chapter 9 PowerShell Tools

www.powershell.com

Windows PowerShell Plus 159

9.
P

O
W

ERSHELLTO
O

LS

Figure 9.11 IntelliSense for commandlet names

Figure 9.12 An alternative IntelliSense for commandlet names

160 Chapter 9 PowerShell Tools

Figure 9.13 IntelliSense for commandlet parameters

Figure 9.14 IntelliSense for path names

Figure 9.16 IntelliSense for .NET class members

Windows PowerShell Plus 161

9.
P

O
W

ERSHELLTO
O

LS

Figure 9.15 IntelliSense for .NET class names

162 Chapter 9 PowerShell Tools

Figure 9.17 IntelliSense for variable names

Figure 9.18 IntelliSense for variable members

Windows PowerShell Plus 163

9.
P

O
W

ERSHELLTO
O

LS

TIP In the PowerShellPlus Editor, debugging is used not only for error searching,
but also for improving the IntelliSense support. Because a commandlet does not
declare which objects are in the pipeline, and the output of a commandlet can
depend on the context, the editor cannot know the available options as long as
the script has not been run at least once. When you are running the debugger,
the PowerShellPlus Editor remembers the content of the pipelines and the vari-
ables and will provide IntelliSense thereafter.

Figure 9.19 Debugging with single-step mode

164 Chapter 9 PowerShell Tools

Figure 9.20 Display of all current variables and their content

PowerShell Analyzer

The Windows PowerShell Analyzer by Karl Prosser, an owner of Shell
Tools, enables you to display pipeline objects in a table (see Figure 9.21)
or diagram. These are several separated run spaces in which WPS com-
mands can be executed independently. However, two important editor
functions are missing here: IntelliSense for classes and class members (see
Figure 9.21) and a debugger.

PowerShell Analyzer

Vendor Shell Tools, LLC
Price $129
URL www.powershellanalyzer.com

PrimalScript 165

9.
P

O
W

ERSHELLTO
O

LS

Figure 9.21 Windows PowerShell Analyzer 1.0 for WPS 1.0

PrimalScript

The universal editor PrimalScript supports editing WPS scripts starting
with version 4.1 (see Figure 9.22). For further information, refer to the
website of the vendor, Sapien.

www.powershellanalyzer.com

PrimalScript

Vendor Sapien
Price From $179
URL www.primalscript.com/

Table 9.1 compares PrimalScript 4.5 with PowerShellPlus 1.0 and the
PowerShell IDE, demonstrating on one hand that PowerShellPlus offers
more functions for WPS, but showing on the other hand that PrimalScript
is a universal editor.

Table 9.1 Comparison of PrimalScript 4.5 and PowerShellPlus 1.0

PowerShellPlus PowerShell IDE PrimalScript
1.0 1.0 4.5

Console for interactive Yes No No
input
Script editor Yes Yes Yes
IntelliSense for Yes Yes Yes
commandlets
(see Figure 9.23)
IntelliSense for Yes Yes Yes
parameters (see
Figure 9.24)
IntelliSense for class Yes Yes Yes
names
IntelliSense for .NET Yes No No
class members
IntelliSense for variable Yes No No
names (see Figure 9.25)
IntelliSense for variable Yes No No
members

166 Chapter 9 PowerShell Tools

www.primalscript.com/

PrimalScript 167

9.
P

O
W

ERSHELLTO
O

LS

Figure 9.22 Output of a WPS script in PrimalScript 2007

PowerShellPlus PowerShell IDE PrimalScript
1.0 1.0 4.5

IntelliSense for
path names Yes No No
Debugging Yes Yes Yes
Support for XML N/A WSH, ActionScript,
other types AWK, AutoIt, Batch,
of files HTA, Kixtart,

LotusScript, Perl,
Python, Rebol, REXX,
Ruby, SQL, Tcl,
WinBatch, ASP, HTML,
JSP, PHP, XML, XLST,
XSD, C#, C++, VB,
ColdFusion u.a.

168 Chapter 9 PowerShell Tools

Figure 9.23 IntelliSense for commandlets

Figure 9.24 IntelliSense for parameters

Figure 9.25 IntelliSense for class names

PowerShell Help

PowerShell Help is a simple tool to show the stored help text for com-
mandlets stored in XML files (see Figure 9.26).

PowerShell Help

Vendor Sapien
Price Free
URL www.primalscript.com/Free_Tools/index.asp

PowerShell Help 169

9.
P

O
W

ERSHELLTO
O

LS

www.primalscript.com/Free_Tools/index.asp

Figure 9.26 PowerShell Help for WPS 1.0

Summary

In this chapter, you learned that the WPS console is basically the same as
the classic Windows console, with just a few more features. You can add
input support with the free PowerTab tool. The third-party tool
PowerShellPlus provides full IntelliSense support for the console.

Microsoft does not provide an editor for WPS scripts. For such, you
can choose between the free, albeit incomplete PowerShell IDE and the
commercial products PowerShellPlus Editor and PrimalScript.

170 Chapter 9 PowerShell Tools

171

C H A P T E R 1 0

TIPS, TRICKS, AND
TROUBLESHOOTING

In this chapter:
Debugging and Tracing . 171
Commandlet Extensions . 174
Command History . 186
System and Host Information . 187
PowerShell Profiles . 189
Graphical User Interfaces . 196

This chapter contains a few tips for your work with Windows PowerShell
(WPS), including debugging, installing commandlet extensions, using pro-
file scripts and the command history, and displaying user interfaces. The
chapter also introduces a few of the available commandlet extensions from
third-party vendors and the open source community.

Debugging and Tracing

Regarding debugging, the commandlets offer a few common parameters:

■ With the parameters -Verbose and –Debug, the administrator gets
more output than usual.

■ With –Confirm, the administrator requests that all actions that make
any changes have to be reconfirmed by the user.

■ To be on the safe side, you can simulate actions with –WhatIf
before starting the real execution.

WARNING The parameters –Confirm and –WhatIf are not supported by all
commandlets.

When you use –WhatIf with the commandlet Stop-Service, WPS
lists in detail which services Windows will really stop, according to existing
service dependencies.

-WhatIf is also very helpful when you use a command with a place-
holder. Figure 10.1 shows which services would be stopped when Stop-
Service a* is executed.

172 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.1 Operations with placeholders can have severe consequences;
–WhatIf demonstrates which services would be affected.

Verbose Execution
Detailed information about a single commandlet can be gathered via the
standard parameter –verbose. If you want to get the same for whole
scripts, use Set-PsDebug -trace 1 or Set-PsDebug -trace 2.
Figure 10.2 shows the output of –trace 1. With –trace 2, the output
would be even more detailed.

Debugging and Tracing 173

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

Figure 10.2 Protocoling a script execution

Single-Step Mode
With the commandlet Set-PsDebug –step, you can execute a script step
by step. WPS not only executes the steps, it also asks after each step
whether you want to continue the execution (see Figure 10.3).

Measuring Execution Time
The commandlet Measure-Command shows, in the form of a TimeSpan
object, how much time a command needs for execution.

For example

Measure-Command { Get-Process | Foreach-Object { $_.ws } }

Tracing
You can activate a trace with the commandlet Set-TraceSource, which
displays internal information about each step processed within the WPS
environment. Get-TraceSource lists all traceable sources. By default,
there are 176 sources. This shows the complexity of the matter, which goes
far beyond the scope of this book.

174 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.3 Execution of a script in single steps with confirmation

WARNING When experimenting with Set-TraceSource, you might soon
reach the point where you cannot see the real actions because of all those pro-
tocols displayed. To deactivate the tracing, use Set-TraceSource with the
parameter –RemoveListener.

Commandlet Extensions

WPS does not have a fixed set of commandlets. Additional commandlets
can be added when WPS is started or at any time during its operation.
Additional commandlets are either implemented as WPS script files, which
are added via dot sourcing (see Chapter 8, “Using Class Libraries”) or via
installation of a snap-in (described in the following text).

Adding Snap-Ins
Commandlet extensions are delivered in the form of a snap-in DLL. They
have to be integrated in WPS in two steps:

1. Registering the DLL (alternatively called assembly) that contains
the commandlets

2. Loading the snap-in to the WPS console

DLL Registration
Registration of the DLL is performed with the command-line tool instal-
lutil.exe, which is installed together with the .NET Framework. You will
find the tool in the installation directory of the .NET Framework (usually
c:\Windows\Microsoft .NET\Framework\v x.y\). WPS has implemented
this path automatically as a search path for the command.

When using installutil.exe, you must indicate the filename of the
extension DLL, including the path (in case the WPS console does not
already have this exact path as the current path).

installutil.exe

➥G:\PowerShell_Commandlet_Library\PowerShell_Commandlets.dll

Figure 10.4 shows how the tool displays the successful installation.
The registration has the effect that the DLL is added to the registry

key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\PowerShell\1\
PowerShellSnapIns.

Loading of Snap-Ins to the PowerShell Console
To load a snap-in, you must use the commandlet Add-PSSnapin in the
WPS console. This commandlet needs the name of the snap-in, not the
name of the DLL. If you do not know the name of a snap-in, see the sec-
tion “Listing Snap-Ins” later in this chapter.

Add-PSSnapin PowerShell_Commandlet_Library

Commandlet Extensions 175

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

Figure 10.4 Output of Installutil.exe

Whereas registration of a DLL is necessary only once, the WPS con-
sole discards a loaded snap-in each time it is terminated. If you want WPS
to always start with certain extensions, you have two options:

■ Add the relevant Add-PSSnapIn commands in your system-wide or
user-specific profile file (Profile.ps1, see “PowerShell Profiles” in
this chapter and Figure 10.5).

■ Export a console configuration file with Export-Console (see
Figure 10.6). At first, however, you have to add the snap-in to the
current console, and then you can export this current console. This
creates an XML file with the filename extension .psc1. The PSC
file has to be handed to WPS with the command-line parameter
–PSConsoleFile when it is started.

176 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.5 Loading a snap-in in the profile file

Commandlet Extensions 177

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

Figure 10.6 Exporting a console configuration file

The best thing to do is to create a link in your file system with the fol-
lowing destination (see Figure 10.7):

%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe

➥-PSConsoleFile "G:\Consoles\HolgersConsole.psc1"

178 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.7 Creating a link to the WPS console; the link automatically loads a
certain console configuration file

Listing Snap-Ins
The commandlet Get-PSSnapIn usually lists only those snap-ins that
already have been added to the WPS by using the Add-PSSnapIn. Among
these, there are also the standard commandlet packages, starting with
Microsoft.PowerShell.* (see Figure 10.8).

Get-PSSnapin –registered, however, lists all registered snap-ins,
regardless of whether they are active in the current console. Figure 10.9
shows the snap-in WorldWideWings_PowerShell_Extensions, which is
not active in the console (see Figure 10.9).

Figure 10.8 Active PowerShell snap-ins

Commandlet Extensions 179

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

Figure 10.9 All commandlets registered on the system

List of Available Commandlets
To get a list of all commandlets in a specific snap-in, you can filter for the
property PSSnapIn in the class CmdletInfo, as follows:

Get-command | where { $_.pssnapin -like "Pscx" }

or

Get-command | where { $_.pssnapin -like

➥"ITVisions_PowerShell_Extensions" }

or

Get-command | where { $_.pssnapin -like

➥"quest.activeroles.admanagement" }

Ambiguous Commandlets
It might happen that you activate different snap-ins that define command-
lets with the same name, because there is no central registry for command-
lets. When you encounter this problem, WPS answers the call of
ambiguous commandlets with an error (see Figure 10.10).

WARNING Note that this error actually occurs during operation, not when the
WPS console is started.

180 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.10 A commandlet name has been assigned twice.

To differentiate between the two commandlets with the same name in
different snap-ins, you have to preface the name of the snap-in to the com-
mandlet (separated by a backslash), as follows:

ITVisions_PowerShell_Extensions\Get-Computername

Available Commandlet Extensions
Important commandlet extensions (some free, some not) include the
following:

■ PowerShell Community Extensions by Microsoft.
■ PowerShell Extensions by www.IT-Visions.de.
■ Quest offers commandlets for Active Directory scripting.
■ Group policy administration with PowerShell is offered by the com-

pany FullArmor.
■ Commandlets for network management with PowerShell are

offered by the company /n Software.
■ The company PowerGadget offers, under the same name, a collec-

tion of additional commandlets to display WPS pipeline content.

PowerShell Community Extensions
You can find additional commandlets and providers for WPS 1.0 from
Microsoft in Windows PowerShell Community Extensions (PSCX).

PSCX

Vendor Microsoft/Open Source Community Project
Price Free
URL www.codeplex.com/PowerShellCX

PSCX 1.1.1 contains the following commandlets:

ConvertFrom-Base64

ConvertTo-Base64

ConvertTo-MacOs9LineEnding

ConvertTo-UnixLineEnding

ConvertTo-WindowsLineEnding

Convert-Xml

Disconnect-TerminalSession

Export-Bitmap

Commandlet Extensions 181

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

www.IT-Visions.de
www.codeplex.com/PowerShellCX

Format-Byte

Format-Hex

Format-Xml

Get-ADObject

Get-Clipboard

Get-DhcpServer

Get-DomainController

Get fileVersionInfo

Get-ForegroundWindow

Get-Hash

Get-MountPoint

Get-PEHeader

Get-Privilege

Get-PSSnapinHelp

Get-Random

Get-ReparsePoint

Get-ShortPath

Get-TabExpansion

Get-TerminalSession

Import-Bitmap

Join-String

New-Hardlink

New-Junction

New-Shortcut

New-Symlink

Out-Clipboard

Ping-Host

Remove-MountPoint

Remove-ReparsePoint

Resize-Bitmap

Resolve-Assembly

Resolve-Host

Select-Xml

Send-SmtpMail

Set-Clipboard

Set fileTime

Set-ForegroundWindow

Set-Privilege

Set-VolumeLabel

Split-String

Start-Process

Start-TabExpansion

Stop-TerminalSession

Test-Assembly

Test-Xml

Write-BZip2

Write-Clipboard

Write-GZip

Write-Tar

Write-Zip

182 Chapter 10 Tips, Tricks, and Troubleshooting

PSCX commandlets have their own installation routines. During instal-
lation, you are asked whether you want to create a profile file that inte-
grates the PSCX snap-in and creates various variables and functions. When
you do not want to do this (because you already have your own profile file),
you have to integrate PSCX manually in your own profile file or execute the
PSCX snap-in, via the following command, each time you start the console:

Add-PSSnapin PSCX

www.IT-Visions.de PowerShell Extensions
The PowerShell extensions provided for free by the author’s company offer
functions in the areas of

■ Directory administration (Get-DirectoryEntry,
Get-DirectoryChildren, Add-DirectoryEntry,
Remove-DirectoryEntry, and so on)

■ Hardware information (Get-Processor, Get-Memorydevice,
Get-NetworkAdapter, Get-CDRomDrive,
Get-Videocontroller, Get-USBController, and more)

■ Database access (Get-DbTable, Get-DbRow, Set-DbTable,
Invoke-DbCommand, and so forth)

www.IT-Visions.de WPS Extensions

Vendor www.IT-Visions.de
Price Free
URL www.IT-Visions.de/scripting/powershell/

PowerShellcommandletExtensions.aspx

The snap-in has to be installed manually with installutil.exe:

installutil.exe ITVisions_PowerShell_Extensions.dll

After that, the extension has to be loaded into the console. (It is best to add
this to Profil.ps1.)

Add-PSSnapin ITVisions_PowerShell_Extensions

Quest Management Shell for Active Directory
Quest offers commandlets for Active Directory administration and a cus-
tom WPS console (Quest Management Shell for Active Directory).

Commandlet Extensions 183

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de/scripting/powershell/PowerShellcommandletExtensions.aspx
www.IT-Visions.de/scripting/powershell/PowerShellcommandletExtensions.aspx

Quest Management Shell for Active Directory

Vendor Quest
Price Free
URL www.quest.com/activeroles-server/arms.aspx

184 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.11 Quest Management Shell for Active Directory

Quest commandlets can be integrated into the Quest management
console in the standard WPS via Add-PsSnapin Quest.Activeroles.
AdManagement.

The Quest extensions in the current version, 1.0.4, contain the follow-
ing commandlets:

Add-QADGroupMember

Connect-QADService

Disconnect-QADService

Get-QADComputer

Get-QADGroup

Get-QADGroupMember

Get-QADObject

Get-QADUser

New-QADGroup

New-QADObject

New-QADUser

Remove-QADGroupMember

Set-QADObject

Set-QADUser

Microsoft Exchange Server 2007
Microsoft Exchange Server 2007 is the first Microsoft product using WPS
for administration. The Exchange management shell (a custom version of

www.quest.com/activeroles-server/arms.aspx

the WPS console), delivered together with the Exchange Server, and a num-
ber of commandlets enable you to effectively execute all the administrative
tasks of Exchange Server right from the command line (see Figure 10.12).

Commandlet Extensions 185

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

Figure 10.12 Exchange Server 2007 management shell

Among others, the following commandlets are provided in this snap-in:

Get-ExchangeServer

Enable-Mailcontact

Enable-Mailbox

Disable-Mailbox

Get-Mailbox

Get-MailboxStatistics

New-SystemMessage

Get-Recipient

Get-UMMailbox

New-MailboxDatabase

New-StorageGroup

New-SendConnector

Suspend-Queue

Resume-Queue

Set-RecipientFilterConfig

New-JournalRule

NOTE For further information, refer to [TNET01] and [TNET02].

System Center Virtual Machine Manager 2007
System Center Virtual Machine Manager (SCVMM) 2007 is an adminis-
tration tool for virtual systems based on Microsoft Virtual Server. This

SCVMM is completely based on WPS commandlets, so all action of the
SCVMM can also be executed via commandlets or script.

Among others, the following commandlets are provided here:

New-VirtualNetworkAdapter

New-VirtualDVDDrive

New-HardwareProfile

Get-VirtualHardDisk

Add-VirtualHardDisk

New-VM

Get-VMHost

Get-FloppyDrive

Get-DVDDrive

Command History

By default, the WPS console saves the last 64 entered commands in a com-
mand history. You can get a list of those saved commands with the com-
mandlet Get-History. Via the parameter Count, you can look at a certain
number of commands (that is, the last n commands will be shown):

Get-History –count 10

You can distinctly call a command via its position:

Invoke-History 9

You can increase the number of the saved commands through the inte-
grated WPS variable $MaximumHistoryCount.

You can export the command history either as script file or as an XML
file (see Table 10.1). A script file is used when the commands entered will
be executed automatically in the same sequence as entered. The XML file
format is used when the command history of a former session will be
restored without simultaneously executing all the commands.

186 Chapter 10 Tips, Tricks, and Troubleshooting

Table 10.1 Export Options for the WPS Command History

Script Files (.ps1) XML Format

Exporting Get-History -Count 10 | Get-History | Export-CliXml

format-table commandline "b:\Scripts\History.xml"

-HideTableHeader | Out-

File "c:\MyScript.ps1"

Importing / . "c:\MyScript.ps1" Import-CliXml

Executing "b:\Scripts\History.xml" |

Add-History

Clear-Host (alias clear) deletes the display in the WPS console, but
it does not delete the command history.

System and Host Information

The commandlet Get-Host and the integrated variable $Host deliver
information about the current WPS environment. The commandlet and
the variable display the same instance of the class System.Management.
Automation.Internal.Host.InternalHost. InternalHost contains
information and also allows modifications through its subobject UI.RawUI,
as follows:

■ $Host.Name Name of the host. (This makes a differentiation of
the environment possible; for example, WPS Plus Host delivers a
different value than the default WPS console.)

■ $Host.Version Version number of the host.
■ $Host.UI.RawUI.WindowTitle = "Title" Setting the title of

the window.
■ $Host.UI.RawUI.ForeGroundColor = [System.
ConsoleColor]::White Setting the foreground text color.

■ $Host.UI.RawUI.BackgroundColor = [System.
ConsoleColor]::DarkBlue Setting the text background color.

Example
Listing 10.1 produces a headline in which not only the name of the current
user is displayed but also whether he is an administrator. The code is

System and Host Information 187

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

extremely useful on Windows Vista and should be included in your profile
script.

Listing 10.1 A Profile Script for a Meaningful Title Line

PowerShell Profile Script – Title with Username and Status

Holger Schwichtenberg 2007

------------- Window Title

$WI = [System.Security.Principal.WindowsIdentity]::GetCurrent()

$WP = New-Object System.Security.Principal.WindowsPrincipal($wi)

if ($WP.IsInRole([System.Security.Principal.WindowsBuiltInRole]::

➥Administrator))

{

$Status = "[elevated user]"

}

else

{

$Status = "[normal User]"

}

$Host.UI.RawUI.WindowTitle = "PowerShell - " +

[System.Environment]::UserName + " " + $Status

Get-Culture (or $Host.CurrentCulture) and Get-UICulture
(or $Host.CurrentUICulture) deliver information about the current
language in the form of single instances of the .NET class System.
Globalization.CultureInfo. Get-Culture refers to the output of
date, time, and currency (compare to regional settings of Windows system
control). Get-UICulture refers to the language of the user interface.
Generally, both settings are similar; a user, however, could set these differ-
ently (see Figure 10.13).

188 Chapter 10 Tips, Tricks, and Troubleshooting

WPS Profiles 189

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

Figure 10.13 Execution of Get-Host

PowerShell Profiles

When a WPS console is terminated, it forgets all its settings (for example,
loaded snap-ins, defined aliases, defined functions, integrated WPS
providers, and the command history). With the help of so-called profile
files, you can reinstall WPS console’s memory during startup. Profiles are
WPS scripts with the name Profile and the filename extension .ps1.

A Profile.ps1 can exist on two levels:

■ Globally for all users. This file resides within the WPS installation
directory (generally, C:\Windows\System32\WindowsPowerShell\
v1.0).

■ User related. This file resides in the file system directory (under
Vista usually in c:\User\(Username)\documents\Windows PowerShell;
on older systems, under c:\documents and settings\(username)\
documents\WindowsPowerShell).

Figure 10.14 shows storing a profile in Windows Vista.

NOTE The PowerShell Command Extensions (PSCX) create such a user-specific
profile file, with numerous settings during the installation process (see Listing
10.2).

Listing 10.2 Slightly Adapted Version of the Profile File from PSCX

Author: Keith Hill, jachymko

Desc: Simple global profile to get you going with PowerShell.

Date: Nov 18, 2006

Site: http://www.codeplex.com/PowerShellCX

Usage: Copy this file to your Windows PowerShell directory e.g.:

#

Copy-Item "$Env:PscxHome\Profile\Profile.ps1"

➥(Split-Path $Profile -Parent)

#

--

Adapted by Holger Schwichtenberg, July 2007

--

Configure standard PowerShell variables to more useful settings

--

$MaximumHistoryCount = 512

$FormatEnumerationLimit = 100

--

PowerShell Community Extensions preference variables.

➥Comment/uncomment

or change to suit your preference.

--

$PscxTextEditorPreference = "Notepad"

--

Dirx/dirs/dirt/dird/dirw functions will specify

➥-Force with the value of

the following preference variable. Set to $true

➥will cause normally hidden

items to be returned.

--

$PscxDirForcePreference = $true

--

Dirx/dirs/dirt/dird/dirw functions filter out files with

➥system properties set.

The performance may suffer on high latency networks or in

➥folders with

190 Chapter 10 Tips, Tricks, and Troubleshooting

many files.

--

$PscxDirHideSystemPreference = $true

--

Display file sizes in KB, MB, GB multiples.

--

$PscxFileSizeInUnitsPreference = $false

--

The Send-SmtpMail default settings.

--

$PscxSmtpFromPreference = 'john_doe@example.net'

$PscxSmtpHostPreference = 'smtp.example.net'

$PscxSmtpPortPreference = 25

--

Uncomment this to create a transcript of the entire

➥PowerShell session.

--

$PscxTranscribeSessionPreference = $true

--

You can modify every aspect of the PSCX prompt appearance by

creating your own eye-candy script.

--

$PscxEyeCandyScriptPreference = '.\EyeCandy.Jachym.ps1'

$PscxEyeCandyScriptPreference = '.\EyeCandy.Keith.ps1'

--

The following functions are used during processing of the

➥PSCX profile

and are deleted at the end of loading this profile.

!! Do not modify or remove the functions below !!

--

function Set-PscxVariable($name, $value)

{

Set-Variable $name $value -Scope Global -Option AllScope,ReadOnly

➥-Description "PSCX variable"

}

function Set-PscxAlias($name, $value, $type = 'cmdlet',

➥[switch]$force)

PowerShell Profiles 191

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

(continues)

Listing 10.2 Slightly Adapted Version of the Profile File from PSCX (continued)

{

Set-Alias $name $value -Scope Global -Option AllScope -Force:$force

➥-Description "PSCX $type alias"

}

function Test-PscxPreference($name)

{

if (Test-Path "Variable:$name")

{

(Get-Variable $name).Value

}

else

{

$false

}

}

!! Do not modify or remove the functions above !!

if (!(Test-Path Variable:__PscxProfileRanOnce))

{

--

This should only be run once per PowerShell session

--

Add-PSSnapin Pscx

Start-TabExpansion

Load ps1xml files which override built-in PowerShell defaults.

--

Update-FormatData -PrependPath

"$Env:PscxHome\FormatData\FileSystem.ps1xml"

Update-FormatData -PrependPath

"$Env:PscxHome\FormatData\Reflection.ps1xml"

--

Create $UserProfile to point to the user's non-host specific profile

➥script

--

192 Chapter 10 Tips, Tricks, and Troubleshooting

Set-PscxVariable ProfileDir (split-path

➥$MyInvocation.MyCommand.Path -Parent)

Set-PscxVariable UserProfile (join-path

➥$ProfileDir 'Profile.ps1')

--

Create PSCX convenience variables, identity variables used by

➥EyeCandy.*.ps1

--

Set-PscxVariable PscxHome ($env:PscxHome)

Set-PscxVariable PscxVersion ([Version](Get fileVersionInfo

➥(Get-PSSnapin Pscx).ModuleName).ProductVersion)

Set-PscxVariable Shell (new-object

➥-com Shell.Application)

Set-PscxVariable NTIdentity ([Security.Principal.WindowsIdentity]

[ic:ccc[::GetCurrent())

Set-PscxVariable NTAccount

($NTIdentity.User.Translate([Security.Principal.NTAccount]))

Set-PscxVariable NTPrincipal (new-object

Security.Principal.WindowsPrincipal $NTIdentity)

Set-PscxVariable IsAdmin

($NTPrincipal.IsInRole([Security.Principal.WindowsBuiltInRole]::

➥Administrator))

}

else

{

--

This should be run every time you want apply changes to

➥your type and format

files.

--

Update-FormatData

Update-TypeData

}

--

PowerShell Community Extensions utility functions and filters.

Comment out or remove any dot sourced functionality that

➥you don't want.

PowerShell Profiles 193

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

(continues)

Listing 10.2 Slightly Adapted Version of the Profile File from PSCX (continued)

Push-Location (Join-Path $Env:PscxHome 'Profile')

. '.\TabExpansion.ps1'

. '.\GenericAliases.ps1'

. '.\GenericFilters.ps1'

. '.\GenericFunctions.ps1'

. '.\PscxAliases.ps1'

. '.\Debug.ps1'

. '.\Environment.VirtualServer.ps1'

. '.\Environment.VisualStudio2005.ps1'

. '.\Cd.ps1'

. '.\Dir.ps1'

. '.\TranscribeSession.ps1'

. $PscxEyeCandyScriptPreference

Pop-Location

Add PSCX Scripts dir to Path environment variable to allow

➥scripts to be executed.

Add-PathVariable Path $env:PscxHome,$env:PscxHome\Scripts

Remove functions only required for the processing of the

➥PSCX profile.

--

Remove-Item Function:Set-PscxAlias

Remove-Item Function:Set-PscxVariable

--

Keep track of whether or not this profile has run already

➥and remove the

temporary functions

Set-Variable __PscxProfileRanOnce

Additions from Dr. Holger Schwichtenberg

Snap-Ins laden

194 Chapter 10 Tips, Tricks, and Troubleshooting

Add-PSSnapin ITVisions_PowerShell_Extensions

Title

$Wi = [System.Security.Principal.WindowsIdentity]::GetCurrent()

$wp = New-Object System.Security.Principal.WindowsPrincipal($wi)

if ($wp.IsInRole([System.Security.Principal.WindowsBuiltInRole]

➥::Administrator))

{

$Status = "[elevated user]"

}

else

{

$Status = "[normal User]"

}

$PscxWinx

dowTitlePrefix = "PowerShell - " + [System.Environment]::UserName

➥+ " " + $Status + " - "

PowerShell Profiles 195

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

Figure 10.14 Storing the profile file in Windows Vista

Graphical User Interfaces

Microsoft Shell does not possess commandlets for the presentation of
graphical user interfaces. However, there’s no reason why you shouldn’t
use the System.Windows.Forms library (Windows Forms or WinForms)
of .NET directly.

NOTE There’s no space in this book for a detailed explanation of the Windows
Forms library (some hundred classes!). Nevertheless, two examples will explain
the approach.

Input Dialog
The following script creates an input mask for three values. For the sake of
simplification, input fields are arranged automatically and not positioned
absolutely (flow layout panel, compare HTML) (see Figure 10.15).

196 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.15 An input window created with WPS

The WPS script in Listing 10.3 shows the example, where a form
(Form), a flow layout panel (FlowLayoutPanel), three labels (Label), and
three text boxes (Textbox) are used. It’s important that the section fills the
form ([System.Windows.Forms.DockStyle]::Fill) and that you cor-
rectly add the controls to the control tree one after the other in the order
you like them to appear on the screen (Controls.Add()).

Listing 10.3 Show and Evaluate the Input Window

#######################################

PowerShell Script: Display a GUI

(C) Dr. Holger Schwichtenberg

http://www.windows-scripting.com

##

Load Windows Forms Library

[System.Reflection.Assembly]::LoadWithPartialName

➥("System.windows.forms")

Create Window

$form = new-object "System.Windows.Forms.Form"

$form.Size = new-object System.Drawing.Size @(200,200)

$form.topmost = $true

$form.text = "Registration Form"

Create Flow Panel

$panel = new-object "System.Windows.Forms.flowlayoutpanel"

$panel.Dock = [System.Windows.Forms.DockStyle]::Fill

$form.Controls.Add($panel)

Create Controls

$L1 = new-object "System.Windows.Forms.Label"

$L2 = new-object "System.Windows.Forms.Label"

$L3 = new-object "System.Windows.Forms.Label"

$T1 = new-object "System.Windows.Forms.Textbox"

$T2 = new-object "System.Windows.Forms.Textbox"

$T3 = new-object "System.Windows.Forms.Textbox"

$B1 = new-object "System.Windows.Forms.Button"

Set labels

$L1.Text = "Name:"

$L2.Text = "E-Mail:"

$L3.Text = "Website:"

$B1.Text = "Register!"

Set size

$T1.Width = 180

$T2.Width = 180

Graphical User Interfaces 197

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

(continues)

Listing 10.3 Show and Evaluate the Input Window (continued)

$T3.Width = 180

Add controls to Panel

$panel.Controls.Add($L1)

$panel.Controls.Add($T1)

$panel.Controls.Add($L2)

$panel.Controls.Add($T2)

$panel.Controls.Add($L3)

$panel.Controls.Add($T3)

$panel.Controls.Add($B1)

Event Binding

$reg = $false

$B1.add_Click({$reg = $true; $Form.close()})

Show window

$form.showdialog()

Display result

if ($reg)

{

"You have entered: " + $T1.Text + ";" + $T2.Text + ";" + $T3.Text

}

else

{

"You have canceled the dialog!"

}

Displaying Objects
When you want to display an object with many attributes, the preceding
procedure with the individual creation of Windows Forms elements is
extremely laborious. It is much easier with PropertyGrid, a control
defined in Windows Forms, to which any optional .NET object can be con-
nected and which also saves changes to the object (see Figure 10.16 and
Listing 10.4).

198 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.16 Display and change of process objects with a Windows Forms
PropertyGrid

Listing 10.4 Display and Change of a Process Object with a Windows Forms
PropertyGrid

Download Windows Forms

[System.Reflection.Assembly]::LoadWithPartialName

➥("System.windows.forms")

Create window

$form = new-object "System.Windows.Forms.Form"

$form.Size = new-object System.Drawing.Size @(700,800)

$form.topmost = $true

Graphical User Interfaces 199

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

(continues)

Listing 10.4 Display and Change of a Process Object with a Windows Forms
PropertyGrid (continued)

Create PropertyGrid

$PG = new-object "System.Windows.Forms.PropertyGrid"

$PG.Dock = [System.Windows.Forms.DockStyle]::Fill

$form.Controls.Add($PG)

Assign content to PropertyGrid

$i = Get-process "outlook"

$PG.selectedobject = $i

Display Window

$form.showdialog()

Windows Clipboard
For filling and displaying the cache, you have the following commandlets
at hand in PSCX:

Write-Clipboard see Figure 10.17
Set-Clipboard see Figure 10.18
Get-Clipboard

200 Chapter 10 Tips, Tricks, and Troubleshooting

Figure 10.17 Use of the commandlet Write-Clipboard

Figure 10.18 Use of the commandlet Set-Clipboard

Summary

In this chapter, you have learned different tips and tricks, including the
following:

■ Debugging with the parameters verbose, whatif, and confirm
■ The installation of commandlet extensions (snap-ins) through
installutil.exe and Add-PSSnapIn

■ Using the command history of WPS with Get-History and
Invoke-History

■ Getting information about your WPS host from commandlets and
integrated variables

■ Using WPS profile files (Profile.ps1)

Summary 201

10.
TIPS, TRICKS,

AN
D

TRO
UBLESHO

O
TIN

G

This page intentionally left blank

P A R T I I

WINDOWS POWERSHELL IN ACTION

Chapter 11 File Systems . 205

Chapter 12 Managing Documents . 235

Chapter 13 Registry and Software . 253

Chapter 14 Processes and Services . 267

Chapter 15 Computers and Hardware . 281

Chapter 16 Networking . 295

Chapter 17 Directory Services . 313

Chapter 18 User and Group Management in the Active Directory 335

Chapter 19 Searching in the Active Directory . 349

Chapter 20 Additional Libraries for Active Directory Administration 361

Chapter 21 Databases . 373

Chapter 22 Advanced Database Operations . 389

Chapter 23 Security Settings . 401

Chapter 24 Advanced Security Administration . 413

This page intentionally left blank

205

C H A P T E R 1 1

FILE SYSTEMS

In this chapter:
Available Commandlets for File System Administration 205
Drives . 206
Directory Content . 210
Reading and Writing File Properties . 213
Properties of Executables . 214
File System Links . 216
Compression . 220
File Shares . 221

Windows PowerShell (WPS) provides access to the Windows file system
through PowerShell Navigation Provider. There are also .NET classes and
WMI classes that support the administration of file systems. Samples in
this chapter include the enumeration of directory content, file system
operations such as copying and deleting, the management of links in the
file systems, file compression, and the creation of file shares.

Available Commandlets for File System Administration

Table 11.1 enumerates the relevant commandlets and their counterparts in
the classic Windows shell and Unix shells.

Table 11.1 Important Commandlets for Working with the Windows File System

Classic

WPS UNIX

Commandlet WPS Alias Shell sh Description

Clear-Item cli N/A N/A Clear content of a
file

Copy-Item cpi, cpp, cp, copy cp Copy file or folder
copy

Get-Content gc type cat Get the content of
a file

Get-Location gl, pwd pwd pwd Get the current
directory

Move-Item mi, move, mv, mi move mv Move file or folder
New-Item ni, md N/A N/A Create file or

folder
Remove-Item ri, rp, rm, del, rm, Delete file

rmdir, del, rd rmdir or folder
erase, rd

Rename-Item rni, ren rn ren Rename file or
folder

Set-Content sc > > Set file content
Set-Item si N/A N/A Set file content
Set-Location Sl, cd, chdir cd, cd, Set current

chdir chdir directory

Drives

To list all drives, you have four options:

1. Use the commandlet Get-PSDrive (commandlet of WPS 1.0).
2. Use the commandlet Get-Disk (commandlet of the www.

IT-Visions.de extensions).
3. Static method GetDrives() of the .NET class System.IO.

DriveInfo (see Figure 11.1).

206 Chapter 11 File Systems

www.IT-Visions.de
www.IT-Visions.de

4. Display the instances of the WMI class Win32_LogicalDisk (see
Figure 11.2).

Get-PSDrive lists all WPS drives, including variables and the registry
(see the discussion about navigation providers in Chapter 5, “The
PowerShell Navigation Model”). If you want a list of all file system drives
only, you have to limit Get-PSDrive to the provider file system as follows:

Get-PSDrive -psprovider filesystem

The result consists of objects of the type System.Management.
Automation.PSDriveInfo. One of the attributes of this class is Root,
which contains the root directory of each drive.

WARNING The WPS class PSDriveInfo does not contain any information
about size and free space of the drives, because this is a generic concept for all
kinds of navigable object collections, and such values would not make sense for
some drives (for example, environment variables).

Drives 207

11.
FILESYSTEM

S

Figure 11.1 Use of the method GetDrives()

Figure 11.2 Use of Win32_LogicalDisk. Drive types are 3 = local disk, 4 =
network drive, 5 = CD/DVD.

Free Space
To display the free space of the file system drives, you have the following
options (see Listings 11.1 through 11.6):

■ Property TotalFreeSpace in the .NET class System.IO.
DriveInfo

■ Property Freespace in the WMI class Win32_LogicalDisk
■ Use of the commandlet Get-Disk (commandlet of www.

IT-Visions.de), which internally works with WMI

Listing 11.1 Displaying the Free Space of the C: Drive by Using .NET Class
System.IO.DriveInfo

$drive = new-object System.IO.DriveInfo("C")

$drive.TotalFreeSpace

208 Chapter 11 File Systems

www.IT-Visions.de
www.IT-Visions.de

Listing 11.2 Displaying the Free Space of the C: Drive by Using WMI Class
Win32_LogicalDisk

Get-WmiObject Win32_logicaldisk -Filter "DeviceID = 'c:'" |

➥Select FreeSpace

Listing 11.3 Displaying the Free Space of All Drives by Using WMI Class
Win32_LogicalDisk

Get-WmiObject Win32_logicaldisk | Select-Object

➥deviceid,size,freespace

The script in Listing 11.4 shows one way to display this data in a bet-
ter format.

Listing 11.4 Fetching the Free Space of the Drives

$Computer = "localhost"

$drives = Get-WmiObject Win32_LogicalDisk -computer $computer

" drive size(MB) free space(MB)"

ForEach ($drive in $drives)

{

" {0} {1,15:n} {2,15:n}" -f $drive.DeviceID,

➥($drive.Size/1mb), $($drive.freespace/1mb)

}

The use of the WMI class Win32_LocigalDisk has two advantages:

■ You can also call remote systems (see example).
■ With the help of a WQL, you may also filter your call explicitly (see

example).

Listing 11.5 Fetching the Free Space of the C: Drive of a Remote Computer by Using WMI
Class Win32_LogicalDisk

Get-WmiObject Win32_logicaldisk -Filter "DeviceID = 'c:'"

➥-Computer E02 | Select DeviceID, FreeSpace

Drives 209

11.
FILESYSTEM

S

Listing 11.6 Displaying Drives with Little Free Space by Using a WQL Call via the WMI
Class Win32_LogicalDisk

([WMISearcher] "Select * from Win32_LogicalDisk where Freespace

➥< 1000000000").Get() | Select DeviceID, FreeSpace

Drive Labels
To fetch and change drive names, you can use VolumeLabel of the class
DriveInfo.

Listing 11.7 Changing Drive Names

$drive = new-object System.IO.DriveInfo("C")

"old name:"

$drive.VolumeLabel

"new name:"

$drive.VolumeLabel = "SYSTEM"

$drive.VolumeLabel

Alternatively, you can use the commandlet Set-Volumelabel from
PSCX (although there does not yet exist the counterpart Get-
VolumeLabel).

Set-VolumeLabel "c:" "Systeml drive"

Network Drives
You can display information about the mapped network drives of the
logged-in user via the WMI class Win32_MappedLogicalDisk:

Get-WmiObject Win32_MappedLogicalDisk | select caption,

providername

Directory Content

You can get the content of a directory listed with Get-ChildItem (alias
dir).

210 Chapter 11 File Systems

Without parameters, Get-ChildItem lists the current path. You can,
however, explicitly indicate a path:

Get-ChildItem c:\temp\Scripts

The resulting volume consists of .NET objects of the types System.IO.
DirectoryInfo (for subdirectories) and System.IO.FileInfo (for
files).

The parameter –Filter limits the output volume to files with a dis-
tinct name pattern:

Get-ChildItem c:\temp\Scripts -filter "*.ps1"

Alternatively, you can use –include for filter purposes and indicate vari-
ous file extensions at the same time:

Get-ChildItem c:\temp\Scripts -include *.ps1,*.vbs

The commandlet usually works only on the indicated level. It can, however,
also search the subdirectories recursively:

Get-ChildItem c:\temp\Scripts -filter "*.ps1" –recurse

With Measure-Object, you can execute calculations regarding an
object volume. The following command shows the number of files in
c:\Windows, the total size of all files, the size of the biggest and of the
smallest file, and the average file size:

Get-ChildItem c:\windows | Measure-Object -Property length

➥-min -max -average –sum

With the following command, a list of big Word files on drive H and its
subdirectories is created, and a list of the names and sizes, sorted accord-
ing to size, is exported to a CSV file:

Get-ChildItem h:\ -filter *.doc | Where-Object

➥{ $_.Length -gt 40000 } | Select-Object Name, Length

➥| Sort-Object Length | export-csv

➥p:\LargeWordDocuments.csv -notype

Directory Content 211

11.
FILESYSTEM

S

The -notype at the end prevents the type name of the .NET class
from being exported. If you would export the type name, you could later
re-import the data with Import-CSV and process that data as an object
pipeline.

TIP The short name of a file or directory, according to the old 8+3 notation,
can be displayed with the commandlet Get-ShortPath from PSCX.

File System Operations
To copy files and folders, use the commandlet Copy-Item (aliases copy
or cp):

Copy-Item j:\demo\documents\profile.pdf

c:\temp\profile_HSchwichtenberg.pdf

To move file system objects, Move-Item (alias move) is used:

Move-Item j:\demo\documents\profil.pdf

c:\temp\profile_HSchwichtenberg.pdf

The commandlet Rename-Item (alias Rename) renames a file system
object:

Rename-Item profile.pdf profile_HS.pdf

To delete a file, use the commandlet Remove-Item (alias del):

Remove-Item j:\demo\profile_HS.pdf

TIP –WhatIf is a useful function for working with Remove-Item, because
you can see the simulated behavior before actually executing the command (see
Figure 11.3).

212 Chapter 11 File Systems

Figure 11.3 Use of –WhatIf with Remove-Item

The following command deletes all files older than 30 days:

Get-ChildItem c:\temp -recurse | where-object {($now –

➥$_.LastWriteTime).Days -gt 30} | remove-item

Reading and Writing File Properties

Information about a file system object (for example, name, size, last
changes, and properties) is displayed with the commandlet Get-Item:

Get-Item j:\demo\profile_HSchwichtenberg.pdf

This will provide an instance of System.IO.FileInfo for a file.
You can get the same effect with the following:

Get-ItemProperty j:\demo\profile_HSchwichtenberg.pdf

Single data (for example, length and attributes) can be called as
follows:

Get-ItemProperty Data.txt -name length

Get-ItemProperty Data.txt -name attributes

NOTE Do not get confused about the word attribute. Classes such as
FileInfo have attributes (for example, name and length) that provide
containers for the information that are stored in the classes’ instances. In the
class FileInfo, one of these attributes has the name attributes. The
attributes attribute contains the information about the file attributes.

Reading and Writing File Properties 213

11.
FILESYSTEM

S

With Set-ItemProperty, you can initiate a change of file properties.
The following command sets the bit flags, stored in Attributes. The
.NET class library defines the possible flags in the listing System.IO.
FileAttributes. It is important that the elements of the listing are called
like static members (that is, with the :: operator) and linked with a binary
exclusive Or (-bxor):

Set-ItemProperty Data.txt -name attributes -value

➥([System.IO.FileAttributes]::ReadOnly -bxor

➥ [System.IO.FileAttributes]::Archive)

Times
The FileInfo class offers information about the creation date and the
date of the last access of the file:

dir $dir | select name, creationtime, lastaccesstime,

➥lastwritetime

With Set-FileTime (contained in the PSCX), you can manipulate
this data (for example, if you do not want someone to know how old a file
really is):

Listing 11.8 Setting of All Times of All Files in a Directory to the Current Date and
Current Time

$dir = "c:\temp"

$time = [DateTime]::Now

dir $dir | Set fileTime -Time $time -SetCreatedTime -SetModifiedTime

dir $dir | select name, creationtime, lastaccesstime, lastwritetime

Properties of Executables

PSCX offers some special commandlets for executable files:

■ Test-Assembly Displays true when the file is a .NET assembly
(only applicable to DLL files)

214 Chapter 11 File Systems

■ Get-FileVersionInfo Displays information about the product
name, manufacturer, and file version

■ Get-PEHeader Displays the head information of the Portable
Executable (PE) formats for any executable files

■ Get-ExportedType Displays the list of instanceable classes for a
.NET assembly

The WPS script in Listing 11.9 displays all executable DLLs created
with .NET in the Windows directory and shows version information about
these DLLs.

Listing 11.9 Search for .NET Assemblies

"Search .NET Assemblies"

foreach ($d in (Get-ChildItem c:\Windows\ -include "*.dll" -recurse))

{

$a = $d.Fullname | Test-assembly -ErrorAction SilentlyContinue

if ($a) { Get fileVersionInfo $d.Fullname }

}

The following example displays the PE header information about the
Windows Editor (see Figure 11.4):

Get-PEHeader C:\windows\system32\notepad.exe

With the commandlet Resolve-Assembly, you can check which ver-
sions of a .NET software component are available or whether a distinct
version exists.

Show all versions of this assembly

Resolve-Assembly System.Windows.Forms

Check, whether version 3.0 is available

Resolve-Assembly System.Windows.Forms -Version 2.0.0.0

Properties of Executables 215

11.
FILESYSTEM

S

Figure 11.4 Output of PE head information

File System Links

Commandlets for the creation of links in the file system can be found in
the PSCX.

Explorer Links
Starting with Windows 95, Windows Explorer supported links in the file
system with .lnk files. These .lnk files contain either a file or a directory
as the link destination. They are created in Windows Explorer via the con-
text menu functions Create Link or New, Link. Windows does not show
the filename extension of .lnk files. Instead, you see the symbol of the tar-
get object with an arrow in Windows Explorer. A double-click directs
Windows Explorer, or a file dialog supporting .lnk files, to the target.

216 Chapter 11 File Systems

These Explorer links are created with the commandlet New-
Shortcut, with the first parameter being the path to the .lnk file to be
created, and the second parameter being the target path:

New-Shortcut "j:\books" "j:\projects\books"

WARNING If the link already exists, it is overwritten without prior warning.

Unfortunately, there are three serious disadvantages regarding
Explorer links based on .lnk files:

■ Windows Explorer does not show links to folders according to the
folder hierarchy on the left side, but sorts them into the file list on
the right side (see Figure 11.5).

■ Links do not work at the command-line level (Windows shell).
■ Windows does not track the target during renaming/re-moving, but

starts to search only when the target is no longer traceable; as a con-
sequence, the right target is not always finally found.

File System Links 217

11.
FILESYSTEM

S

Figure 11.5 Windows Explorer displays Explorer links to folders in the file list
but not in the tree view

Hardlinks
Users of UNIX, however, know better kinds of links in the form of
hardlinks and symbolic links (symlinks). Under Windows, the user of the

NTFS file system can use similar concepts. The NTFS supports fixed links
to any kind of files in the form of so-called hardlinks and to folders in the
form of junction points. Unfortunately, both functions are not supported
directly in the Windows Explorer, but only via command-line tools or tools
from other suppliers.

A hardlink is a fixed link to a file. For this purpose, Microsoft provides
in Windows XP and Windows Server 2003 the command-line tool
fsutil.exe. In the WPS extensions, you can find the commandlet New-
Hardlink.

The syntax for the creation of a hardlinks reads as follows:

New-Hardlink <new filename> <existing filename>

For example

New-Hardlink "j:\MyProjects.csv" "j:\projects\content.csv"

Afterward, the file appears in both directories, without a link arrow.
Nevertheless, this is not a copy; both entries in the directory tree point to
the same spot on the drive, and therefore the file can be manipulated at
both places. You will not have any problems with moving the file. The file
content is only lost when both entries in the directory tree have been
deleted.

There are two flaws to be aware of:

■ Folder links cannot be created.
■ Links can be created only to files on the same drive.

NOTE To delete a hardlink, you have to delete the link file. The target file
remains unaffected:

Remove-Item "j:\MyProjects.csv"

Junction Points
Junction points are the equivalents to hardlinks for folders. In contrast to
hardlinks, junction points also work on other drives. The commandlet you
want to use here is New-Junction, which, however, is available only

218 Chapter 11 File Systems

through the additional resource kits of the different Windows versions.
When you use linkd.exe, you have to name the source first and then the
target, in contrast, to fsutil.exe.

For example, the command

New-Junction "j:\books" "j:\projects\books\"

consequently creates a link that shows the directory s:\books\ as subdirec-
tory backup in the folder j:\project. Junction points also work on the com-
mand line. Thus, the command

dir j:\books

shows j:\projects\books\.
Windows Explorer places a junction point, just like a folder, in the

folder hierarchy on the left side (see Figure 11.6).

File System Links 219

11.
FILESYSTEM

S

Figure 11.6 The junction point books shows on both sides of Windows
Explorer.

You can see the target of a junction point with the commandlet Get-
ShortPath, as follows:

Get-ReparsePoint j:\books

To delete a junction point, use the following:

Remove-ReparsePoint "j:\books"

WARNING If the actual target folder is deleted earlier than the junction point,
an orphaned junction point is created. Unfortunately, Windows does not notice
the moving of a file, so that in this case, too, the remaining junction point leads
to the void.

Symbolic Links in Windows Vista
The new symbolic links, which Microsoft introduced with Windows Vista,
can be created with the PSCX commandlet New-Symlink.

Compression

You can find commandlets for the creation of compressed file archives in
PSCX. Here are commandlets for four different compression formats (ZIP,
GZIP, TAR, and BZIP2):

Write-Zip

Write-GZip

Write-Tar

Write-BZip2

Table 11.2 shows some practical examples that explain the syntax of the
commands. All examples uniformly use the ZIP format. All other formats
work analogically with the relevant commandlet.

220 Chapter 11 File Systems

Table 11.2 Practical Examples for Write-Zip

Write-zip Content.csv Compresses the file Content.csv into the
archive Content.csv.zip

Write-zip Content.csv Compresses the file Content.csv to
Content.zip Content.zip
"Content.csv", "Pricelist.doc", Compresses the three indicated files
"Projectguidelines.doc" | individually in Content.csv.zip,
Write-Zip Priceliste.doc.zip, and

Projectguidelines.doc.zip

"Content.csv", "Pricelist.doc", Compresses the three indicated files
"Projectguidelines.doc" | together in Clients.zip
Write-Zip -Outputpath

J:\projects.zip

Write-Zip j:\projects Compresses the whole content of the
-Outputpath J:\projects.zip folder j:\projects to Clients.zip

dir g:\data -Filter *.doc Searches in the folder g:\Data and all its
-Recurse | Write-zip subfolders for Microsoft Word files and
-Output g:\Data\docs.zip compresses these together in

g:\Data\docs.zip

NOTE When the target file already exists, the new files are also integrated in
the archive. Existing files are not deleted.

The compression commandlets have some additional options, includ-
ing the following:

■ -RemoveOriginal Deletes the original file after it has been inte-
grated into the archive.

■ -Level Compression rate from 1 to 9 (standard is 5).
■ -FlattenPaths No path information is stored in the archive.

File Shares

Access to file shares is affected via the WMI class Win32_Share (see
Figure 11.7). Important members of this class are as follows:

File Shares 221

11.
FILESYSTEM

S

■ Name Name of the file share
■ Path Path in the file system that leads to the file share
■ Description Description of the files shared
■ MaximumAllowed Maximum number of simultaneous users
■ SetShareInfo() Setting the property Description,
MaximumAllowed, and authorizations for file shares

■ GetAccessMask() Fetching the access control list for the share
■ Create() A static method of the class Win32_Share to create

new file shares

WARNING The attribute AccessMask is always empty (see Figure 11.7)
because Microsoft declared it obsolete. The setting and reading of authoriza-
tions is affected via the methods Create(), SetShareInfo(), and
GetAccessMask(). These methods create the respective associations.

222 Chapter 11 File Systems

Figure 11.7 Depiction of an instance of the class Win32_Share in the WMI object
browser

The most complicated parts of file shares are the authorizations, as you
can see from the associations in the WMI object browser.

Enumerating File Shares
To enumerate files shared, you have to use the instances of the WMI class
Win32_Share (see Figure 11.8):

Get-WmiObject Win32_Share

File Shares 223

11.
FILESYSTEM

S

Figure 11.8 Listing of the file share system directories

Via the name of the file share, you can distinctly call the file share
(even on a remote system):

Get-WmiObject Win32_Share -Filter "Name='C$'" -computer E02 |

➥Select Name, Path, Description, MaximumAllows | Format-List

Creating File Shares
The creation of a file share is a more elaborate matter, at least when you
also want to set the access privilege list. Unfortunately, you cannot use a
.NET class to grant privileges; you have to use the WMI classes instead.

For didactic reasons, the script in Listing 11.10 creates a share without
explicitly defining access rules. Therefore, the file shares get standard
rights (unrestricted access for everybody). To create a file share, the static
method Create() of the class Win32_Share is called. In this case, $null

is transferred for AccessMask. When starting, the script checks whether a
file share already exists and deletes it if necessary to enable a new creation.
You can see the result in Figure 11.9.

NOTE Create() has several error codes specific to it (for example, 22 =
name of file share already exists, and 21 = false parameters).

Listing 11.10 Creating a File Share with Standard Privileges

###

New-Share (without permissions)

(C) Dr. Holger Schwichtenberg

###

Parameters

$Computer = "E01"

$ShareName = "customers"

$Path = "j:\customers"

$Comment = "Customer Documents"

before

"Before:"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'" |

➥foreach-object { $_.Delete() }

Win32_Share

$MC = [WMIClass] "ROOT\CIMV2:Win32_Share"

$Access = $Null

$R = $mc.Create($Path, $Sharename, 0, 10, $Description, "", $Access)

if ($R.ReturnValue -ne 0) { Write-Error ("Error: "+ $R.ReturnValue);

Exit}

"Share has been created!"

after

"After:"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'"

224 Chapter 11 File Systems

Figure 11.9 A file share created with standard privileges

Setting Permissions on File Shares
To set access control on file shares, you have to correctly assemble a
Windows security descriptor (SD). An SD consists of an access control list
(ACL) with various access control entries (ACEs), with each ACE permit-
ting or refusing a number of privileges for a user (trustee) or a group of
users.

In particular, the following steps are necessary:

1. Receive the security identifier (SID) for each user/each group
intended to receive access (in this case, with the help of the
Windows NT provider of the Active Directory Service Interface,
which, despite its name, also works with Windows systems without
Active Directory).

File Shares 225

11.
FILESYSTEM

S

2. Create an instance of Win32_Trustee for each user/each group
intended to receive access.

3. Create appropriate ACEs via instancing the class Win32_ACE for
each ACE.

4. Fill the Win32_ACE with the Win32_Trustee object, the ACL,
and any other properties you want.

5. Create an instance of Win32_SecurityDescriptor.
6. Assemble a discretionary access control list (DACL) consisting of

all the ACEs.
7. Fill the Win32_SecurityDescriptor object with the newly cre-

ated DACL.
8. Transfer the Win32_SecurityDescriptor object to the method

Create() of Win32_Share.

Listing 11.11 and Figure 11.10 show an example. In this case, the
groups Management and Consultants get full access, and the group
Developers gets read access for the a file share named Customers.

Listing 11.11 Creating a New Share with Permissions

###

New-Share (with permissions)

(C) Dr. Holger Schwichtenberg

###

Parameters

$Computer = "E01"

$ShareName = "customers"

$Path = "j:\customers"

$Comment = "Customer Documents"

Constants

$SHARE_READ = 1179817

$SHARE_CHANGE = 1245462

$SHARE_FULL = 2032127

$SHARE_NONE = 1

$ACETYPE_ACCESS_ALLOWED = 0

$ACETYPE_ACCESS_DENIED = 1

$ACETYPE_SYSTEM_AUDIT = 2

226 Chapter 11 File Systems

$ACEFLAG_INHERIT_ACE = 2

$ACEFLAG_NO_PROPAGATE_INHERIT_ACE = 4

$ACEFLAG_INHERIT_ONLY_ACE = 8

$ACEFLAG_INHERITED_ACE = 16

$ACEFLAG_VALID_INHERIT_FLAGS = 31

$ACEFLAG_SUCCESSFUL_ACCESS = 64

$ACEFLAG_FAILED_ACCESS = 128

Get Trustee

function New-Trustee($Domain, $User)

{

$Account = new-object system.security.principal.ntaccount("itv\hs")

$SID = $Account.Translate([system.security.principal.securityidentifier])

$useraccount = [ADSI] ("WinNT://" + $Domain + "/" + $User)

$mc = [WMIClass] "Win32_Trustee"

$t = $MC.CreateInstance()

$t.Domain = $Domain

$t.Name = $User

$t.SID = $useraccount.Get("ObjectSID")

return $t

}

Create ACE

function New-ACE($Domain, $User, $Access, $Type, $Flags)

{

$mc = [WMIClass] "Win32_Ace"

$a = $MC.CreateInstance()

$a.AccessMask = $Access

$a.AceFlags = $Flags

$a.AceType = $Type

$a.Trustee = New-Trustee $Domain $User

return $a

}

Create SD

function Get-SD

{

$mc = [WMIClass] "Win32_SecurityDescriptor"

$sd = $MC.CreateInstance()

$ACE1 = New-ACE "ITV" "Developers" $SHARE_READ

➥$ACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT_ACE

File Shares 227

11.
FILESYSTEM

S

(continues)

Listing 11.11 Creating a New Share with Permissions (continued)

$ACE2 = New-ACE "ITV" "Consultants" $SHARE_FULL

➥$ACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT_ACE

$ACE3 = New-ACE "ITV" "Management" $SHARE_FULL

➥$ACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT_ACE

[System.Management.ManagementObject[]] $DACL = $ACE1 , $ACE2, $ACE3

$sd.DACL = $DACL

return $sd

}

before

"Before:"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'" |

➥foreach-object { $_.Delete() }

Win32_Share anlegen

$MC = [WMIClass] "ROOT\CIMV2:Win32_Share"

$Access = Get-SD

$R = $mc.Create($Path, $Sharename, 0, 10, $Comment, "", $Access)

if ($R.ReturnValue -ne 0) { Write-Error ("ERROR: "

➥+$R.ReturnValue) ; Exit}

"Share has been created!"

after

"After:"

Get-WmiObject Win32_Share -Filter "Name='$ShareName'" |

➥foreach { $_.GetAccessMask() } | gm

228 Chapter 11 File Systems

File Shares 229

11.
FILESYSTEM

S

Figure 11.10 Result of the preceding script for the creation of a file share with
explicit access rules

Mass Creation of Shares
You may often want to create a bunch of file shares at once. Figure 11.11
shows an XML file describing different file shares. The WPS script in
Listing 11.12 reads the XML file (see Figure 11.11) and creates the corre-
sponding file shares (see Figures 11.12 and 11.13).

At first, the XML file is read with Get-Content. The file content is
then converted to the built-in WPS file type [XML], thus creating a new
instance of the .NET class System.Xml.XmlDocument. With the method
SelectNodes(), you get access to the <Share> nodes contained in the
document. By means of the built-in XML adapter, WPS encapsulates
the single nodes in such a way that the subnodes appear as properties of
the WPS variables (here, $Share). The method Create() of the WMI
class Win32_Share is then fed with this data, with the tasks (including the
possible earlier deletion of a file share with the same name), being encap-
sulated in a subroutine (New-Share).

230 Chapter 11 File Systems

Figure 11.11 This XML file describes file shares to be created.

Listing 11.12 Creating a Bunch of Shares with Explicit Access Control

###

Create a bunch of shares with permissions

(C) Dr. Holger Schwichtenberg, www.IT-Visions.de

###

Parameters

$Computer = "."

Subs

Constants

$SHARE_READ = 1179817

$SHARE_CHANGE = 1245462

$SHARE_FULL = 2032127

$SHARE_NONE = 1

$ACETYPE_ACCESS_ALLOWED = 0

$ACETYPE_ACCESS_DENIED = 1

$ACETYPE_SYSTEM_AUDIT = 2

$ACEFLAG_INHERIT_ACE = 2

$ACEFLAG_NO_PROPAGATE_INHERIT_ACE = 4

$ACEFLAG_INHERIT_ONLY_ACE = 8

$ACEFLAG_INHERITED_ACE = 16

$ACEFLAG_VALID_INHERIT_FLAGS = 31

$ACEFLAG_SUCCESSFUL_ACCESS = 64

$ACEFLAG_FAILED_ACCESS = 128

Get Trustee

function New-Trustee($Domain, $User)

{

$Account = new-object system.security.principal.ntaccount("itv\hs")

$SID = $Account.Translate([system.security.principal.securityidentifier])

$useraccount = [ADSI] ("WinNT://" + $Domain + "/" + $User)

$mc = [WMIClass] "Win32_Trustee"

$t = $MC.CreateInstance()

$t.Domain = $Domain

$t.Name = $User

$t.SID = $useraccount.Get("ObjectSID")

return $t

}

Create ACE

function New-ACE($Domain, $User, $Access, $Type, $Flags)

{

$mc = [WMIClass] "Win32_Ace"

$a = $MC.CreateInstance()

$a.AccessMask = $Access

$a.AceFlags = $Flags

$a.AceType = $Type

$a.Trustee = New-Trustee $Domain $User

return $a

}

Create SD

function Get-SD

{

$mc = [WMIClass] "Win32_SecurityDescriptor"

$sd = $MC.CreateInstance()

$ACE1 = New-ACE "ITV" "Management" $SHARE_READ

➥$ACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT_ACE

$ACE2 = New-ACE "ITV" "Sales" $SHARE_FULL $ACETYPE_ACCESS_ALLOWED

➥$ACEFLAG_INHERIT_ACE

File Shares 231

11.
FILESYSTEM

S

(continues)

Listing 11.12 Creating a Bunch of Shares with Explicit Access Control (continued)

$ACE3 = New-ACE "ITV" "Productmanagement" $SHARE_FULL

➥$ACETYPE_ACCESS_ALLOWED $ACEFLAG_INHERIT_ACE

[System.Management.ManagementObject[]] $DACL = $ACE1 , $ACE2, $ACE3

$sd.DACL = $DACL

return $sd

}

Function New-Share($Computer,$ShareName, $Path, $Comment, $Access)

{

Info

"Creating Share $ShareName for $Path..."

Delete if exists

Get-WmiObject Win32_Share -ComputerName $Computer -Filter

"Name='$ShareName'" | foreach {

Write-Warning "Deleting existing share $($_.Name)..."

$_.Delete()

}

Create Win32_Share

$MC = [WMIClass] "ROOT\CIMV2:Win32_Share"

$Access = Get-SD

$R = $mc.Create($Path, $Sharename, 0, 10, $Comment, "", $Access)

Result

if ($R.ReturnValue -ne 0) { Write-Error ("Error creating share: " +

$R.ReturnValue); Exit}

"Share was created!"

}

Get XML file

$doc = [xml] (Get-Content -Path

h:\demo\powershell\datasystem\shares.xml)

$shares = $doc.SelectNodes("//Share")

Loop

foreach ($share in $shares)

{

New-Share $Computer $share.Name $share.Path $share.description

}

232 Chapter 11 File Systems

Figure 11.12 Creation of a bunch of shares with standard access control

File Shares 233

11.
FILESYSTEM

S

Figure 11.13 Result of access control

Summary

In this chapter, you learned about using WPS to administer file systems.
WPS contains many commandlets for standard operations such as copying
files (Copy-Item), moving files (Move-Item), deleting files (Remove-
Item) and enumerating the content of folders (Get-ChildItem). Also, file
properties can be accessed through the commandlets Get-ItemProperty
and Set-ItemProperty. However, there are operations that require
WMI, that is, the management of file shares. The PowerShell Community
Extensions provide additional commandlets for file compression and the
management of file system links.

234 Chapter 11 File Systems

235

C H A P T E R 1 2

MANAGING DOCUMENTS

In this chapter:
Text Files . 235
Binary Files . 238
CSV Files . 239
XML Files . 241
HTML Files . 251

This chapter discusses the creation and use of different document types: text
files, binary files, CSV files, and XML files. Examples in this chapter include
searching in files, importing and exporting data in the CSV format, as well
as reading, changing, transforming, and formatting XML documents.

Text Files

For reading files, Windows PowerShell (WPS) provides the commandlet
Get-Content. By default, Get-Content reads the complete file.

Listing 12.1 demonstrates the entering of a text file and the row-by-
row output using the commandlet Foreach-Object.

Listing 12.1 Row-wise Entering of a Text File

$file = Get-Content j:\documents\protocol.csv

$a = 0

$file | Foreach-Object { $a++; "Row" + $a + ": " + $_ }

"Total number of rows: " + $a

If you are interested in displaying only the number of rows, you can get
this information in a much shorter way:

Get-Content j:\documents\protocol.csv | Measure-Object

Writing Files
Writing to a text file in the file system is possible with a few commandlets,
especially Set-Content and Add-Content. Set-Content exchanges the
content, Add-Content adds contents (see Listing 12.2).

Listing 12.2 Creation of and Adding to a Text File

$file = "j:\documents\protocol.txt"

"Start of new protocol file " | Set-Content $file

"New entry " | Add-content $file

"New entry " | Add-content $file

"New entry " | Add-content $file

"Content of file is now:"

Get-content $file

Clear-Content deletes the content of a file, but leaves the empty file
in the file system.

Another option to create a text file is to use New-Item:

New-Item . -name data.txt -type "file" -value "This is the

➥content!" –force

In this case, however, there is only the option to create the file as a new one
(without –force) or to overwrite an already existing file (with –force).

A third option to write 1a file is the commandlet Out-File, as follows:

Get-Process | Out-File c:\temp\processes1.txt

Get-Process | Set-Content c:\temp\processes2.txt

236 Chapter 12 Managing Documents

As you can see in Figures 12.1 and 12.2, there is a difference between
using Out-File and Set-Content: Out-File will use the standard
formatting that you would also see in the WPS console, whereas
Set-Content just calls ToString() on each object in the pipeline.

Text Files 237

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.1 Result of using Out-File

Searching
The searching of text files is possible with the commandlet Select-
String. The following command displays the information about which
script files of a directory hierarchy contain the word Where:

Get-ChildItem j:\Scripts -Filter *.ps1 -Recurse |

➥Select-String "Where"

Figure 12.2 Result of using Set-Content

Binary Files

Binary files can also be read with Get-Content and written with
Set-Content or Add-Content. The parameter to be added, respectively,
is –encoding Byte (see Listing 12.3).

Listing 12.3 Fetching and Writing a Binary File

--- Read binary file

$a = Get-Content H:\images\www.IT-Visions.de_Logo.jpg -encoding byte

--- Write binary file

$a | Set-Content "g:\Data\Logo.jpg" -encoding byte

238 Chapter 12 Managing Documents

CSV Files

To enable the import and export of files in CSV (comma-separated value)
format, WPS offers the commandlets Export-Csv and Import-Csv.

CSV Export
There are two alternatives for exporting. You can create a common CSV
file without meta data (see Figure 12.3):

Get-Service | Where-Object {$_.status -eq "running"} |

Export-Csv j:\administration\services.csv –NoTypeInformation

CSV Files 239

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.3 Exporting without type information

Alternatively, you can create a CSV file in which persisted object types
are indicated in the first rows after the hash symbol (see Figure 12.4):

Get-Service | Where-Object {$_.status -eq "running"} |

➥Export-Csv j:\administration\services.csv

Figure 12.4 Exporting with type information

CSV Import
When a CSV file is imported with

Import-Csv j:\administration\services.csv | where

➥{ $_.Status -eq "Running" }

the type information decides which object type will be constructed. With
type information, the respective type is then created. Without type infor-
mation, instances of the class System.Management.Automation.
PSCustomObject are created (see Figures 12.5 and 12.6).

240 Chapter 12 Managing Documents

Figure 12.5 Pipeline content after importing a CSV file without type information

Figure 12.6 Pipeline content after importing a CSV file with type information

XML Files

WPS offers a very easy option to read XML documents through the WPS
XML adapter.

Reading XML Documents
XML element names can be accessed just like the attributes of .NET
objects. When $doc contains the XML document shown in Figure 12.7,
$doc.Websites.Website displays the volume of XML nodes named
<Website>.

XML Files 241

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.7 Example for an XML document

The preceding document can be evaluated as shown in Listing 12.4
and Figure 12.8.

Listing 12.4 Fetching of an XML file

$doc = [xml] (Get-Content -Path j:\documents\websites.xml)

$Sites = $doc.Websites.Website

$Sites | select URL, description

NOTE To use the special XML support of WPS, WPS needs to know which vari-
ables an XML document contains. Therefore, the type conversion with [xml] in
the first row is of great importance.

Checking XML Documents
If you try to convert an invalid XML document (which lacks, for instance,
a closing tag) into the type [Xml], you will get an error report from WPS
(see Figure 12.9).

242 Chapter 12 Managing Documents

Figure 12.8 Result of the evaluation of the XML document

XML Files 243

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.9 Error report, when a closing tag is missing

You can check in advance whether a document is valid with the com-
mandlet Test-Xml (from PSCX). Test-Xml displays True or False.

Test-Xml h:\demo\powershell\xml\websites_invalid.xml

By default, Test-Xml checks only XML well formedness. As an
option, it is possible to validate against an XML schema (for example,
Figure 12.10). Here, after –SchemaPath, you have to indicate the path to
the XML schema file (.xsd). Alternatively, you can also indicate an array
with several paths.

Test-Xml h:\demo\powershell\xml\websites.xml –SchemaPath

➥h:\demo\powershell\xml\websites.xsd

244 Chapter 12 Managing Documents

Figure 12.10 XML schema for the Websites file

Formatting
XML documents do not have to be formatted (that is, insertions of the
XML elements according to the respective level are not necessary). In
PSCX, there is the possibility to display nonformatted XML documents as
formatted, or to adapt the formatting to the output with the commandlet
Format-Xml.

The following command displays a formatted output of an XML docu-
ment, where each level is inserted with a dot and four spaces (see Figure
12.11).

Format-Xml h:\demo\powershell\xml\websites.xml -IndentString

➥". "

XPath
For searching in XML documents with the help of XPath (XPath is a W3C
standard; see [W3C01]) the class XmlDocument supports the methods
SelectNodes() and SelectSingleNode(). In PSCX, there is the com-
mandlet Select-Xml (see Table 12.1).

XML Files 245

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.11 Use of Format-Xml

WARNING SelectNodes() and SelectSingleNode() display instances
of the classes System.Xml.XmlElement and System.Xml.

XmlAttribute. Select-Xml, however, displays instances of MS.
Internal.Xml.Cache.XPathDocumentNavigator. Therefore, the output
is very different. To receive the same output with both commands, you must
send the result of Select-Xml to Select-Object InnerXml (see
Figure 12.12).

Figure 12.12 Comparing the output of SelectNodes() and Select-Xml

Table12.1 Examples for the Use of XPath

$doc.SelectNodes("//URL") Displays all <URL> elements
or
select-Xml h:\demo\powershell\xml\

websites.xml -XPath "//URL" |

select innerxml

$doc.SelectNodes("//Website/@ID")

or
select-Xml h:\demo\powershell\ Displays all ID attributes of all
xml\websites.xml -XPath <Website> elements
"//Website/@ID" | select innerxml

$doc.SelectSingleNode

("//Website[@ID=3]/URL")

or
select-Xml h:\demo\powershell\ Displays the <URL>-element of the
xml\websites.xml -XPath <Website> elements with the
"//Website[@ID=3]/URL" | attribute value 3 in the attribute ID
select innerxml

TIP Select-Xml has the advantage that easy-to-use support of XML name-
spaces is offered. The following command fetches the names of all bound C#
source code files from a Visual Studio project file. Thereby, reference is made to
the respective namespace of the command-line tool MSBuild.exe, which is
responsible for the translation of the projects (see Figure 12.13).

Select-Xml "H:\demo\PowerShell_own

➥Commandlets\PowerShell_Commandlet_Library\

➥PowerShell_Commandlet_Library.csproj" -Namespace

➥'dns=http://schemas.microsoft.com/developer/msbuild/2003'

➥-XPath "//dns:Compile/@Include"

Modifying XML Documents
Listing 12.5 adds an entry to an XML file by using the methods
CreateElement() and AppendChild().

This example shows that even in WPS there are some areas that can be
somewhat more complicated. Because the subelements of an XML node

246 Chapter 12 Managing Documents

can be presented as attributes of a .NET class processed by WPS, the
attributes of the meta class System.Xml.Node (that is, classes derived
therefrom) cannot be presented directly, to avoid name conflicts. These
attributes are available only via their getters and setters. Therefore, with
the WPS script, you cannot set the content of a node via $node.
Innertext = "xyz"; instead, you must call $node._set_Innertext
("xyz").

XML Files 247

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.13 This fragment from a Visual Studio project file shows the elements
to be selected and their namespace declaration.

Listing 12.5 Completion of an XML file

"Previously"

$doc = [xml] (Get-Content -Path j:\administration\websites.xml)

$doc.Websites.Website | select URL,Description

"After"

$site = $doc.CreateElement("Website")

$url = $doc.CreateElement("URL")

$url.set_Innertext("www.windows-scripting.com")

$description = $doc.CreateElement("description")

$description.set_Innertext("Community-Website for PowerShell")

$site.AppendChild($url)

$site.AppendChild($description

$doc.Websites.AppendChild($site)

$doc.Websites.Website | select URL,description

$doc.Save("h:\demo\buch\websites_neu.xml")

"Document saved!"

Exporting Pipeline Objects to XML
WPS uses its own XML format (CLIXML) to persist (serialize) the object
pipeline in XML form (via Export-CliXml), so that it can be restored at
a later point. The following command saves the object list of the current
system services. Figure 12.14 shows the results.

Get-Service | Where-Object {$_.status -eq "running"} |

➥Export-CliXml j:\administration\services.xml

248 Chapter 12 Managing Documents

Figure 12.14 Clipping from a serialization of a WPS pipeline

The equivalent to restoring the pipeline is Import-CliXml (see
Figure 12.15).

Import-CliXml j:\administration\services.xml | Get-Member

WARNING After the deserialization of the objects, all attributes of the objects
can again be used, but not the methods of the objects!

XML Files 249

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.15 Pipeline content after serialization and deserialization with
Export-CliXml and Import-CliXml

Transforming XML Documents
In PSCX, the commandlet Convert-Xml is provided for the application of
the W3C standard XSLT (XML Stylesheet Transformations). Alternatively,
you can use the .NET class System.Xml.Xsl.XslCompiledTransform.

The following example demonstrates how the XML file Websites.xml
can be converted into an XHTML file with the help of the XSLT file, shown
in Figure 12.16. The result is saved as Websites.html (see Figure 12.17).

Convert-Xml j:\administration\websites.xml –XsltPath

➥j:\administration\WebsitesToHTML.xslt |

➥Set-content j:\administration\websites.html

TIP You can get help for developing and testing XSLT files within Studio
2005/2008.

250 Chapter 12 Managing Documents

Figure 12.16 XSLT file

Figure 12.17 This HTML file was generated from the XML file.

HTML Files

The commandlet Convert-Html converts the objects of the pipeline into
an HTML table.

The following command saves the list of the Windows system services
as an HTML file (see Figure 12.18).

Get-Service | ConvertTo-Html name,status -title

➥"Servicelist" -body "List of services" |

➥Set-Content j:\administration\services.htm

HTML Files 251

12.
M

AN
AGIN

G
D

O
CUM

EN
TS

Figure 12.18 Result of converting into an HTML table

Summary

In this chapter, we looked at the handling of different document types:
unstructured text files and binary files as well as three structured text file
types (CSV, XML, and HTML).

WPS provides at lot of helpful commandlets such as Get-Content,
Set-Content, Export-Csv, and Import-Csv. In addition, there is good
support for access to XML files through the XML WPS object adapter,
which allows direct access to XML nodes as if they were properties of a
.NET class. You can find additional commandlets for XML handling within
the PSCX (for example, Select-Xml, Format-Xml, and Convert-Xml).

252 Chapter 12 Managing Documents

253

C H A P T E R 1 3

REGISTRY AND SOFTWARE

In this chapter:
Registry . 253
Software Administration . 259

This chapter covers accessing the registry and the administration of MSI-
based and non-MSI-based installations. Examples in this chapter include

■ Reading keys and values
■ Creating and deleting keys and values
■ Enumeration of installed software
■ Installation and uninstallation of software

Registry

For accessing and manipulation of the Windows registry, Windows
PowerShell (WPS) provides a PowerShell Provider. This means that the
navigation commandlets (Set-Location, Get-ChildItem, New-Item,
Get-ItemProperty, and so on) are available in the registry.

Reading Keys
The subkeys of a registry key are as follows (alias dir hklm:\software):

Get-ChildItem hklm:\software

You can also move the current path to the registry

Set-Location hklm:\software

(alias cd hklm:\software), and start the listing of the content of that reg-
istry key with Get-ChildItem.

You get access to a single registry key with

Get-Item www.it-visions.de

or with the absolute path:

Get-Item hklm:\software\www.it-visions.de

This results in .NET objects of the type Microsoft.Win32.
RegistryKey. Get-Item always delivers a single instance of this class.
Get-ChildItem delivers either no, one, or several instances.

Creating and Deleting Keys
A key in the registry is created with

New-Item –path hklm:\software -name "www.IT-visions.de"

or

md –path hklm:\software\www.IT-visions.de

NOTE New-Item is also available as md. md; however, it is not an alias but a
built-in function.

You can also copy whole keys with Copy-Item:

Copy-Item hklm:\software\www.it-visions.de

➥hklm:\software\www.IT-Visions.de_Backup

You can delete a registry key together with all its values as follows:

Remove-Item "hklm:\software\www.it-visions.de" –Recurse

254 Chapter 13 Registry and Software

Defining Drives
By defining a new WPS drive, you can also define a shortcut to have
quicker access to the keys:

New-PSDrive -Name ITV -PSProvider Registry -Root

➥hklm:\software\www.it-visions.de

instead of

Get-Item hklm:\software\www.it-visions.de

You can then type the following:

Get-Item itv:

Two such shortcuts are already predefined (see Table 13.1).

Table 13.1 Defined Shortcuts for Registry Main Keys

HKLM HKEY_LOCAL_MACHINE
HKCU HKEY_CURRENT_USER

Reading Values
Entries and their values in a registry key are listed with the following:

Get-ItemProperty -Path "hklm:\software\www.it-visions.de"

You get the content of a single entry with

(Get-Item "hklm:\software\www.it-visions.de").

➥GetValue("owner")

or

(Get-ItemProperty "hklm:/software/www.it-visions.de").owner

Registry 255

13.
R

EGISTRY
AN

D
SO

FTW
ARE

Creating and Deleting Values
You can create new entries (for example, a new string value) with the
following:

New-Itemproperty -path "hklm:\software\www.it-visions.de"

➥-name "Owner" -value "Dr. Holger Schwichtenberg"

➥-type string

A numeric value is created with this:

New-Itemproperty -path "hklm:\software\www.it-visions.de" -name

"Foundation" -value 1996 -type DWord

A multistring to a key is created with the following:

$Websites = "www.IT-Visions.de", "www.IT-Visionen.de",

➥"hs.IT-Visions.de"

new-itemproperty -path "www.IT-visions.de" -name

➥"Websites" -value $Websites -type multistring

A binary value to a key is created with this:

$Values = Get-Content H:\demo\PowerShell\Registry\

➥www.IT-Visions.de_Logo.jpg -encoding byte

new-itemproperty -path "www.IT-visions.de" -name

➥"Logo" -value $Values -type binary

Figure 13.1 shows the result of all the previous registry operations.

256 Chapter 13 Registry and Software

Figure 13.1 Result of registry operations

Table 13.2 shows all kinds of possible data types and their use in WPS.

Table 13.2 Data Types in the Registry

Registry Data Processing in
Type Meaning Type Indicator WPS

REG_BINARY Array of byte Binary Byte[]
REG_DWORD Number DWord Int
REG_EXPAND_SZ String with Multistring String[]

placeholders
REG_MULTI_SZ Several strings ExpandString String
REG_SZ Simple string String String

You can change an existing value with Set-ItemProperty:

change value

$Websites = "www.IT-Visions.de", "www.IT-Visionen.de",

➥"hs.IT-Visions.de", "IT-Visions.de"

Set-Itemproperty -path "www.IT-visions.de" -name

➥"Websites" -value $Websites -type multistring

To delete a value of a registry key, use the commandlet Remove-
ItemProperty:

Remove-ItemProperty -path "hklm:\software\www.it-visions.de"

➥-name "owner"

Example
Listing 13.1 stores data of multiple website configurations in the registry.
The input data is shown in Figure 13.2, and the result in Figure 13.3.

Registry 257

13.
R

EGISTRY
AN

D
SO

FTW
ARE

Figure 13.2 Parameters

Figure 13.3 Result (created website keys in the Registry)

Listing 13.1 Storing Values from a CSV File in the Registry Software Installations

Create a registry key from CSV-data

$Path = "hklm:/software/Websites"

if (Test-Path $Path) { del $Path -recurse -force }

if (!(Test-Path $Path)) { md $Path }

$Websiteliste = Get-Content "j:\administration\webserver.txt"

foreach($Website in $WebsiteListe)

{

$WebsiteData = $Website.Split(";")

md ($Path + "\" + $WebsiteData[0])

New-Itemproperty -path ($Path + "\" + $WebsiteData[0])

➥-name "IP" -value $WebsiteData[1] -type String

New-Itemproperty -path ($Path + "\" + $WebsiteData[0])

➥-name "Port" -value $WebsiteData[2] -type dword

New-Itemproperty -path ($Path + "\" + $WebsiteData[0])

➥-name "Path" -value $WebsiteData[3] -type String

$WebsiteData[0] + " created!"

}

258 Chapter 13 Registry and Software

Software Administration

Software administration requires the following:

■ Inventory of all installed applications
■ Installation of new applications
■ Uninstallation of installed applications

WPS does not offer special commandlets for software administration;
therefore, you have to use WMI.

The WMI class Win32_Product contains information about the
installed Windows Installer (alias Microsoft Installer; short, MSI) packages.

WARNING This WMI class is available only if the WMI Provider for Windows
Installer has been installed. Under some versions of Windows, this provider is an
installation option of Windows and not part of the standard installation.

Also, Win32_Product is valid only in applications that have been installed
with Windows Installer. All applications you can see in system control can be
accessed via the registry key HKLM:\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall.

Software Inventory
The class Win32_Product delivers the installed MSI packages:

Get-Wmiobject Win32_Product

Of course, you can filter. The following command lists only those MSI
packages whose names start with the letter A:

Get-Wmiobject Win32_Product | where-object { $_.name

➥-like "a*" }

The second filter extracts all MSI packages with Microsoft as producer:

Get-Wmiobject Win32_Product | where-object { $_.vendor

➥-like "microsoft*" }

Software Administration 259

13.
R

EGISTRY
AN

D
SO

FTW
ARE

You can also find out whether a certain application has been installed:

Listing 13.2 Checking Whether QuickTime Version 7.2.0.240 Is Installed on a Specific
Computer

##

The PowerShell script checks if a certain software is installed

(C) Dr. Holger Schwichtenberg

##

function Get-IsInstall($Application, $Computer, $Version)

{

$a = (Get-WmiObject -Class Win32_Product -Filter

➥"Name='$Application' and Version='$Version'"

➥-computername $Computer)

return ($a -ne $null)

}

$e = Get-IsInstall "QuickTime" "E01" "7.2.0.240"

if ($e) { "Software is installed!" }

else { "Software is not installed!" }

In a pipeline command, you can also write a complete inventory res-
olution, which consecutively, according to a list in a text file, calls several
computers and then exports the found applications to a CSV file:

get-content "computername.txt" |

foreach { get-wmiobject win32_product -computername $_ } |

where { $_.vendor -like "*Microsoft*" } |

export-csv "Softwareinventory.csv" –notypeinformation

You can even refine the inventory resolution by checking, before
accessing the computer, with a ping whether it is even accessible to pre-
vent the long timeout of WMI.

Because a pipelining command is not sufficient for this task and you
need a script, you can instead parameterize the solution directly (see
Listing 13.3).

260 Chapter 13 Registry and Software

Listing 13.3 Software Inventory via WPS Script

##

The PowerShell script inventories the installed software

of a producer on n computer systems

(C) Dr. Holger Schwichtenberg

##

$Producer = "*Microsoft*"

$Entryfilename = "computernames.txt"

$Outputfilename = "Softwareinventory.csv"

Import of computer names

$Computernames = Get-Content "computernames.txt"

$Computernames | foreach {

if (Ping($_))

{

Write-Host "Inventorize software for computer $_ ..."

Fetching of installed MSI packages on all computers

$Software = foreach { get-wmiobject win32_product

➥-computername $_ } | where { $_.vendor -like $Producer }

Export in CSV

$Software | export-csv "Softwareinventar.csv" -notypeinformation

}

else

{

Write-Error "Computer not accessible!"

}

}

Execute Ping

function Ping

{

$status = Get-WmiObject Win32_PingStatus -filter

➥"Address='$args[0]'" | select StatusCode

return $status.Statuscode -eq 0

}

Software Administration 261

13.
R

EGISTRY
AN

D
SO

FTW
ARE

Additional Information about Software
You get a list of all installed software updates (patches, hotfixes) with the
following:

Get-Wmiobject Win32_Quickfixengineering

You can view the installed audio-/video codecs with this:

Get-Wmiobject Win32_CodecFile | select group,name

Non-MSI Applications
Win32_Product is valid only for applications that have been installed with
Windows Installer. All applications that you can see in the system control
can be displayed only via the registry key HKLM:\SOFTWARE\Microsoft\
Windows\CurrentVersion\Uninstall:

Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\

➥Uninstall

The access can be simplified by defining a new WPS drive:

New-PSDrive -Name Software -PSProvider RegistrierungsDatabank

➥-Root HKLM:\SOFTWARE\Microsoft\Windows\

➥CurrentVersion\Uninstall

Thereafter, you only have to write the following:

Get-ChildItem Software:

When filtering, you have to keep in mind that the properties (for exam-
ple, DisplayName, Comments, and UninstallString) are not properties
of the object of the type Microsoft.Win32.RegistryKey, but subele-
ments of this object (see Figure 13.4). Thus, GetValue() has to be used
for the access to this data:

Get-ChildItem Software: | Where-Object -FilterScript

➥{ $_.GetValue("DisplayName") -like "a*"} |

➥ForEach-Object -Process {$_.GetValue("DisplayName") ,

➥$_.GetValue("Comments"), $_.GetValue("UninstallString") }

262 Chapter 13 Registry and Software

Figure 13.4 Listing of installed software starting with the letter A

Autostart Applications
Programs that start automatically when the operating system is started can
be found in the instances of the WMI class Win32_StartupCommand:

Get-Wmiobject Win32_StartupCommand

Installing Software
A script-based installation is possible for many applications; the processing,
however, depends on the installation technology used. Microsoft in WMI
supplies installation support for installation packages based on MSI.

WMI permits the call of Microsoft Installer to install any MSI package
(see Listing 13.4). The class Win32_Product offers the method
Install() for this purpose. The method expects three parameters:

■ The path to the MSI package
■ Command-line parameters that are to be transferred to the package
■ Whether an application will be installed for all users (True) or for

the logged-in user only (False)

Keep in mind, however, that the Install() method is a static method
of the WMI class Win32_Product. A remote installation is possible.

Software Administration 263

13.
R

EGISTRY
AN

D
SO

FTW
ARE

Listing 13.4 Installation of an MSI package

$Application = "H:\demo\PS\Setup_for_HelloWorld_VBNET.msi"

"Install application..." + $Application

(Get-WmiObject -ComputerName E01 -List | Where-Object –FilterScript

➥{$_.Name -eq "Win32_Product"}).Install($Application)

"Finished!"

Uninstalling Software
The WMI class Win32_Product also offers an Uninstall() method for
uninstalling MSI packages.

Note that to identify the application to be uninstalled, you don’t have
to write the name of the installation package, just the application name
(Name or Caption) or the GUID (IdentifyingNumber). In the case of
Setup_for_HelloWorld_VBNET.msi, the name is Hello World VB.NET
(see Listing 13.5).

Listing 13.5 Uninstallation of an MSI Package

$Name = "Hello World VB.NET"

"Start Uninstallation..."

$Result = (Get-WmiObject -Class Win32_Product -Filter

➥"Name='$Name'" -ComputerName E01).Uninstall().Returnvalue

if ($Result -ne 0) { Write-Error "Uninstallation Error: $Result";

➥Exit }

"Uninstallation finished!"

For each application, a so-called uninstall string is implemented in the
registry. This uninstall string tells you what to execute to uninstall the
application. This also works for non-MSI-based applications.

The following command lists the uninstall commands for all applica-
tions whose name starts with the letter A:

Get-ChildItem -Path HKLM:\SOFTWARE\Microsoft\Windows\

➥CurrentVersion\Uninstall

| Where-Object -FilterScript { $_.GetValue("DisplayName")

➥-like "a*"} | ForEach-Object -Process

{$_.GetValue("DisplayName"),

➥$_.GetValue("UninstallString") }

264 Chapter 13 Registry and Software

Testing Installations
For a test, Listing 13.6 installs an application and then immediately unin-
stalls it. At the beginning, after the installation, and at the end, there will
be checks whether the application has been installed (see Figure 13.5).

Software Administration 265

13.
R

EGISTRY
AN

D
SO

FTW
ARE

Figure13.5 Output of the scripts

Listing 13.6 Testing Software Install and Uninstall

function Get-IsInstall($Application, $Computer)

{

$a = (Get-WmiObject -Class Win32_Product -Filter

➥"Name='$Application'" -Computer $Computer)

return ($a -ne $null)

}

$Name = "Hello World VB.NET"

$Computer = "E01"

$Paket = "H:\demo\PowerShell\Software and

Processes\Setup_for_HelloWorld_VBNET.msi"

"---"

"Testinstallation and uninstallation of the application..." + $Name

"---"

"Initial condition: Installed?: " + (Get-IsInstall $Name $Computer)

"Start installation of the package " + $Package
(continues)

Listing 13.6 Testing Software Install and Uninstall (continued)

$Result = ([WMIClass] "Win32_Product").Install($Paket).Returnvalue

if ($Result -ne 0) { Write-Error "Installation error:

➥$Result"; Exit }

"Installation finished!"

"Intermediate result: Installed?: " + (Get-IsInstall $Name $Computer)

"Start uninstallation..."

$Result = (Get-WmiObject -Class Win32_Product -Filter

➥"Name='$Name'" -ComputerName E01).Uninstall().Returnvalue

if ($Result -ne 0) { Write-Error "Uninstallation error: $Result";

➥Exit }

"Uninstallation finished!"

"Final condition: Installed?: " + (Get-IsInstall $Name $Computer)

Summary

This chapter covered two topics: the registry and software.
The Windows registry is one of the data stores that are by default

included in the navigation concept of WPS. In this chapter, you learned
that you can access the registry like a file system, using well-known com-
mands from the DOS age (for example, cd, md, and rd).

WPS provides commandlets for reading and writing keys and values:
Get-Item, Get-ItemProperty, Set-ItemProperty, and Remove-
ItemProperty.

In this chapter, you also learned that the administration of software
installations in WPS is possible through the use of the WMI class Win32_
Product. First, you have to make sure the class is available on your oper-
ating system because the WMI MSI Provider is not installed by default on
all operating systems.

You saw how to create an inventory of the installed software on your
local machine and on remote systems. In addition, you learned how to
install and uninstall MSI packages.

Software that is not installed through MSI is listed in the registry and
can be accessing using the command you learned in the first part of this
chapter.

266 Chapter 13 Registry and Software

267

C H A P T E R 1 4

PROCESSES AND SERVICES

In this chapter:
Processes . 267
Windows Services . 271

This chapter covers the management of process and covers the adminis-
tration of Windows services (also known as Windows NT services).
Examples in the chapter include the enumeration of process and services,
starting and stopping process and services, installation of services, and
changing service configuration.

Processes

The commandlet Get-Process (alias ps or gps) has already been used
quite often in this book. This chapter discusses Get-Process in more
depth and examines complementary commandlets.

Enumerating Processes
You get a list of all processes with the following:

Get-Process

Get-Process gets instances of the .NET classes System.Diagnostics.
Process.

If the list is long, it is a good idea to group the output with the param-
eter groupby in the Format-Table commandlet:

gps | Format-Table -GroupBy Name

Figure 14.1 shows the results.

268 Chapter 14 Processes and Services

Figure 14.1 Grouped list of processes

Filtering
The following command delivers information all instances of a specific
process:

Get-Process iexplore

You receive a list of all processes whose names start with the letter I as
follows:

Get-Process i*

You can also address a process by its process ID:

Get-Process –id 7012

Starting Processes
When you call a commandlet or a command-line application in Windows
PowerShell (WPS), it will start a process in WPS. When you call a
Windows application (for example, Notepad.exe), it starts in its own
process. In any case, the external process runs under the same user
account as the called process.

With the commandlet Start-Process from PSCX, you have more
control over the process behavior. You can, for instance, transfer an object
of the type PSCredential with different login information via the param-
eter –Credential. You get an object of the type PSCredential via
Get-Credential.

To start a second WPS window under another user account, you thus
have to enter the following:

Start-Process powershell.exe -Credential (Get-Credential)

This is documented in Figures 14.2 and 14.3.

Processes 269

14.
P

RO
CESSES

AN
D

SERVICES

Figure 14.2 Call of Start-Process by a regular user

270 Chapter 14 Processes and Services

Figure 14.3 After typing the login information, you get a second WPS window for a
user who belongs to the Administrators group

Further parameters of Start-Process include the following:

■ -WorkingDirectory Setting of the working directory of the new
process

■ -Priority Setting of a priority class for the process

Ending Processes
To end a process, you have two options. You can call the Kill() of the
Process class method:

Get-Process | Where-Object { $_.name -eq "iexplore" } |

➥Foreach-Object { $_.Kill() }

Or, even more concise, you can use the commandlet Stop-Process:

Stop-Process -name iexplore

Stop-Process usually expects the process number to be a parameter. If
you want to indicate the process name, you have to use the parameter
–name.

Other examples include the following:

■ End all processes whose names start with the letter P

Get-Process p* | Stop-Process

■ End all processes that need more than 10MB of RAM

Get-Process | where { $_.WS -gt 10MB } | stop-
process

Waiting for Process Ending
The following commands make WPS wait for the closing of Microsoft
Outlook.

Listing 14.1 Waiting for the End of a Process

$p = Get-Process outlook

if ($p)

{

$p.WaitForExit()

"Outlook has been ended!"

}

else

{

"Outlook has not been started!"

}

Windows Services

This section covers the administration of Windows System Services (also
known as Windows NT services).

Windows Services 271

14.
P

RO
CESSES

AN
D

SERVICES

Enumerating Services
A list of system services in the form of instances of the .NET class System.
ServiceProcess.ServiceController is displayed by the commandlet
Get-Service (alias gsv).

You get a list of the running system services with the following:

Get-Service | Where-Object {$_.status –eq "running"}

Thus, a list of the ended services is delivered by the following:

Get-Service | Where-Object {$_.status –eq "stopped"}

If you want the output to be grouped by status (see Figure 14.4), you first
have to sort by status:

Get-Service | sort Status | Format-Table -GroupBy Status

You can check in each script whether a service is installed (see
Listing 14.2).

272 Chapter 14 Processes and Services

Figure 14.4 List of services grouped by status

Listing 14.2 Checking Whether IIS Is Installed

$service = Get-Service -name iisadmin

if (! $service) { "IIS is not installed on this computer." }

else

{ "SQL Server is " + $service.Status }

Unfortunately, the remote query of another system with Get-
Service, as well as with the other built-in commandlets of WPS, is not
possible. This might be regarded as one of the greatest limitations of WPS
1.0. Only the detour via Windows Management Instrumentation (WMI)
enables access to other systems. For this procedure, the commandlet Get-
WmiObject is available. The following command fetches the running
system services of the computer named ServerEssen04:

Get-WmiObject Win32_Service -computer ServerEssen04

➥-filter "State='running'"

Remember that the result of the operation now no longer
contains instances of the .NET class System.ServiceProcess.
ServiceController, but instead instances of the WMI class
root\cimv2\Win32_Service, which have been packed into the .NET
class System.Management.ManagementObject. The commandlet Get-
Member shows this complex type as follows:

"System.Management.ManagementObject#root\cimv2\Win32_Service"

Get-WmiObject has another filter syntax (here, the equals sign [=] has
to be used rather than –eq), and furthermore, the status of a service in the
WMI class is indicated in the property State and not, as in the .NET class
in status. Beginners easily get confused here.

Figures 14.5 and 14.6 show where in the MSDN documentation you
can find information about these two classes.

Windows Services 273

14.
P

RO
CESSES

AN
D

SERVICES

Figure 14.5 Documentation for the .NET class System.ServiceProcess.
ServiceController in the .NET Framework class library documentation
[MSDN01]

274 Chapter 14 Processes and Services

Dependent Services
If you want to display the dependent services of a service, you have to
access the attribute DependentServices of the .NET object
System.ServiceProcess.ServiceController:

get-service iisadmin | % { $_.DependentServices }

Figure 14.6 Documentation for the WMI class Win32_Service in the WMI
schema class reference [MSDN05]

The result for Windows Server 2003 Release 2 is shown in Figure 14.7.

Windows Services 275

14.
P

RO
CESSES

AN
D

SERVICES

Figure 14.7 The dependent services of IISAdmin

The dependent services of a system service can alternatively be
displayed in WMI, via the method GetRelated() in the class
ManagementObject in the .NET class library. The following command
displays the services that depend on the service IISAdmin:

(get-wmiObject win32_service -filter "Name =

➥'iisadmin'").PSBase.GetRelated("Win32_Service")

➥| select name

The same object volume can be displayed via a WQL query with rela-
tion to the fixed expression AssocClass (see Figure 14.8):

([wmiSearcher]"Associators of {Win32_Service.Name='iisadmin'}

➥Where AssocClass=Win32_DependentService

➥Role=Antecedent").get()

276 Chapter 14 Processes and Services

Figure 14.8 Displaying the dependent services

Starting and Stopping Services
If you want to change the service status, you can use the following com-
mandlets:

Suspend-Service

Resume-Service

Stop-Service

Start-Service

Restart-Service

Here, the service names have to be indicated as parameters.
The following command also starts the service IISAdmin:

Start-Service IISADMIN

If you want to stop system services with dependent services, you have to
add the parameter –force (see Figure 14.9):

Stop-Service IISADMIN –force

Windows Services 277

14.
P

RO
CESSES

AN
D

SERVICES

Figure 14.9 Stop-Service without –force will not work if the service has
dependent services.

Because the commandlet Start-Service is valid only for the local
computer, you have to get back to the WMI class Win32_Service to start
a service on a remote system. The following command starts a system serv-
ice on another computer:

Get-WmiObject -computer E02 Win32_Service -Filter

➥"Name='Alerter'" | Start-Service

TIP The commandlet Restart-Service executes the reboot of a service (end
first, then start). If the service hasn’t been started before, it will get started now.

Changing Service Attributes
You can influence the attributes of services, such as its booting, with Set-
Service:

Set-Service IISADMIN -startuptype "manual"

Installation of New Windows Services
Executables that implement Windows services can be registered on your
system by using the commandlet New-Service, as follows:

New-Service -Name "WWWAppServer"

-binaryPathName j:\software\wcf_server.exe

-Description "Application Server for World Wide

-DisplayName "World Wide Wings Application Server"

The execution of this command will create a new entry in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

After that, the service will be visible in the Service Manager in the Control
Panel. Then, you can start the service using Start-Service:

Start-Service WWWAppServer

Change Service Configuration
As with many other WMI classes, the properties of a Win32_Service
objects are read-only. To change the configuration, you need to call the
Change() method. Figure 14.10 shows the available parameters, and
Figure 14.11 shows an example.

You don’t need to pass values for all parameters; if you want a property
to stay unchanged, just pass $null (see Listing 14.3).

Listing 14.3 Change Service Configuration

"Before:"

Get-WmiObject Win32_Service -filter "name='WWWAppServer'" |

➥select startname, startmode

278 Chapter 14 Processes and Services

$service = Get-WmiObject Win32_Service -filter "name='WWWAppServer'"

$service.change($null,$null,$null,$null,"Manual",$null,"itv\hs",

➥"secret+123")

"After:"

Get-WmiObject Win32_Service -filter "name='WWWAppServer'"

➥| select startname, startmode

Windows Services 279

14.
P

RO
CESSES

AN
D

SERVICESFigure 14.10 Description of the Change() method in the Win32_Service
class

Figure 14.11 Changing a Windows service from Localsystem and Auto to a
specific account and manual start

Summary

The administration of processes and services is one of the core tasks of
Windows administration. WPS provides easy-to-use commandlets for both
tasks, including the following:

Get-Process

Stop-Process

Start-Process (from PowerShell Community Extensions, PSCX)
Set-Service

Suspend-Service

Resume-Service

Stop-Service

Start-Service

Restart-Service

Set-Service

280 Chapter 14 Processes and Services

281

C H A P T E R 1 5

COMPUTERS AND HARDWARE

In this chapter:
Computer Settings . 281
Hardware . 284
Event Logs . 290
Performance Counters . 292

This chapter covers computer settings (for example, operating system ver-
sions, BIOS settings, boot configuration, environment variables), installed
hardware, the management of print jobs, Windows event logs, and per-
formance counters. Examples in the chapter include:

■ Read computer settings
■ Enumerate hardware devices and their properties
■ Enumerate the available event logs
■ Read event log entries
■ Read data from performance counters
■ Enumerate printers
■ Administration of print jobs (pause, resume, cancel)

Computer Settings

There is no special commandlet for the displaying of information about the
computer. You can get important information about the computer and the
installed software with the WMI classes Win32_Computersystem and
Win32_OperatingSystem:

Get-WmiObject Win32_Computersystem

Get-WmiObject Win32_OperatingSystem

The serial number of the computer is displayed with the following:

Get-WmiObject Win32_OperatingSystem | select serialnumber

You can get the version number of the software with the property
Version in the WMI class Win32_OperatingSystem or with the .NET
class System.Environment:

Get-WmiObject Win32_OperatingSystem | select Version

System.Environment]::OSVersion

The WMI class Win32_Bios delivers information about BIOS:

Get-WmiObject win32_Bios

The boot configuration can be found in the WMI class Win32_
BootConfiguration:

Get-WmiObject Win32_BootConfiguration

The Windows system directory is again in the .NET class System.
Environment:

"System Directory: "+ [System.Environment]::SystemDirectory

You will find the status of the Windows product activation in the
following:

Get-WmiObject Win32_WindowsProductActivation

282 Chapter 15 Computers and Hardware

There is also data about the selected recovery options of the Windows
software:

Get-WmiObject Win32_OSRecoveryConfiguration

You can display the environment variables via the Windows
PowerShell (WPS) drive env (see Figure 15.1):

dir env:

Information about a single environment variable can be fetched by
adding the name of the environment variable to the path, as follows:

dir env:/Path

If you want to know only the content of an environment variable, you
can use Get-Content:

Get-Content env:/Path

The value fetched by Get-Content can be saved in a variable and then
used by this; for example, for splitting a path string with the help of the
Split() method from the .NET class System.String:

$Pathe = Get-Content env:/Path
$Pathe.Split(";")

If you want to find out how many files there are in the search paths of
Windows, the following command is available:

(Get-Content env:/Path).Split(";") | Get-ChildItem |
➥measure-object

Computer Settings 283

15.
CO

M
PUTERS

AN
D

H
ARDW

ARE

284 Chapter 15 Computers and Hardware

Figure 15.1 Listing of environment variables

Hardware

WPS 1.0 does not offer any commandlets for accessing hardware informa-
tion. Nevertheless, you can still refer to WMI. Alternatively, you can access
some functions via the www.IT-Visions.de PowerShell Extensions (These
were introduced Chapter 10, “Tips, Tricks, and Troubleshooting.”)

Within WPS, you can get information about installed hardware via
WMI (that is, by using the commandlet Get-WmiObject together with the
respective WMI class; see Table 15.1).

www.IT-Visions.de

Table 15.1 Call of Hardware Information in WPS

Hardware WPS Command www.IT-Visions.de
Module (Standard) PowerShell Extensions

Processors Get-WmiObject Get-Processor

Win32_Processor

Main memory Get-WmiObject Get-MemoryDevice

Win32_MemoryDevice

Video controller Get-WmiObject Get-Videocontroller

Win32_VideoController

Sound device Get-WmiObject

Win32_SoundDevice Get-SoundDevice

Disks Get-WmiObject

Win32_Diskdrive Get-Disk

Tape drives Get-WmiObject

Win32_Tapedrive Get-Tapedrive

CD/DVD drives Get-WmiObject

Win32_CDRomdrive Get-CDRomdrive

Network adapters Get-WmiObject

Win32_NetworkAdapter Get-Networkadapter

USB controller Get-WmiObject

Win32_USBController Get-USBController

Keyboard Get-WmiObject

Win32_Keyboard Get-Keyboard

Pointing device Get-WmiObject

Win32_PointingDevice Get-PointingDevice

The number of processors on one system can also be obtained via the
.NET class System.Environment:

"Number of processors: " +

➥ [System.Environment]::ProcessorCount

Hardware 285

15.
CO

M
PUTERS

AN
D

H
ARDW

ARE

www.IT-Visions.de

Printers and Print Jobs
The command

Get-WmiObject Win32_Printer

displays a list of all available printers on the local system. You can use the
–computername parameter to access a remote computer (see Figure
15.2). Printers that are mapped through a terminal services session have
the text “from… in session…” in their name.

286 Chapter 15 Computers and Hardware

Figure 15.2 Listing of all installed printers from a remote computer

If you want to check the status of a printer, you should read printer-
status and detectederrorstate:

Get-WmiObject win32_printer | select name,

➥printerstatus, detectederrorstate

In Figure 15.3, we have the following values: 3 = ready, 1 = other, 5 = low
toner.

Hardware 287

15.
CO

M
PUTERS

AN
D

H
ARDW

ARE

Figure 15.3 Checking the printer status

Printer Connections
If you want to install a network printer, you can use the static method
AddPrinterConnection() in the Win32_Printer class:

$printer = [WMIClass]"\\.\root\cimv2:Win32_Printer"

$printer.AddPrinterConnection("\\E02\Dell")

The method will return the value of 0 if the installation is successful.

Print Jobs
To transfer information to the printer, you use the commandlet Out-
Printer (alias lp) in WPS. This commandlet has already been discussed
in this book (see Chapter 3, “Pipelining”).

With

Get-WmiObject Win32_Printjob

you get all current print jobs on your local system (see Figure 15.4). Of
course, you can use the –computer parameter to query a remote system.

288 Chapter 15 Computers and Hardware

Figure 15.4 Using the print job script

You can pause all print jobs for a distinct printer with the following
command:

Get-WmiObject Win32_Printjob -Filter

➥"Drivername='Dell 3115'" | Foreach-Object { $_.Pause() }

You can resume them later by calling the method Resume().
To cancel all jobs, you have to call the Delete() method (see Listing

15.1).

Listing 15.1 Canceling All Print Jobs for a Certain Printer on a Specific Print Server

"--- Print Jobs before:"

Get-WmiObject Win32_Printjob -computer E01 -Filter

➥"Drivername='Dell MFP Laser 3115cn PCL6'"

"--- Canceling all Print Jobs..."

Get-WmiObject Win32_Printjob -computer E01 -Filter "Drivername='Dell

➥ MFP Laser 3115cn PCL6'" | Foreach-Object { $_.Delete() }

"--- Print Jobs after:"

Get-WmiObject Win32_Printjob -computer E01 -Filter

➥"Drivername='Dell MFP Laser 3115cn PCL6'"

TIP You could also call the CancelAllJobs() method of the Win32_
Printer object.

MORE INFORMATION For additional information about printer administra-
tion, look at the WMI classes with the word Printer in their name (see
Figure 15.5).

Hardware 289

15.
CO

M
PUTERS

AN
D

H
ARDW

ARE

Figure 15.5 “Printer” classes in WMI documentation

290 Chapter 15 Computers and Hardware

Event Logs

Information about existing event logs and the entries in the event logs are
provided by the commandlet Get-EventLog.

Event Log Names
A list of all event logs available on the local system is delivered via the fol-
lowing (see Figure 15.6):

Get-EventLog –list

The result contains instances of the class System.Diagnostics.
EventLog.

Figure 15.6 List of available event logs

Event Log Entries
However, if you call the commandlet Get-EventLog without the parame-
ter –list but with the name of an event log instead, the commandlet dis-
plays all entries in form of objects of the type System.Diagnostics.
EventLogEntry.

Get-EventLog Application

Event Logs 291

15.
CO

M
PUTERS

AN
D

H
ARDW

ARE

In this case, a limitation makes sense, because the operation would other-
wise take too long. The commandlet Get-EventLog has a built-in filter
function:

Get-EventLog Application -newest 30

With a little help routine, it’s possible to limit the protocol entries to the
entries of the present day:

Listing 15.2 Protocol Entries of Today

function isToday ([datetime]$date)

{[datetime]::Now.Date -eq $date.Date}

Get-EventLog Application -newest 2048 | where {isToday $_.TimeWritten}

Or you can fetch all entries of the past three days:

Listing 15.3 Protocol Entries of the Past Three Days

function isWithin([int]$days, [datetime]$Date)

{

[DateTime]::Now.AddDays($days).Date -le $Date.Date

}

Get-EventLog Application | where {isWithin -3 $_.TimeWritten}

It might be of interest to group the entries according to the event iden-
tifier to identify recurring problems (see Figure 15.7):

Get-EventLog Application | Group-Object eventid |

➥Sort-Object Count

NOTE To access event logs on remote computer, you need to use the WMI
class Win32_NTLogEvent. The following command enumerates all reboot
events (event code 6009) from Server “E02”:

Get-WmiObject -Query "select TimeWritten from

Win32_NTLogEvent where Logfile = 'System' and

SourceName = 'EventLog' and EventCode = '6009'" -computer E02

292 Chapter 15 Computers and Hardware

Figure 15.7 The vast majority of events in this log have the event ID 6 (which is
a warning from the installed virus scanner).

Performance Counters

WMI enables access to performance data of the Windows system via the
WMI Performance Counters Provider. The classes start with the string
Win32_PerfRawData.

TIP If you don’t find these classes, start the WMI service manually at the com-
mand line with Winmgmt /resyncperf.

Information about the used memory of running processes is displayed
by the following:

Get-WmiObject Win32_PerfRawData_PerfProc_Process |

➥select Name,Workingset

Data about the available main memory is available here:

Get-WmiObject Win32_PerfRawData_PerfOS_Memory

The performance of a processor can be fetched with the following:

Get-WmiObject Win32_PerfRawData_PerfOS_Processor

WARNING Win32_PerfRawData is the abstract base class for all perform-
ance data classes. However, you want to refrain from the command

Get-WmiObject Win32_PerfRawData

because otherwise you just get a heap of objects.

Summary

In this chapter, you learned about a few interesting areas of administration.
The available hardware can be queried thought WMI classes such as
Win32_Processor, Win32_DiskDrive and Win32_SoundDevice. WMI
also provides classes for managing printers (Win32_Printer) and print
jobs (Win32_Printjob). The WPS commandlets Get-EventLog provides
access through the local event log and WMI for remote event logs (Win32_
NTLogEvent). WMI provides classes for performance counters.

Summary 293

15.
CO

M
PUTERS

AN
D

H
ARDW

ARE

This page intentionally left blank

295

C H A P T E R 1 6

NETWORKING

In this chapter:
Pinging Computers . 295
Network Configuration . 296
Name Resolution . 299
Retrieving Files from an HTTP Server . 300
E-Mail . 302
Microsoft Exchange Server 2007 . 302
Internet Information Services . 305

This chapter covers networking administrative tasks, including network
configuration, name resolution, and the use of application-level network-
ing protocols such as HTTP and SMTP.

This chapter also covers the administration of Exchange Server 2007
and Internet Information Server.

Pinging Computers

You can use the WMI class Win32_PingStatus to check the accessibility
of a computer on your local network or the Internet:

Get-WmiObject Win32_PingStatus -filter "Address='www.Windows

➥Scripting.de'" | select protocoladdress, statuscode,

➥responsetime

PowerShell Community Extensions (PSCX) also offer a commandlet,
Ping-Host, that displays a data structure of the type Pscx.Commands.
Net.PingHostStatistics (see Figure 16.1):

Ping-Host 'www.Windows Scripting.de'

296 Chapter 16 Networking

Figure 16.1 Use of Ping-Host

Network Configuration

WMI provides access to the network configuration through the class
Win32_NetworkAdapterConfiguration. In Win32_NetworkAdapter
Configuration, the IP addresses are saved as arrays in IPAddress:

Get-WmiObject Win32_NetworkAdapterConfiguration –Filter

➥"IPEnabled=true" | select Description,IPAddress

The WMI class Win32_NetworkAdapterConfiguration enables numer-
ous settings for network devices.

The Windows PowerShell (WPS) script in Listing 16.1 changes a net-
work device from a static IP address to a dynamic one (DHCP). Figure
16.2 shows the output.

Listing 16.1 Change of Network Configuration

#######################################

PowerShell Script

Switch between static and dynamic IP

(C) Dr. Holger Schwichtenberg

http://www.windows-scripting.com

##

-- Subroutines

function PrintStatus

{

$ada = Get-WmiObject Win32_Networkadapter | where

➥$_.DeviceID -eq $ADAPTERINDEX }

"Adapter: " + $ada.Caption

"Index: " + $ADAPTERINDEX

$config = Get-WmiObject Win32_Networkadapterconfiguration | where

➥{ $_.index -eq $ADAPTERINDEX }

"Description: " + $Config.Description

"IP active: " + $Config.ipenabled

"DHCP Status: " + $Config.dhcpenabled

"IP addresses: " + $Config.IPAddress

#Get-WmiObject Win32_Networkadapterconfiguration | where

➥{ $_.index -eq $ADAPTERINDEX } | select ip

}

--- Parameters

$ADAPTERINDEX = 1

$COMPUTER = "."

Network Configuration 297

16.
N

ETW
O

RKIN
G

(continues)

Listing 16.1 Change of Network Configuration (continued)

[array] $IP = "192.168.1.15"

[array] $SUBNET = "255.255.255.0"

[array] $GATEWAYS = "192.168.1.16"

[array] $METRIC = 1

--- Script

PrintStatus

$config = Get-WmiObject Win32_Networkadapterconfiguration

➥| where { $_.index -eq $ADAPTERINDEX }

if (!$Config.dhcpenabled)

{

"--> Activate DHCP..."

$Config.EnableDHCP() | Select-Object returnvalue | format-list

}

else

{

"--> Activate Static IP Address..."

$Config.EnableStatic($ip, $subnet) | Select-Object returnvalue

➥ | format-list

$Config.SetGateways($Gateways, $Metric) | Select-Object

➥ returnvalue | format-list

}

PrintStatus

WARNING The WMI method EnableStatic()works only when the network
device is activated.

You can display the current DHCP server with the commandlet Get-
DHCPServer from PSCX.

298 Chapter 16 Networking

Figure 16.2 Output of the example when called twice

Name Resolution

In PSCX, the commandlet Resolve-Host supports name resolution. The
result is an instance of the .NET class System.Net.IPHostEntry. You
can see the result of the following three examples in Figure 16.3:

Resolve-Host E02

Resolve-Host E02 | fl

Resolve-Host www.IT-Visions.de

Name Resolution 299

16.
N

ETW
O

RKIN
G

www.IT-Visions.de

Figure 16.3 Use of Resolve-Host

Retrieving Files from an HTTP Server

Listing 16.2 shows how an HTML page can be retrieved from a web server.
For this purpose, the class System.Net.WebClient from the .NET class
library is used. This class offers a method that displays the content of the
indicated URL in a string: DownloadString(). With the help of the com-
mandlet Set-Content, the string is then stored in the local file system.
The last four rows contain the error processing, which is responsible for
issuing a report in the script whenever an error occurs.

Listing 16.2 Downloading of a File via HTTP

--- Parameters

$url = "http://www.windows-scripting.com"

$target = "c:\temp\page.htm"

--- Script

Write-Host "Downloading Webpage " $url "..."

$html = (new-object System.Net.WebClient).DownloadString($Url)

$html | Set-Content -Path $target

Write-host "Downloaded page stored under " $target

300 Chapter 16 Networking

trap [System.Exception]

{

Write-host "Error downloading URL: `"$url`"" `n

exit

}

The next example demonstrates how you can retrieve the titles of the
most recent eight news stories from an RSS feed (see Listing 16.3 and
Figure 16.4). In this case, too, the script uses DownloadString() from
the class System.Net.WebClient. Because the content is in XML form,
you can use the WPS XML adapter to access the content (see Chapter 12,
“Managing Documents”).

Retrieving Files from an HTTP Server 301

16.
N

ETW
O

RKIN
G

Figure 16.4 Example of an RSS document

Listing 16.3 Downloading and Filtering of RSS Feeds

Write-Host "Weblog of Dr. Holger Schwichtenberg:"

$Url = "http://www.heise.de/ix/blog/1/blog.rdf"

$blog = [xml](new-object System.Net.WebClient).DownloadString($Url)

$blog.RDF.item | select title -first 8

E-Mail

To send an e-mail via Simple Mail Transfer Protocol (SMTP), you can use
the .NET classes System.Net.Mail.MailMessage and System.Net.
Mail.SmtpClient or, even simpler, the commandlet Send-SmtpMail
from PSCX:

Listing 16.4 Using the Commandlet Send-SmtpMail

--- Parameters

$Subject = "PowerShell Script"

$Body = "Your daily script executed successfully!"

$From = "script@E01.Fbi.net"

$To = "hs@E01.Fbi.net"

$MailHost = "E01.Fbi.net"

--- Send Mail

Send-SmtpMail -SmtpHost $MailHost -To $To -From $from

➥-Subject $subject -Body $body

TIP When an authentication at the SMTP server is necessary, you can retrieve
this with the parameter –Credential and the commandlet Get-Credential.
If you do this, however, Windows always asks for a user account via a login dia-
log box; an interactive execution is no longer possible.

Microsoft Exchange Server 2007

As mentioned in Chapter 10, “Tips, Tricks, and Troubleshooting,”
Microsoft Exchange Server 2007 has its own set of commandlets and a spe-
cial version of the WPS shell called the Exchange Management Shell.

Basic Operations
After the start of the Exchange Management Shell, the command

Get-ExCommand

displays a list of Exchange Server–specific commandlets.

302 Chapter 16 Networking

Reading Information
You get a list of all mailboxes with the following:

Get-Mailbox

The list of all databases is displayed as follows:

Get-Mailboxdatabase

And the storage groups are delivered with the following:

Get-Storagegroup

You can test the functionality of an Exchange Server with this:

Test-ServiceHealth

Managing Mailboxes
A storage group can be created with the following command. The com-
mand creates a new storage group named "AuthorsStorageGroup" on
server "E12":

New-Storagegroup "AuthorsStorageGroup" -server "E12"

You can create a database for mailboxes as follows. The commandlet
New-MailboxDatabase needs the name for the database as well as the
name of an existing storage group:

New-MailboxDatabase "AuthorsMailboxDatabase"

➥ -storagegroup "AuthorsStorageGroup"

To create a mailbox, you can use the following command:

New-Mailbox -alias "HSchwichtenberg" -name

HolgerSchwichtenberg –userprincipalname HS@IT-Visions.de

-database "E12\AuthorsStorageGroup\

AuthorsMailboxDatabase" -org users

Microsoft Exchange Server 2007 303

16.
N

ETW
O

RKIN
G

Should the user already exist in the Active Directory, the command is
shorter:

Enable-Mailbox hs@IT-Visions.de -database

➥ "E12\AuthorsStorageGroup \AuthorsMailboxDatabase"

After creating the mailbox, you can access its attributes with Get-
Mailbox or Set-Mailbox. If you later add a new e-mail address, the new
setting works with the attribute EMailAddresses with regard to the for-
mer addresses:

Set-Mailbox HS@IT-Visions.de -EmailAddresses

➥ ((get-Mailbox hs@IT-Visions.de).EmailAddresses

➥ + "HSchwichtenberg@IT-Visions.de ")

You can add the mailbox to a distribution list by mentioning the name
of a list and an email address:

Add-DistributionGroupMember "Authors" -Member

➥ "hs@IT-Visions.de"

You can move the mailbox to another database:

Move-Mailbox hs@IT-Visions.de -targetdatabase

➥ "authorsmailboxdatabase"

Or you can limit the disk space consumption:

Get-Mailbox hs@IT-Visions.de | Set-Mailbox

➥ -UseDatabaseQuotaDefaults:$false

➥ -ProhibitSendReceiveQuota 100MB

➥ -ProhibitSendQuota 90MB -IssueWarningQuota 80MB

You can also limit the size of incoming e-mails for a distribution list:

Set-DistributionGroup "Authors" -MaxReceiveSize 5000KB

There is also a commandlet for deactivating a mailbox:

Disable-Mailbox "hs@IT-Visions.de"

304 Chapter 16 Networking

Managing Public Folders
A database for public folders is created with the following:

New-PublicFolderDatabase "authorsfolderdatabase"

➥-storagegroup "authorsstoragegroup "

A public folder is created with this:

New-PublicFolder "\books" -Path \pubfolders -Server "E12"

Access rights to a folder are granted as follows:

Add-PublicFolderPermission "\books" -User hs

➥ -AccessRights "CreateItems"

You can set storage limitations for a public folder as follows:

Set-PublicFolder "\books" -PostStorageQuota 20MB

➥ -MaxItemSize 2MB

MORE INFORMATION You can find more WPS scripts for Exchange adminis-
tration on the website [TNET02].

Internet Information Services

Internet Information Services (IIS) can be accessed through the WMI
classes in the WMI namespace root\MicrosoftIISv2 (see Figure 16.5).

The most important classes in this namespace are as follows:

■ IIsComputer The root of the object hierarchy
■ IIsWebService The HTTP service of the IIS
■ IIsWebServer A virtual web server within the IIsWebService
■ IIsWebVirtualDir A virtual directory within an IIsWebServer
■ IIsApplicationPool An application pool in IIS (6.0 and later)

Internet Information Services 305

16.
N

ETW
O

RKIN
G

Figure 16.5 The object hierarchy of IIS seen from the WMI object browser

306 Chapter 16 Networking

NOTE Each of these classes is read-only. However, each has a corresponding
configuration class that enables you to change settings (see Figure 16.6).

IIsComputer > IIsComputerSetting

IIsWebService > IIsWebServiceSetting

IIsWebVirtualDir > IIsWebVirtualDirSetting

And so on.

Internet Information Services 307

16.
N

ETW
O

RKIN
G

Figure 16.6 Displaying the attributes of the classes IISComputer and
IIsComputerSetting

List of All Virtual Web Servers
The separation between the classes IISWebserver and IIsWebServer
Settings can get a bit annoying; for example, if you want to perform an
easy task such as enumerating all web servers with their internal name and
state and the display name (attribute Servercomment). The internal name
and the state are stored in instances of IIsWebserver, whereas the display
name is stored in IIsWebserverSetting because it can be changed.

Therefore, executing the command

Get-WmiObject -Class IISWebserver -Namespace

➥"root\microsoftiisv2" | ft name, serverstate, servercomment

is not the right solution because Servercomment would be empty in all
cases.

The solution is to execute a query for the associated settings object for
each instance of IIsWebserver:

Listing 16.5 Get the Internal Name, the Display Name, and the Status of Each Virtual
Web Server

Get the internal name, the display name and the status

➥ of each virtual webserver

$Webservers = Get-WmiObject -Class IISWebserver

➥-Namespace "root\microsoftiisv2"

foreach ($Webserver in $Webservers)

{

Get all associated Settings

$name = $WebServer.Name

$query = "ASSOCIATORS OF {IIsWebServer.Name='$name'} WHERE

➥ResultClass=IIsWebServerSetting"

$Settings = Get-WmiObject -Query $query -Namespace

➥"root\microsoftiisv2"

However, we know for sure that there is only one object in the list!

$Setting = @($Settings)[0]

$WebServer.Name + ";" + $Setting.Servercomment+ ";" +

➥$Webserver.ServerState

}

Add New Virtual Web Servers
Listing 16.6 enables you to create a bunch of new websites according to the
content of a CSV file (see Figure 16.7).

308 Chapter 16 Networking

Figure 16.7 A CSV text file describes the websites to be created.

To create a new virtual web server, you must follow these steps (see
Listing 16.6 and Figure 16.8):

1. Create a new instance of the WMI class ServerBinding.
2. Fill the instance with the IP address and the port number.
3. Create a new instance of the WMI class IIsWebService with a

reference to the binding.

Internet Information Services 309

16.
N

ETW
O

RKIN
G

Figure 16.8 Successful creation of six websites

However, the following listing is much longer than expected. The rea-
son is the encryption of the WMI communication that is required for
access to the IIS configuration store since Windows Server 2003 Service
Pack 1. Because the commandlet Get-WmiObject does not support the
activation of the DCOM encryption, this has to be implemented with
explicit use of .NET classes from the namespaces System.Management.

Listing 16.6 Create IIS Websites from a CSV File

=== Get WMI Object with DCOM encryption

Function Get-WMIObjectEx($Namespace, $Path)

{

#Write-Host $Namespace $Path

$connection = New-Object System.Management.ConnectionOptions

$connection.Authentication =

[System.Management.AuthenticationLevel]::PacketPrivacy

(continues)

Listing 16.6 Create IIS Websites from a CSV File (continued)

$scope = New-Object System.Management.ManagementScope($Namespace,

➥$connection)

$path = New-Object System.Management.ManagementPath($Path)

$GetOptions = New-Object System.Management.ObjectGetOptions

$WMI = New-Object

System.Management.ManagementObject($scope,$path,$GetOptions)

return $WMI

}

=== Get WMI class with DCOM encryption

Function Get-WMIClassEx($Namespace, $Path)

{

Write-Host $Namespace $Path

$connection = New-Object System.Management.ConnectionOptions

$connection.Authentication =

➥[System.Management.AuthenticationLevel]::PacketPrivacy

$scope = New-Object System.Management.ManagementScope($Namespace,

➥$connection)

$path = New-Object System.Management.ManagementPath($Path)

$GetOptions = New-Object System.Management.ObjectGetOptions

return New-Object

➥System.Management.ManagementClass($scope,$path,$GetOptions)

}

=== Create Site

function New-IISVirtWeb ([string]$Computer, [string]$Name,

➥[string]$IP, [string]$Port, [string]$Hostname, [string]$RootDir)

{

$Namespace = "\\" + $Computer + "\root\MicrosoftIISv2"

$Path1 = $Namespace + ":IIsWebService='W3SVC'"

$Path2 = $Namespace + ":ServerBinding"

Create Binding

$class = Get-WMIClassEx $Namespace ($Namespace + ":ServerBinding")

$binding = $class.CreateInstance()

$binding.IP = $IP

$binding.Port = $Port

$binding.Hostname = $Hostname

[array] $bindings = $binding

310 Chapter 16 Networking

Create Site

$Webservice = Get-WMIObjectEx $Namespace $Path1

$Website = $Webservice.CreateNewSite($Name, $bindings, $RootDir)

Write-Host "Webserver" $Name "created on Computer" $Computer "!"

}

--- Parameters

$InputFile = "H:\demo\WPS\B_IIS\webserver.txt"

$Computer = "E01"

Read textfile and create a new webserver for each line

Get-Content $InputFile | Foreach-Object {

$a = $_.Split(";")

New-IISVirtWeb $Computer $a[0] $a[1] $a[2] "" $a[3]

}

Delete Virtual Web Servers
You can delete a web server through the method Delete() in the WMI
class IIsWebserver. The following command deletes all virtual web
servers that are currently stopped:

Get-WmiObject -Class IISWebserver -Namespace

➥"root\microsoftiisv2" | where { $_.serverstate -eq 4 }

➥| foreach-object { $_.Delete() }

Microsoft has announced that in WPS 2.0 it will support WMI authen-
tication in the commandlet Get-WmiObject. However, at the time of this
writing, WPS 2.0 is still a very early pre-release version without a con-
firmed release date.

Summary

The WPS core system does not contain any commandlets for network pro-
tocols. However, you learned in this chapter that you can use the PSCX or
a few classes (WMI and .NET) for such.

Summary 311

16.
N

ETW
O

RKIN
G

Pinging is available through the commandlet Ping-Host or the WMI
class Win32_PingStatus. Network configuration is possible by using
Win32_NetworkAdapterConfiguration. For name resolution, the easi-
est way is the commandlet Resolve-Host. HTTP downloads can be per-
formed through the .NET class System.Net.WebClient. To send an
e-mail, use Send-SmtpMail.

The beginning of this chapter discussed the administration of
Exchange Server and Internet Information Services. Exchange Server has
its own complete set of commandlets, whereas IIS can be accessed
through WMI.

TIP Additional commandlets for a wide variety of protocols (including SNMP,
SSH, POP, IMAP, TFTP, RCP, SOAP, REST, RSS, DNS) can be bought from a com-
pany called /n software, as part of its product NetCmdlets [NSOFT].

312 Chapter 16 Networking

313

C H A P T E R 1 7

DIRECTORY SERVICES

In this chapter:
Overview of Directory Services Access . 313
Managing Users and Groups Using WMI . 314
System.DirectoryServices and the ADSI Adapter 315
Deficiencies in the ADSI Adapter . 321
Object Identification in Directory Services (Directory Services Paths) . . . 323
Overview of the Common Programming Tasks 325

Access to the local user database and Active Directory is one of the most
common tasks for administrators in medium and large companies. This
chapter and the following three chapters cover this important topic. First,
in this chapter, you learn the basic concepts of Directory Services pro-
gramming within Windows PowerShell (WPS). Chapter 18, “User and
Group Management in the Active Directory,” covers user and group man-
agement in the Active Directory. Chapter 19, “Searching in the Active
Directory,” covers searching. And Chapter 20, “Additional Libraries for
Active Directory Administration” covers advanced features such as group
policy management.

Overview of Directory Services Access

WPS 1.0 does not provide any commandlets to access the Windows user
database (SAM) or the Active Directory or any other directory services.
During the beta phase of WPS, there was an Active Directory navigation
provider, but that had been removed before WPS 1.0 was finished. Such a
provider for navigation through the Active Directory is currently available
within the PowerShell Community Extensions (PSCX) [CODEPLEX01].

There also exists the commandlet Get-ADObject for searching in the
Active Directory.

With WPS 1.0 (without PSCX) access to directory services is possible
only with the classic programming techniques. Here you should use the
.NET classes from the namespace System.Directoryservices of the
.NET class library, and also the COM component Active Directory Service
Interfaces (ADSI). Some functions are also available with WMI.

NOTE This chapter uses the domain FBI.net as an example. This example deals
with an Active Directory for the TV series The X Files. The domain is called
FBI.net, with the NETBIOS name FBI. The domain controllers are named
XFilesServer1 and XFilesServer2. The PCs are named AgentPC01 to
AgentPC99. The following organization units and users exist or will be created
in this and the following chapter:

■ Organizational unit “Agents” with users Fox Mulder, Dana Scully,
John Doggett, and Monica Reyes

■ Organizational unit “Directors” with users Walter Skinner and
Alvin Kersh

■ Organizational unit “Conspirators” with users Smoking Man and Deep
Throat

■ Organizational unit “Aliens” with numerous aliens

Managing Users and Groups Using WMI

The options for user administration with WMI are unfortunately rather
limited. ADSI or System.Directoryservices offer a lot more, as you
will see in the following chapters. However, for the sake of completeness,
this chapter discusses the options you have within WMI.

The following command displays an object list of the local users and
groups:

Get-WmiObject Win32_Account

Only user accounts are displayed with the following:

Get-WmiObject Win32_UserAccount

314 Chapter 17 Directory Services

Only groups are displayed with this:

Get-WmiObject Win32_Group

Of course, you can also filter objects distinctly:

Name and domain of those user accounts whose password never

➥expires

Get-WmiObject Win32_useraccount | Where-Object

{$_.Passwordexpires -eq 0 } | Select-Object Name,Domain

Alternatively, you can use this form:

Get-WmiObject Win32_Useraccount -filter

➥"Passwordexpires='false'" | Select-Object Name,Domain

The WMI class Win32_Desktop contains settings by the users. With
the following command, you will get to know whether user FBI\
FoxMulder has activated a screensaver on computer AgentPC04:

Get-WmiObject Win32_Desktop -computer AgentPC04 |

➥where { $_.Name -eq "DBI\FoxMulder" } |

➥select screensaveractive

You can access Active Directory entries using the WMI classes in the
WMI namespace root\directory\ldap. For example, the following
command lists all groups whose name starts with the letter M:

Get-WmiObject -Class ds_group

➥-Namespace root\directory\ldap -Filter

➥"DS_name like ‘m%'"

System.DirectoryServices and the ADSI Adapter

The classes of the .NET namespace System.Directoryservices are an
encapsulation of ADSI. ADSI is a Component Object Model (COM) com-
ponent introduced in the era of Windows 2000. Unfortunately, not all func-
tions in the .NET library are encapsulated, and therefore ADSI still plays
a role in WPS.

System.DirectoryServices and the ADSI Adapter 315

17.
D

IRECTO
RY

SERVICES

NOTE The classes in the namespace System.DirectoryServices work
only when the ADSI COM component has been installed, too.

In the following text, the ADSI COM component is referred to as classic ADSI.

The classes in the .NET namespace System.Directoryservices
offer only very general mechanisms for the access to directory services.
There are no longer specific classes for single directory services as they
exist in classic ADSI. Certain operations (for example, changing the pass-
word in a user object) therefore must be called directly or indirectly via
classic ADSI.

Architecture
Figure 17.1 shows the architecture of ADSI under .NET. A .NET program
(managed code) has three options to access a directory service:

■ Use of objects in the namespace System.Directoryservices to
execute directory service operations

■ Use of objects in the namespace System.Directoryservices to
call operations in classic ADSI

■ Direct use of classic ADSI via COM interoperability

Integration with ADSI
That all calls in System.Directoryservices are executed in ADSI can
be proved by error messages of the .NET class library. For example, the
class DirectoryEntry delivers the following error message referring to
the COM interface Interop.IADS when calling CommitChanges(), if the
object to be created already exists:

System.Runtime.InteropServices.COMException (0x80071392):

The object already exists.

at System.Directoryservices.Interop.IAds.SetInfo()

at System.Directoryservices.DirectoryEntry.CommitChanges()

316 Chapter 17 Directory Services

Figure 17.1 Programming interfaces for Active Directory

This does not mean anything other than that the calling of
CommitChanges() in the class DirectoryEntry has internally been
transferred to the method SetInfo() in the interface System.
Directoryservices.Interop.IADs. SetInfo() is the well-known
method from classic ADSI used to return the property cache to the direc-
tory service and thus to make all changes persistent.

WARNING The namespace System.Directoryservices.Interop is
not documented and is displayed in the object browser of Visual Studio. In this
namespace, the interfaces IADs, IADsContainer, and so on (well known
from classic ADSI) are defined. Because an instancing of interfaces is no longer
possible in .NET, the interfaces had to be combined with classes.

System.DirectoryServices and the ADSI Adapter 317

17.
D

IRECTO
RY

SERVICES

System.DirectoryServices
System.DirectoryServices.dll

Active Directory Service Interface (ADSI)
activeds.dll

Network

C/C++
Client

COM
Client

.NET
Client

ADSI
Provider
LDAP://

adsldp.dll

ADSI
Provider
WinNT://
adsnt.dll

LDAP-API
wldap32.dll

Win32-API

Exchange
Server, Active
Directory, u.a.

NT4.0
NT5.x (without AD)

Access via
NativeObject

Object Model
The classes in the namespace System.Directoryservices can be
divided into two groups:

■ General classes for the access to leaves and containers
■ Classes for the execution of LDAP search queries (see Chapter 19)

The two central classes in the namespace are DirectoryEntry and
DirectoryEntries.

Class DirectoryEntry
The class DirectoryEntry represents any directory entry regardless of
whether it is a leaf or a container. This class owns the property Children
of the type DirectoryEntries. This object volume is filled only when the
object is a container (that is, if it has subobjects). The object volume also
exists in a leaf object; however, it is empty.

In the attribute Property, the DirectoryEntry class has an object
volume of the type PropertyCollection, which represents the volume
of the directory attributes. The PropertyCollection has three subordi-
nated object volumes:

■ PropertyNames points to a KeysCollection object that contains
strings with the names of all directory attributes.

■ Values points to ValuesCollection, which in turn contains sin-
gle object volumes of the type PropertyValueCollection. This is
necessary because each directory attribute can have several values.
The ValuesCollection represents the volume of values of all
directory attributes; PropertyValueCollection, on the other
hand, stands for the single values of a directory attribute.

■ The attribute Item(ATTRIBUTNAME) delivers the respective
PropertyValueCollection for an attribute name that is to be
transferred as parameter.

WARNING Access to the attribute Values generally is not executed because
usually the values are needed without the attribute names. The common process
is either the direct use of Item(), when the attribute name is known, or the iter-
ation via PropertyNames and, subsequently, the use of Item(), if all attrib-
utes will be listed with their respective values.

318 Chapter 17 Directory Services

Each DirectoryEntry object (see Figure 17.2) owns an attribute
named NativeObject, which refers to the respective object. This enables
a quick change to classic ADSI programming.

System.DirectoryServices and the ADSI Adapter 319

17.
D

IRECTO
RY

SERVICES

DirectoryEntry
String

COM-Object

Object

IADs

PropertyCollection ValueCollection

PropertyValue
Collection

KeysCollection

String

DirectoryEntries

SchemaName
Collection

Children

Item

Add()
Find

SchemaFilter

Properties Values

PropertyNamesParent
SchemaEntry

NativeObject

ItemItemItem

ItemItemItem

Item

Item

Item

Figure 17.2 Object model of the classes in the namespace
System.Directoryservices, Part 1

Class DirectoryEntries
The class DirectoryEntries supports the interface IEnumerable and
thus enables the enumeration of its members via a foreach loop. The vol-
ume can be filtered by specifying a volume of directory service classes via
SchemaNameCollection, which will be selected. The method Find()
displays a DirectoryEntry object. If the object specified by name does
not exist in this container, there is an InvalidOperationException.

The class DirectoryEntries cannot be instanced. You can retrieve a
DirectoryEntries object only via the attribute Children of a
DirectoryEntry object.

Class for the Execution of Search Queries
Search queries have been executed in ADSI via ActiveX Data Objects
(ADO) (that is, an OLEDB provider). In .NET, there are now proper
classes for the execution of LDAP search queries, which are independent of
ADO.NET and can access the LDAP implementation of Windows directly.

Whereas the OLEDB provider supports LDAP query syntax and SQL
commands for ADSI queries, classes built in to the .NET class library can
process only LDAP query syntax.

With the OLEDB provider and with the .NET classes, only LDAP-
capable directory services can be queried. The LDAP query syntax is a
standard ([RFC1960] and [RFC2254]), and therefore nothing other than
the COM implementation (see Figure 17.3).

320 Chapter 17 Directory Services

Item

Values

PropertyNames

Item

DirectorySearcher

String

DirectoryEntry

StringCollection

SearchScope

SortOption

SearchResults

SearchResult
Collection

Results
PropertyCollection

Results
PropertyValue

Collection

KeysCollection

ValuesCollection

Sort

FindOne()

GetDirectoryEntry()

FindAll()

SearchScope

Properties

PropertiesToLoad Item
Object

SearchRootSearchRootSearchRoot

ItemItemItem

Figure 17.3 Object model of the class in the namespace System.
Directoryservices, Part 2

Comparison of System.Directoryservices
and ADSI
Table 17.1 shows that for many interfaces from classic ADSI there are no
longer respective specific classes in System.Directoryservices.

Table 17.1 System.Directoryservices versus ADSI

Directory Object Class ADSI in .NET (System.
in Active Directory ADSI in COM Directoryservices)

Leaf classes Interface IADs Class DirectoryEntry
Container classes Interface IADsContainer Class DirectoryEntries
Class User Interface IADsUser N/A (DirectoryEntry)
Class Computer Interface IADsComputer N/A (DirectoryEntry)
Class Group Interface IADsGroup N/A (DirectoryEntry)
N/A Class ADODB.Connection Class DirectorySearcher
Any classes Class ADODB.RecordSet Class

SearchResultCollection

Deficiencies in the ADSI Adapter

Microsoft performed a fundamental shift in direction regarding directory
services programming between Release Candidate 1 and Release
Candidate 2 of WPS. This shift in direction was not only unexpected, it also
led in the wrong direction; thus, this is the point where severe criticism
toward Microsoft is appropriate.

Up to Release Candidate 1, you had to directly use a .NET class from
the .NET namespace System.Directoryservices for these scripting
jobs. As mentioned previously, these classes are internally based on COM
interfaces of ADSI, and in some cases you had access to these interfaces
underlying the scripting.

Starting with Release Candidate 2, Microsoft intended to introduce a
simplification with the proper WPS type [ADSI]. The intention was good;
the realization, however, was an absolute catastrophe.

There are six problems:

■ The built-in WPS type [ADSI] instances the type System.
Directoryservices.DirectoryEntry, but offers only attributes
and no methods of this class. The methods are hidden by the WPS
Adapter.

■ The created WPS object offers the methods of the underlying clas-
sic ADSI interfaces instead.

■ The important commandlet Get-Member shows neither one nor the
other method.

■ Also in direct instancing of System.Directoryservices.
DirectoryEntry, the previously mentioned method chaos is
effective.

■ The methods of the class System.Directoryservices.
DirectoryEntry are available only via the subobject PSBase.

■ DirectoryEntry objects cannot be processed in the WPS pipeline
with the common commandlets Select-Object, Format-Table,
and so forth. Only the object-based style is possible.

This is a really illogical and distracting implementation. Already in the
Windows Script Host (WSH), directory services scripting wasn’t easy to
learn; now it becomes even more difficult.

Deficiencies in the ADSI Adapter 321

17.
D

IRECTO
RY

SERVICES

Figure 17.4 documents the chaos:

■ An entry in a directory service possesses only attributes (that is,
data) and no methods (that is, operations). These attributes are
encapsulated in COM classes.

■ Directory service operations are provided by the respective protocol
(for example, LDAP). The classic ADSI encapsulates these opera-
tions in methods that are provided as part of the COM classes.

A .NET object of the type DirectoryEntry encapsulates the ADSI
COM object, but also offers other methods at the same time (which inter-
nally rely on ADSI). The object DirectoryEntry offers direct access to
the ADSI methods via the subobject NativeObject.

The WPS object, which in turn represents a capsule around the
DirectoryEntry object, now does not use the methods of
DirectoryEntry, but the methods of the inner ADSI objects instead.

The WPS object offers access to the methods of the DirectoryEntry
object via the subobject PSBase.

322 Chapter 17 Directory Services

PowerShell Object (.NET)

DirectoryEntry Object (.NET)

ADSI Object (COM)

Directory
Service
Entry
(ADS)

Method

Method

Attribute

NativeObject

Attribute Attribute Attribute Attribute

Method

Method

PSBase

Method

Attribute

Figure 17.4 Chaos in the directory service operations

Aruk Kumaravel, Windows PowerShell Development Manager at
Microsoft, admits in [Kumaravel01] that it had been unwise to hide
methods: “In retrospect, maybe we should have exposed these.”

Furthermore, a critical note has to be made that Microsoft implements
such a fundamental change between a RC1 and a RC2. All WPS scripts
written for the Active Directory until then had to go down the drain. Such
a decision can be expected in the beta phase, but certainly not shortly
before launching.

Microsoft has announced that in WPS 2.0 they will improve the ADSI
object adapter by exposing all the members of DirectoryEntry, espe-
cially Parent, Path, Children, SchemaClassName, and SchemaEntry.
However, at the time of this writing, WPS 2.0 is still an early prerelease
version, and there is not yet a confirmed release date.

Object Identification in Directory Services (Directory
Services Paths)

To program with directory services, you must be able to identify the entries
in the directory service.

ADSI also uses the so-called COM monikers for path names under
.NET to identity entries in different directory services and to get a pointer
to the meta object. The moniker has the following form:

<Namespace ID>:<Provider-Specific Part>

And it is called the directory path (or ADSI path) in this context.

WARNING Be careful: The namespace IDs are case sensitive. However, the
rest of the path is not case sensitive.

The provider-specific part of the directory service path contains the
distinguished name (DN) of the directory object and a server name (see
Table 17.2).

Object Identification in Directory Services 323

17.
D

IRECTO
RY

SERVICES

Table 17.2 Sample Paths in Different Directory Services

Namespace Directory Path

Active Directory (via LDAP) LDAP://server/cn=Agents,dc=FBI,dc=NET
LDAP://XFilesServer1.FBI.net/cn=Fox Mulder,
OU=Agents,dc=FBI,dc=NET

NT 4.0-domains and local WinNT://Domain/Computer/User
Windows user databases WinNT://Computername/Groupname
(“SAM”) WinNT://Domain/User

Novell 3.x NWCOMPAT://NWServer/printername

Novell 4.x (NDS) NDS://Server/O=FBI/OU=Washington/cn=Agents

IIS IIS://ComputerName/w3svc/1

Object Identification in the Active Directory
For addressing the entries in an Active Directory, LDAP directory paths in
the form LDAP://server:port/DN are used. In this path, all components are
optional.

If there is no server name, the so-called Locator Service is used.
Regarding serverless connections, the Active Directory locator service,
with help from the Domain Name Service (DNS), looks for the best
domain controller for the indicated directory entry. Domain controllers
with a good connection are preferred.

Without a designated port, the standard LDAP port 389 is used.
Without a DN, the default naming context is called in the current

domain.

TIP Regarding Active Directory, you should always use the name of the domain
controller closest by as server name. You can retrieve the server name of the
domain controller via the commandlet Get-DomainController (contained
in PSCX). Connecting without indicating a server (serverless connection) is possi-
ble, but for performance reasons not recommendable.

When addressing a directory entry with such a path, there is the dan-
ger that directory objects have been renamed in the meantime. Some
directory services thus enable connecting via a GUID, which remains
unchangeable for a directory object:

LDAP://XFilesServer1/<GUID=228D9A87C30211CF9AA400AA004A5691>

324 Chapter 17 Directory Services

For standard containers in an Active Directory, there is special sup-
port. For these so-called well-known objects, there is a predefined GUID
(well-known GUID), which is the same in each Active Directory:

LDAP://<WKGUID=a9d1ca15768811d1aded00c04fd8d5cd,dc=fbi,dc=net>

Note that here WKGUID= is to be used, and that the GUID indicated
thereafter is not the real GUID of the object. The standard containers get
an individual GUID when Active Directory is installed; the WKGUID is a
generally valid alias.

Table 17.3 List of Well-Known Objects

Well-Known Object GUID

cn=Deleted Objects 18E2EA80684F11D2B9AA00C04F79F805

cn=Infrastructure 2FBAC1870ADE11D297C400C04FD8D5CD

cn=LostAndFound AB8153B7768811D1ADED00C04FD8D5CD

cn=System AB1D30F3768811D1ADED00C04FD8D5CD

ou=Domain Controllers A361B2FFFFD211D1AA4B00C04FD7D83A

cn=Computers AA312825768811D1ADED00C04FD8D5CD

cn=Users A9D1CA15768811D1ADED00C04FD8D5CD

Overview of the Common Programming Tasks

This section documents the most important mechanisms of directory
service programming with System.DirectoryServices.

Binding to Directory Entries
Precondition for access to entries in the directory service is the binding of
a meta object to a directory entry (see Figure 17.5). Whereas under the
classic ADSI the binding process was executed via the method
GetObject(), in System.DirectoryServices this happens via a
parameter during the instancing of the class DirectoryEntry.

Overview of the Common Programming Tasks 325

17.
D

IRECTO
RY

SERVICES

For example

$o = new-object system.directoryservices.directoryEntry

➥("LDAP://XFilesServer1")

$u = new-object system.directoryservices.directoryEntry

➥("LDAP://XFilesServer1/CN=Fox Mulder,OU=Agents,DC=FBI,DC=net")

For this purpose, there also exists a shortcut via the built-in WPS data
type [ADSI], for example

$o = [ADSI] "LDAP://XFilesServer1"

$u = [ADSI] "LDAP://XFilesServer1/CN=Fox

➥Mulder,OU=Agents,DC=FBI,DC=net"

After this operation, the variable $o contains the instance of the class
DirectoryEntry. When you access $o, the relative path appears on the
console.

326 Chapter 17 Directory Services

Figure 17.5 Access to an Active Directory entry

If there is no indication for an LDAP path, DirectoryEntry will set
up a connection to the default naming context of the Active Directory to
which the computer belongs when instanced:

New-Object System.DirectoryServices.DirectoryEntry

Impersonation
By default, the class DirectoryEntry logs in to the Active Directory
under the user account that originally started the script. When you apply
impersonation, however, it is possible to use another user for the commu-
nication with the Active Directory, if the starting user does not have suffi-
cient privileges.

The class DirectoryEntry uses the ADSI impersonation mode by
indicating a username and a password when instancing the class
DirectoryEntry as second and third parameters (see Figure 17.6):

$o = new-object system.directoryservices.directoryEntry

➥("LDAP://XFilesServer1/CN=Fox

➥Mulder,OU=Agents,DC=FBI,DC=net", "FoxMulder",

➥"I+love+Scully")

Overview of the Common Programming Tasks 327

17.
D

IRECTO
RY

SERVICES

Figure 17.6 Access with and without impersonation

Checking the Existence of Directory Entries
The classic ADSI did not have a built-in method to check the existence of
a directory object. You had to rely on time-consuming “trial and error”
[WPE01]. Under .NET, the class DirectoryEntry offers the static
method Exists() to check whether a directory object, specified by means
of its ADSI path, really exists:

$YesNo = [system.directoryservices.directoryEntry]::Exists

➥("LDAP://XFilesServer1/CN=Fox

➥Mulder,OU=Agents,DC=FBI,DC=net")

You can shorten this as follows:

$YesNo = [ADSI]::Exists("LDAP://XFilesServer1/CN=Fox

➥Mulder,OU=Agents,DC=FBI,DC=net")

Reading Directory Entry Attributes
Actually, the object model of System.Directoryservices is compli-
cated. In a DirectoryEntry object, the single values are convoluted and
are accessible only via the volumes Properties and PropertyValue
ObjectCollection. However, the WPS ADSI adapter makes it easier for
the user. You can just write the following:

$xy = $obj.AttributeName

Even multivalued attributes can be retrieved in this way.
In Listing 17.1, data about a user is retrieved.

Listing 17.1 Fetching a Directory Object

new-object

system.directoryservices.directoryEntry("LDAP://XFilesServer1/

➥CN=Fox Mulder,OU=Agents,DC=FBI,DC=net")

"Name: "+ $o.sn

"City: " + $o.l

"Telephone Number: " +$o.Telephonenumber

"Other Telephone Numbers: " +$o.OtherTelephone

WARNING The access to a directory attribute that does not exist does not
cause an error. Therefore, be careful of the syntax!

To fetch the directory path of a directory entry, which is already acces-
sible for you in form of a variable, you have to use .psbase.path (for
example, $o.psbase.path).

328 Chapter 17 Directory Services

ADSI Property Cache
Because ADSI objects are only placeholders for directory entries, attribute
values are administered in a property cache. When an attribute is accessed
for the first time, ADSI downloads all attribute values in the property
cache. Write accesses are possible via assignments to the attributes.

All write accesses have to be concluded by calling the method
CommitChanges() (SetInfo() under classic ADSI). Only then will the
property cache be transferred to the underlying directory service.
Therefore, transaction security can be guaranteed: Either all changes will
be effected or none. There is also a method for the import of attributes into
the property cache: RefreshCache() (complies with GetInfo() under
classic ADSI). The program should explicitly call it when there are doubts
that the values in the property cache are not up to date. With
RefreshCache(), changes can also be discarded, if there is no
CommitChanges() between the changes and the RefreshCache().
Before a first access to an attribute is executed, single values can be
imported in the property cache by indicating an array with attribute name
in RefreshCache(ARRAY_OF_STRING), to diminish the network use by
preventing a transfer of all attributes.

In contrast to classic ADSI, System.Directoryservices offers the
possibility to switch off the property cache. To do this, you need the fol-
lowing command after instancing the DirectoryEntry object:

$o.PSBase.UsePropertyCache = 0

NOTE The switching off of the property cache does not work with creating
directory objects of directory classes that possess mandatory attributes, because
the directory service creates an entry only after all mandatory attributes have
been transferred.

Writing Directory Entry Attributes
Writing to a directory attribute is nearly as simple as reading. You only have
to assign a value or an array of values (if a multivalued attribute is con-
cerned) to the relevant directory attribute.

Overview of the Common Programming Tasks 329

17.
D

IRECTO
RY

SERVICES

It’s important, however, that in the end the property cache is written to
the directory service. Because of the already mentioned method chaos,
there are now two options:

■ Calling the COM method SetInfo()
■ Calling the .NET method CommitChanges() via the subobject
PSBase

In the .NET world, the method is not named SetInfo(), but
CommitChanges():

Listing 17.2 Changing a Directory Object

$o.Telephonenumber = "+49 201 7490700"

$o.OtherTelephone = "+01 111 222222","+01 111 333333","+49 111 44444"

$o.SetInfo()

oder:

$o.PSBase.CommitChanges()

Common Properties
The meta class DirectoryEntry possesses a few attributes that contain
basic properties of a directory object (see Listing 17.3), including the
following:

■ Name Relative distinguished name of the object
■ Path Distinguished name of the object
■ SchemaClassName Name of the directory service class in the dia-

gram of the directory service
■ Guid Global unique identifier (GUID) of the meta object
■ NativeGuid The GUID for the directory service object
■ Children List of the subordinate objects
■ UsePropertyCache Flag, which indicates whether the property

cache will be used

WARNING Unfortunately, you cannot call these general attributes directly in
the current final version of WPS, but only via PSBase.

330 Chapter 17 Directory Services

Listing 17.3 Accessing Basic Properties of a Directory Object

$o = new-object system.directoryservices.directoryEntry

➥("LDAP://XFilesServer1/CN=Fox Mulder,OU=Agents,

➥DC=FBI,DC=net", "FoxMulder", "I+love+Scully")

"Class: " + $o.PSBase.SchemaClassName

"GUID: " + $o.PSBase.Guid

Accessing Container Objects
Binding to container objects and access to their directory attributes is
affected completely identically to the access to leaf objects (that is, via
the class DirectoryEntry). If you want to have the subobjects of the
container listed, however, you must call the subobject Children, which
displays a DirectoryEntries object (see Listing 17.4). The
DirectoryEntries object contains an instance of the class
DirectoryEntry for each subordinated directory entry.

Again, keep in mind that the subobject Children is not available
directly, but only via PSBase.

Listing 17.4 List of the Subobjects of a Container

$Path= "LDAP://XFilesServer1/OU=Agents,DC=FBI,DC=net"

$con = new-object system.directoryservices.directoryEntry($Path)

$con.PSBase.Children

Actually, the DirectoryEntries collection does not possess a
numeric index. Nevertheless, WPS allows numeric access to the elements
with a trick (that is, encapsulating the collection into a hash table with the
@ sign; see Chapter 5, “The PowerShell Navigation Model”):

"The second element is " +

➥@($con.PSBase.Children)[1].distinguishedName

Alternatively, you can search for an element in the container by means
of its CN with the method Find():

"Search for an element " +

➥$con.PSBase.Children.find("cn=Fox Mulder").distinguishedName

Overview of the Common Programming Tasks 331

17.
D

IRECTO
RY

SERVICES

Creating Directory Entries
A directory entry is created via the parent container because only this con-
tainer knows whether it is at all prepared to accept a certain directory class
as subobject. The method Add() of the .NET class DirectoryEntries
expects in the first parameter the relative distinguished name (RDN) of
the new entry, and in the second parameter the name of the directory serv-
ice class, which will be used as schema for the entry. After setting of poten-
tial mandatory attributes, you have to call CommitChanges():

Listing 17.5 Creating an Organizational Unit

"Creating a OU..."

$Path= "LDAP://XFilesServer1/DC=FBI,DC=net"

$con = new-object system.directoryservices.directoryEntry($Path)

$ou = $con.PSBase.Children.Add("ou=Directors","organizationalUnit")

$ou.PSBase.CommitChanges()

$ou.Description = "FBI Directors"

$ou.PSBase.CommitChanges()

"OU has been created!"

Deleting Directory Entries
A directory entry is either deleted via a method call to itself
(DeleteTree()) or via the execution of the method Remove() on a par-
ent container entry. In this case, you have to indicate the DirectoryEntry
object, which represents the directory entry that is to be deleted, as param-
eter. The call of CommitChanges() is not necessary:

Listing 17.6 Deleting an Organizational Unit

$ouPath= "LDAP://XFilesServer1/ou=Directors,DC=FBI,DC=net"

$ou = new-object system.directoryservices.directoryEntry($ouPath)

if ([system.directoryservices.directoryEntry]::Exists($ouPath))

{

"OU already exists and will now be deleted!"

$ou.PSBase.DeleteTree()

}

332 Chapter 17 Directory Services

TIP DeleteTree() has the advantage that it recursively also deletes all sub-
objects.

Summary

Unfortunately, WPS 1.0 includes no commandlets for the administration of
directory services. Also, WMI is not helpful here. In this lesson, you
learned how to use the Active Directory Service Interface (ADSI) and its
.NET-based API System.DirectoryServices to access LDAP- and
non-LDAP-based directory services.

You learned about object identification with paths, binding from a
DirectoryEntry object to the real directory entry, impersonation when
using a directory service, and all basic operations such as reading and writ-
ing entries and the creation of new entries and the deletion of entries.

In the next chapter, you use this as the necessary basic knowledge for
the administration of user accounts and groups in the Active Directory.

Summary 333

17.
D

IRECTO
RY

SERVICES

This page intentionally left blank

335

C H A P T E R 1 8

USER AND GROUP MANAGEMENT
IN THE ACTIVE DIRECTORY

In this chapter:
Directory Class User . 335
Creating a User Account . 339
Authentication . 341
Deleting Users . 342
Renaming User Accounts . 342
Moving User Accounts . 343
Group Management . 343
Organizational Units . 346

This chapter provides some examples of the use of classes of the name-
space System.Directoryservices to access Microsoft Active Directory.
Specifically, you will learn how to manage user accounts, groups, and orga-
nizational units.

Directory Class User

A user entry in the Active Directory (AD class user) possesses numer-
ous directory attributes. A mandatory attribute, owned by all user entries,
is SAMAccountName, which contains the Windows NT 3.51/NT 4.0-
compatible login name.

Table 18.1 shows further directory attributes of user entries in the
Active Directory. There are some amazingly short names, such as l for
city, and extremely long ones, such as physicalDeliveryOfficeName for
office.

Table 18.1 Selected Attributes of the Active Directory Class User

Name Manda- Multi- Data Type
tory valued (Length)

cn Yes No DirectoryString (1–64)

nTSecurityDescriptor Yes No ObjectSecurityDescriptor
(0–132096)

objectCategory Yes No DN

objectClass Yes Yes OID

ObjectSid Yes No OctetString (0–28)

SAMAccountName Yes No DirectoryString (0–256)

accountExpires No No INTEGER8

accountNameHistory No Yes DirectoryString

badPwdCount No No INTEGER

comment No No DirectoryString

company No No DirectoryString (1–64)

createTimeStamp No No GeneralizedTime

department No No DirectoryString (1–64)

description No Yes DirectoryString (0–1024)

desktopProfile No No DirectoryString

displayName No No DirectoryString (0–256)

displayNamePrintable No No PrintableString (1–256)

DistinguishedName No No DN

division No No DirectoryString (0–256)

employeeID No No DirectoryString (0–16)

EmployeeType No No DirectoryString (1–256)

expirationTime No No UTCTime

FacsimileTelephoneNumber No No DirectoryString (1–64)

givenName No No DirectoryString (1–64)

homeDirectory No No DirectoryString

HomeDrive No No DirectoryString

homeMDB No No DN

Initials No No DirectoryString (1–6)

internationalISDNNumber No Yes NumericString (1–16)

336 Chapter 18 User and Group Management in the AD

Name Manda- Multi- Data Type
tory valued (Length)

l No No DirectoryString (1–128)

lastLogoff No No INTEGER8

LastLogon No No INTEGER8

logonCount No No INTEGER

LogonHours No No OctetString

logonWorkstation No No OctetString

manager No No DN

middleName No No DirectoryString (0–64)

Mobile No No DirectoryString (1–64)

name No No DirectoryString (1–255)

objectGUID No No OctetString (16–16)

ObjectVersion No No INTEGER

otherFacsimile No Yes DirectoryString (1–64)
TelephoneNumber

OtherHomePhone No Yes DirectoryString (1–64)

physicalDeliveryOfficeName No No DirectoryString (1–128)

PostalAddress No Yes DirectoryString (1–4096)

postalCode No No DirectoryString (1–40)

PostOfficeBox No Yes DirectoryString (1–40)

profilePath No No DirectoryString

SAMAccountType No No INTEGER

scriptPath No No DirectoryString

street No No DirectoryString (1–1024)

streetAddress No No DirectoryString (1–1024)

TelephoneNumber No No DirectoryString (1–64)

title No No DirectoryString (1–64)

userWorkstations No No DirectoryString (0–1024)

whenChanged No No GeneralizedTime

whenCreated No No GeneralizedTime

wWWHomeLeaf No No DirectoryString (1–2048)

Directory Class User 337

18.
U

SER
AN

D
G

RO
UP

M
AN

AGEM
EN

T
IN

THEA
CTIVED

IRECTO
RY

Some multivalued fields from the dialog boxes of the MMC snap-in
Active Directory User and Computer are stored in Active Directory in
more than one attribute. A good example for this is the list of telephone
numbers. The main telephone number is stored in the single-valued attrib-
ute telephoneNumber, whereas the other telephone numbers are per-
sisted in the multivalued attribute otherTelephone. Additional cases of
this kind include the following:

mobile/otherMobile

mail/otherMailbox

logonWorkstation/otherLoginWorkstations.

NOTE By the way, the preceding named attributes are not typos by the author
(login–logon), but inconsistencies within the Active Directory; the persons respon-
sible for this can be found in Redmond.

You can gather a complete list of all directory attributes in the docu-
mentation of the Active Directory schema [MSDN09]. In the script, use
the LDAP names of the attributes, indicated in the documentation as
“LDAP Display Name” (see Figure 18.1).

Unfortunately, the LDAP attribute name is partly located very far away
from the names in the MMC console. The document “User Object User
Interface Mapping” [MSDN10] helps to find the right LDAP names.
Another option is to take a look at the “raw” directory and search for the
LDAP names with the tool ADSI Edit from the Support Tools for
Windows Server.

338 Chapter 18 User and Group Management in the AD

Creating a User Account 339

Figure 18.1 Documentation of the Active Directory schema

Creating a User Account

Because the creation of an object is initiated by the parent container, the
first step is to bind the container to DirectoryEntry. The creation of a
new entry is effected with a call to the method Add(), by indicating the
RDN of the new entry in the first parameter and the Active Directory class
name user in the second parameter.

The setting of the attribute SAMAccountName is mandatory. If the
property cache has not been switched off, CommitChanges() has to be
executed after all attributes have been set; otherwise, the user entry will
not be created.

18.
U

SER
AN

D
G

RO
UP

M
AN

AGEM
EN

T
IN

THEA
CTIVED

IRECTO
RY

By default, a new user account is deactivated in the Active Directory.
The easiest option to activate it is to access the attribute Account
Disabled in the COM interface IADsUser.

Example
In Listing 18.1, a user account, Walter Skinner, with the login name
WalterSkinner is created. As optional attributes, only city (l) and descrip-
tion (Description) are set.

Listing 18.1 Creating a User Object in Active Directory

Create ADS-user

$Path= "LDAP://XFilesServer1/OU=Directors,DC=FBI,DC=net"

$name = "Walter Skinner"

$NTname = "WalterSkinner"

$ou = New-Object Directoryservices.DirectoryEntry($Path)

$user = $ou.PSBase.Children.Add("CN=" + $name,'user')

$user.PSBase.CommitChanges()

$user.SAMAccountName = $NTname

$user.l = "Washington"

$user.Description = "FBI Director"

$user.PSBase.CommitChanges()

"User has been created: " + $user.PBase.Path

$user.SetPassword("secret-123")

"Password is set"

$user.Accountdisabled = $false

"User has been activated!"

Setting the Password
The password of a user account can be set only after the user account has
been created in the directory service. Also in this operation, the imperson-
ation is necessary under .NET. Listing 18.2 shows setting a password.

You can now take advantage from the fact that Windows PowerShell
(WPS) publishes ADSI methods rather than COM methods, because the
method for the setting of a password (SetPassword()) does not exist on
the .NET level. Being a parameter, the new password has to be transferred
in form of a string; it cannot be encrypted! After the setting of a password,
the user can be activated.

340 Chapter 18 User and Group Management in the AD

Listing 18.2 Setting a Password for an AD User Account

"User has been created: " + $user.PBase.Path

$user.SetPassword("secret-123")

"Password has been set"

$user.userAccountControl = 512

$user.PSBase.CommitChanges()

Authentication

Unfortunately, there is no built-in method that enables an authentication
with username and password against Active Directory. To realize this, you
can only use the trial-and-error method [WPE01]. You try to access the
Active Directory by applying the impersonation with the login data to be
checked. If access to the attribute NativeGuid is successful, the data is
correct. If the data is not correct, you receive an error message. This is
realized in the following helper routine, Authenticate-User() (see
Listing 18.3).

Listing 18.3 Authentication with Active Directory

Function Authenticate-User {

trap [System.Exception] { "Error!"; return $false; }

"Try, user " + $args[1] + " with the password " + $args[2] +

➥" to authenticate " + $args[0] + "..."

$o = new-object

system.directoryservices.directoryEntry([string]$args[0],

➥[String]$args[1], [String]$args[2])

$o.PSBase.NativeGUID
return $true

}

#$o = new-object system.directoryservices.directoryEntry("LDAP://E02")

#$o.get_NativeGUID()

$e = Authenticate-User "LDAP://XFilesServer1"

➥"fbi\foxmulder" "I+love+Scully"

$e

if ($e) { "User could be authenticated!" }

else { "User could NOT be authenticated!" }

Authentication 341

18.
U

SER
AN

D
G

RO
UP

M
AN

AGEM
EN

T
IN

THEA
CTIVED

IRECTO
RY

Deleting Users

To remove a user account, you can apply the method DeleteTree(), even
if the user is a leaf entry (that is, if he has no subentries):

Listing 18.4 Deleting a User

$Path= "LDAP://XFilesServer1/CN=Walter Skinner,OU=Agents,DC=FBI,DC=net"

$user = new-object system.directoryservices.directoryEntry($Path)

if ([system.directoryservices.directoryEntry]::Exists($Path))

{

"User already exists and will be deleted now!"

$user.PSBase.DeleteTree()

}

else

{

"User does not exist!"

}

Renaming User Accounts

With the method Rename(), the class DirectoryEntry offers a quite sim-
ple procedure for the renaming of a directory entry. Under classic ADSI,
you had to use the IADsContainer method MoveHere() to accomplish
this.

Example
In Listing 18.5, the user account “Walter Skinner” is renamed to “Walter
S. Skinner.”

Listing 18.5 Renaming an AD User Account

Rename user

$Path= "LDAP://XFilesServer1/CN=Walter

Skinner,OU=Directors,DC=FBI,DC=net"

$user = new-object system.directoryservices.directoryEntry($Path)

$user.PSBase.Rename("cn=Walter S. Skinner")

"User has been renamed!"

342 Chapter 18 User and Group Management in the AD

Moving User Accounts

In the .NET class DirectoryEntry, there is an equivalent to the COM
method IADSContainer.MoveHere() with the method MoveTo(). This
method moves a directory entry to another container. The target container
has to be transferred as parameter in form of a second DirectoryEntry
object.

Example for Moving a User Account
In Listing 18.6, the user account Fox Mulder from the organization unit
Agents is moved to the standard user container Users.

Listing 18.6 Moving an AD User Account

Move user

$Path= "LDAP://XFilesServer1/CN=Walter Fox

Mulder,OU=Agents,DC=FBI,DC=net"

$target = "LDAP://XFilesServer1/CN=Users,DC=FBI,DC=net "

$user = new-object system.directoryservices.directoryEntry($Path)

$user.PSBase.MoveTo($target)

"Object has been moved!"

Group Management

In a directory object of the type group, there exists an attribute Member
with LDAP paths to the group members. To display the members of a
group, you therefore only need a one-liner. The following command shows
the members of the group of all FBI agents:

(new-object directoryservices.directoryentry

("LDAP://XFilesServer1/CN=All Agents,DC=FBI,DC=net")).member

Nevertheless, this command displays only the direct members. When
a group contains another group, however, there are also indirect members.
The following function, Get-Members, which is implemented in Listing
18.7, fetches recursively all direct and indirect members of a group in the
Active Directory. Figure 18.2 shows the result.

Group Management 343

18.
U

SER
AN

D
G

RO
UP

M
AN

AGEM
EN

T
IN

THEA
CTIVED

IRECTO
RY

Listing 18.7 Listing of Indirect Group Members

#######################################

PowerShell Script

Display all direct and indirect members of a group

(C) Dr. Holger Schwichtenberg

http://www.windows-scripting.com/

##

#(new-object directoryservices.directoryentry

➥("LDAP://xfilesserver/CN=All FBI

➥Employees,DC=FBI,DC=net")).member

"Direct Group Members:"

$group = New-Object directoryservices.directoryentry

➥("LDAP://xfilesserver/CN=All FBI Employees,DC=FBI,DC=net")

$group.member

function Get-Members ($group){

if ($group.objectclass[1] -eq 'group') {

"-- Group $($group.cn)"

$Group.member | foreach-object {

$de = new-object

directoryservices.directoryentry("LDAP://xfilesserver/" + $_)

if ($de.objectclass[1] -eq 'group') {

Get-Members $de

}

Else {

$de.distinguishedName

}

}

}

Else {

Throw "$group is not a group."

}

}

"--- Listing of Group Members:"

"All Members (including non-direct):"

Get-Members(new-object directoryservices.directoryentry(

➥"LDAP://xfilesserver/CN=All Employees,DC=FBI,DC=net"))

344 Chapter 18 User and Group Management in the AD

Figure 18.2 Listing of Direct and Indirect Group Members

Creating and Filling a Group
You create a group in the same way as you create a user. When creating
groups, however, note the different class name (group) used, as compared
to creating users:

Listing 18.8 Creating a Group

"Creating a group..."

$Path= "LDAP://XFilesServer1/DC=FBI,DC=net"

$con = new-object system.directoryservices.directoryEntry($Path)

$ou = $con.PSBase.Children.Add("cn=All Directors","group")

$ou.PSBase.CommitChanges()

$ou.samaccountname = "AllDirectors"

$ou.Description = "Group for FBI Directors"

$ou.PSBase.CommitChanges()

""Group was created!"

Assigning Group Members
There are no specific methods for the assignment of users to groups in the
class DirectoryEntry. Here, a WPS object once again enables access
to the methods Add() and Remove() defined in the COM interface
IADsGroup (see Listings 18.9 and 18.10).

Group Management 345

18.
U

SER
AN

D
G

RO
UP

M
AN

AGEM
EN

T
IN

THEA
CTIVED

IRECTO
RY

Listing 18.9 Adding Users to Groups

Add a group member

$Path= "LDAP://XFilesServer1/cn=All Directors,DC=FBI,DC=net"

$gr = new-object system.directoryservices.directoryEntry($Path)

$User = "LDAP://XFilesServer1/CN=Walter

➥Skinner,OU=Directors,DC=FBI,DC=net"

$ou.Add($User)

"User " + $User + " have been added to the goup " + $ou + "

Listing 18.10 Deleting Users from Groups

Deleting a group member

$Path= "LDAP://XFilesServer1/cn=All Directors,DC=FBI,DC=net"

$gr = new-object system.directoryservices.directoryEntry($Path)

$User = "LDAP://XFilesServer1/CN=Walter

Skinner,OU=Directors,DC=FBI,DC=net"

$ou.Remove($User)

"User " + $User + " have been deleted from group " + $ou + "

Organizational Units

How organization units (directory service class organizationalUnit)
are created and deleted has already been demonstrated in Chapter 17,
“Directory Services.”

When creating organization units, note the different class name
(organizationalUnit) in the first parameter and the different attribute
name (OU) in the first parameter of Add(), as compared to the creation of
users or groups (see Listing 18.11).

346 Chapter 18 User and Group Management in the AD

Listing 18.11 Script to Create an OU

Script to create an OU (The OU will be deleted if it already

➥exists!)

$ouPath= "LDAP://XFilesServer1/ou=Directors,DC=FBI,DC=net"

$ou = new-object system.directoryservices.directoryEntry($ouPath)

if ([system.directoryservices.directoryEntry]::Exists($ouPath))

{

"OU already exists and will be deleted!"

$ou.PSBase.DeleteTree()

}

"Creating an OU..."

$Path= "LDAP://XFilesServer1/DC=FBI,DC=net"

$con = new-object system.directoryservices.directoryEntry($Path)

$ou = $con.PSBase.Children.Add("ou=Directors","organizationalUnit")

$ou.PSBase.CommitChanges()

$ou.Description = "FBI Directors"

$ou.PSBase.CommitChanges()

"OU has been created!"

Summary

In this chapter, you learned the most common operations for user and
group administration in the Active Directory. Specifically, you saw how to
create users and groups through calls of the Add() method. This chapter
also covered deleting, renaming, and moving with the methods
DeleteTree(), Rename(), and MoveTo().

Summary 347

18.
U

SER
AN

D
G

RO
UP

M
AN

AGEM
EN

T
IN

THEA
CTIVED

IRECTO
RY

This page intentionally left blank

349

C H A P T E R 1 9

SEARCHING IN THE ACTIVE
DIRECTORY

In this chapter:
LDAP Query Syntax . 349
LDAP Queries in PowerShell . 351
Search Tips and Tricks . 354
LDAP Query Examples . 358
Using the Commandlet Get-ADObject . 358

In the Active Directory, just like in other LDAP-based directory services,
entries that adhere to certain criteria can be searched in several contain-
ers simultaneously using the LDAP query syntax.

LDAP Query Syntax

For LDAP queries, there exists a special syntax according to [RFC1960]
and [RFC2254]:

To execute an LDAP query, you need four parameters:

■ Path. An LDAP path, including LDAP://. The path can be indicated
in Little Endian form as well as in Big Endian form.
For example, LDAP://XFilesServer1/dc=FBI,dc=net

■ Filter. A condition in Inverted Polish notation (UPN or Postfix
notation). This notation is unique by the fact that the operators are
set at the beginning, not between the operands. Valid operations are

& (and), | (or), and ! (not). For comparison, =, <=, and >= are avail-
able, but not < and >.
For example, (&(objectclass=user)(name=h*))

■ Properties. An attribute list of the desired directory attributes that
will be built in to the table. This indication is not optional. The star
operator (*), which can be used in SQL to query databases, is not
valid.
For example, AdsPath,Name,SAMAccountname

■ Scope. One of the constants named in Table 19.1.

Table 19.1 Search Levels in ADSI Queries

Constant (LDAP Syntax) Explanation

BASE Only the level of the indicated entry is searched. The
result volume comprises one or no datasets.

ONELEVEL Only those entries are searched that are subordinated
to the entry indicated.

SUBTREE All underlying levels are searched.

Starting with Windows Server 2003, there is a new branch, Stored
Queries, in the Active Directory MMC User and Computer snap-in that
can be used to design and execute LDAP queries (see Figure 19.1).

Example for an LDAP Query
The following query searches the complete Active Directory for all user
accounts whose names start with the letter H:

■ Path. LDAP://XFilesServer1/DC=FBI,DC=net>
■ Filter. &(objectclass=user)(name=h*));
■ Properties. adspath,SAMAccountname
■ Scope. subtree

350 Chapter 19 Searching in the Active Directory

Figure 19.1 Saved queries in the MMC

LDAP Queries in PowerShell

An LDAP query is executed with .NET classes as follows (see Figure 19.2):

1. Create an instance of the class DirectorySearcher.
2. Set the root of the query by assigning a pointer to a Directory

Entry object, which is bound to the root, to the attribute
SearchRoot.

3. Set the filter part of the LDAP query in the attribute Filter.
4. Set the attributes by filling the object volume PropertiesTo

Load.

LDAP Queries in PowerShell 351

19.
SEARCHIN

G
IN

THEA
CTIVED

IRECTO
RY

5. Set the scope in the attribute SearchScope. You can define this
either by the appropriate enumeration member ([System.
DirectoryServices.SearchScope]::Subtree) or just a string
("subtree").

6. Run the query via the method FindAll(). The method
FindAll() retrieves an object volume of the type SearchResult
Collection.
The SearchResultCollection contains single SearchResult
objects.

7. A SearchResult object enables you to either access the queried
attributes by reading or to have a DirectoryEntry object for the
found directory entry displayed by the method GetDirectory
Entry(). The thus displayed DirectoryEntry object also
enables a writing access.

352 Chapter 19 Searching in the Active Directory

Item

Values

PropertyNames

Item

DirectorySearcher

String

DirectoryEntry

StringCollection

SearchScope

SortOption

SearchResults

SearchResult
Collection

Results
PropertyCollection

Results
PropertyValue

Collection

KeysCollection

ValuesCollection

Sort

FindOne()

GetDirectoryEntry()

FindAll()

SearchScope

Properties

PropertiesToLoad Item
Object

SearchRootSearchRootSearchRoot

ItemItemItem

Figure 19.2 Object model for LDAP search

Example for an LDAP Query in PowerShell
In Listing 19.1, all user accounts are searched throughout the whole Active
Directory for those whose directory names start with the letter A. Figure
19.3 shows the results.

Listing 19.1 Executing an LDAP Search in AD

$Root = new-object system.directoryservices.directoryEntry

➥("LDAP://XFilesServer/DC=FBI,DC=net")

$Filter = "(&(objectclass=user)(name=a*))"

$Attribute = "CN","ObjectClass","ObjectCategory","distinguishedName",

➥"lastLogonTimestamp","description","department","displayname"

Compile search

$Searcher = New-Object Directoryservices.DirectorySearcher($Root)

$searcher.PageSize = 900

$searcher.Filter = $Filter

$searcher.Searchscope =

➥[System.DirectoryServices.SearchScope]::Subtree

$Attribute | foreach {[void]$searcher.PropertiesToLoad.Add($_)}

Execute search

$result = $searcher.findAll()

"Number of results: " + $result.Count

$result

LDAP Queries in PowerShell 353

19.
SEARCHIN

G
IN

THEA
CTIVED

IRECTO
RY

Figure 19.3 Search results

Searching a User with Its Login Name
When only the Windows NT 4.0–compatible login name of a user is
known, but not the path of the directory service entry, you can execute the
search in the Active Directory only with an ADSI query via the attribute
SAMAccountName (see Listing 19.2). It is important to note that here that
only the username has to be indicated, and not the Windows NT 4.0–com-
patible domain name.

Listing 19.2 Search Directory Service Entry for a User Whose SAMAccountName
Is Known

$username = "FoxMulder"

"Search user " + $username + "..."

$root = new-object system.directoryservices.directoryEntry

➥("LDAP://XFilesServer1/DC=FBI,DC=net")

$Filter = "(SAMAccountName=" + $username +")"

$Attribute = "CN","ObjectClass","ObjectCategory","distinguishedName",

➥"lastLogonTimestamp","description","department","displayname"

Compile search

$Searcher = New-Object Directoryservices.DirectorySearcher($root)

$searcher.PageSize = 900

$searcher.Filter = $Filter

$searcher.SearchScope = "subtree"

$Attribute | foreach {[void]$searcher.PropertiesToLoad.Add($_)}

Execute search

$searcher.findAll()

Search Tips and Tricks

This section contains tips and tricks for effective and well-performing
searches in the Active Directory.

Use Indexed Attributes
You should use as many indexed attributes in queries as possible. In the
documentation of the Active Directory, you will learn which attributes are
indexed. Figure 19.4 shows where you can find the documentation for
Active Directory attributes in the Active Directory schema in the MSDN
library. The entry Is Indexed: True shows indexed attributes.

354 Chapter 19 Searching in the Active Directory

Figure 19.4 Documentation of AD attributes in the MSDN developer library

Avoid Multivalued Attributes
Although the following the query is correct

■ Path. LDAP://XFilesServer1/dc=FBI,dc=net>
■ Filter. (&(objectClass=user)(name=a*))
■ Properties. name,adspath

for performance reasons it is not optimal. It is better to use the following:

■ Path. LDAP://XFilesServer1/dc=FBI,dc=net>
■ Filter. (&(objectCategory=person)(objectClass=user)
(name=a*));

■ Properties. name,adspath

Search Tips and Tricks 355

19.
SEARCHIN

G
IN

THEA
CTIVED

IRECTO
RY

When executing in a large directory service, you will notice that the second
query is executed much faster.

Besides objectClass, the modified query also contains a reference to
the attribute objectCategory. The reason for this is that objectClass
is a multivalued attribute that shows the complete inheritance hierarchy of
the directory class. For example, there is a user object “top, person,
organizationalPerson, user” stored. It’s interesting that a computer object
indicates that a computer is a specialization of the user, because
objectClass contains the following for a computer: “top, person,
organizationalPerson, user, computer.” A search via a multivalued attribute
is very time-consuming. Unfortunately, no attribute in the Active Directory
contains the class name in a single-valued attribute.

Besides the class, there also exists a categorization of the directory
objects. Categories are person, group, computer, and organizational
Unit. Person contains the classes user and contact. The category of a
directory object is stored in objectCategory, and objectCategory is an
indexed attribute that enables a quick search. For this reason, it makes
sense to add objectClass and objectCategory to the conditions.

The sequence of the attributes in the condition, however, is optional;
the Active Directory optimizes itself.

The following list shows the correct filters for a quick search for dif-
ferent directory classes:

■ Contacts. (&(objectclass=contact) (objectcategory=
person)

■ User. (&(objectclass=user) (objectcategory=person)
■ Groups. (&(objectclass=group) (objectcategory=group)
■ Organizational units. (&(objectclass=organizational
Unit) (objectcategory=organizationalUnit)

■ Computer. (&(objectclass=user) (objectcategory=
computer)

Avoid the Star Operator
Another tip for the optimization of Active Directory queries is that you
should avoid the use of placeholders (star operator, *) at the beginning of
a string.

356 Chapter 19 Searching in the Active Directory

Search Results Restrictions
In standard configuration, the Active Directory limits the number of
search results to 1,000. You can change this setting in the domain policies,
as shown in Listing 19.3 and Figue 19.5.

Listing 19.3 Changing Domain Policies for Search Results Restrictions Using
Ntdsutil.Exe

C:\> ntdsutil

ntdsutil: ldap policies

ldap policy: connections

server connections: connect to server SERVERNAME

Connected to SERVERNAME using credentials of locally logged on user

server connections: q

ldap policy: show values

Policy Current(New)

...MaxPageSize 1000...

ldap policy: set maxpagesize to ##### (for example, 50000)

ldap policy: commit changes

ldap policy: q

ntdsutil: q

Disconnecting from SERVERNAME ...

Search Tips and Tricks 357

19.
SEARCHIN

G
IN

THEA
CTIVED

IRECTO
RY

Figure 19.5 Changing the domain policies for the search restriction using
the MMC

LDAP Query Examples

The following list contains further examples for possible filters for the
search for user accounts:

■ All users whose name starts with S
(&(objectCategory=person)(objectClass=user)(name=s*))

■ All users without a description
(&(objectCategory=computer)(!description=*))

■ All deactivated users
(&(objectCategory=person)(objectClass=user)

(userAccountControl:1.2.840.113556.1.4.803:=2))

In this case, the challenge is that the deactivation information is
stored in a single bit in userAccountControl. A comparison with
a fixed value with the equals sign would not lead to the desired
result. A bitwise AND is necessary. Unfortunately, this is a rather
complicated expression in LDAP query syntax:
1.2.840.113556.1.4.803. A bitwise OR would be the value
1.2.840.113556.1.4.804.

■ All users with the Password Does Not Expire setting
(&(objectCategory=person)(objectClass=user)

(userAccountControl:1.2.840.113556.1.4.803:=65536))

■ All users created after 2004/10/11
(&(objectCategory=person)(objectClass=user)

(whenCreated>=20041110000000.0Z))

WARNING A query that consists only of the condition class=* does not
work. To retrieve all directory objects, the star operator has to be applied to
another attribute.

Using the Commandlet Get-ADObject

The PowerShell Community Extensions contain the commandlet Get-
ADObject, which is able to apply the LDAP filter. Output objects are of
the type System.Directoryservices.DirectoryEntry.

358 Chapter 19 Searching in the Active Directory

Table 19.2 Using the Get-ADObject Commandlet

Get-ADObject -Class user Fetches all user accounts
(instances of the directory service
class user)

Get-ADObject -value "*domain*" Fetches all directory service
objects whose names contain the
word domain

Get-ADObject -Filter Fetches all deactivated user
"(&(objectCategory=person) accounts
(objectClass=user)(userAccount

Control:1.2.840.113556.1.4.803:=2))”

Get-ADObject -Server E02 -SizeLimit 10 Fetches the first ten directory
entries of domain controller E02

Get-ADObject -Server E02 -Scope Fetches all entries in the Users
subtree -DistinguishedName container and its subcontainers
"CN=Users,DC=IT-Visions,DC=local"

Summary

In this chapter, you learned how to use the power of LDAP search queries
to find entries in an LDAP-based directory service that match certain cri-
teria. LDAP queries contain a root path, a filter, a list of properties and a
search scope. LDAP queries can be executed through the .NET class
System. Directoryservices.DirectorySearcher or the comman-
dlet Get-ADObject from the PowerShell Community Extensions. If you
want to write well-performing queries, however, keep in mind the special
structure of the Active Directory, especially the inheritance, multivalued
attributes, and indexed attributes.

Summary 359

19.
SEARCHIN

G
IN

THEA
CTIVED

IRECTO
RY

This page intentionally left blank

361

C H A P T E R 2 0

ADDITIONAL LIBRARIES FOR
ACTIVE DIRECTORY
ADMINISTRATION

In this chapter:
Navigating the Active Directory Using the PowerShell
Community Extensions . 361
Using the www.IT-Visions.de Active Directory Extensions 362
Using the Quest Active Directory Extensions . 365
Getting Information about the Active Directory Structure 365
Group Policies . 367

A few advanced Active Directory administrative tasks can be performed
only through an additional library (for example, access to group policies).
In this chapter, you are introduced to three Add-On libraries that ease the
Active Directory administration within Windows PowerShell (WPS).

Navigating the Active Directory Using the PowerShell
Community Extensions

As soon as the PowerShell Extensions (PSCX) [CODEPLEX01] are
installed, the Active Directory can be used as a navigation container. When
WPS is started, PSCX automatically creates a new drive for the Active
Directory to which the computer belongs. The drive is named according
to the Windows NT 4.0–compatible domain name (that is, FBI:, for the
domain with the DNS name fbi.net).

www.IT-Visions.de

The following command selects all groups that have the word domain
in their names from the Users container of the Active Directory and dis-
plays this list sorted according to name:

dir FBI:/users | where { ($_.name -match "domain") -and

➥($_.Type -match "group") } | sort name

To create a new organizational unit with the OU Directors, you need
only one command using the commandlet New-Item:

New-Item -path FBI://Directors -type organizationalunit

However, the capabilities of this provider are limited.

Using the www.IT-Visions.de Active
Directory Extensions

The commandlet library of www.IT-Visions.de provides some comman-
dlets for the directory service administration that make the work much
easier, including the following:

■ Get-DirectoryEntry Access to a single directory object
■ Get-DirectoryChildren Access to the content of a container

object (lists the subelements)
■ Add-User Access to a user account with password
■ Add-DirectoryEntry Creation of a directory object that does

not need a password
■ Remove-DirectoryEntry Deleting a directory object
■ Get-DirectoryValue Fetching a value for a directory attribute
■ Set-DirectoryValue Setting a value for a directory attribute

NOTE The commandlets support the commandlet-based programming style

Add-User -name $Name -Container ("WinNT://" +
➥$Computer) -Password "secret"
Set-DirectoryValue -Path ("WinNT://" +
➥$Computer +"/" + $Name) -Name "Fullname"
➥-Value "Dr. Holger Schwichtenberg"

362 Chapter 20 Libraries for AD Administration

www.IT-Visions.de
www.IT-Visions.de

and the object-based style, because the commandlets transfer the relevant
objects to the pipeline:

$u = Add-User -Password "secret" -RDN $Name
➥-Container ("WinNT://" + $Computer)
$u.Fullname
$u.PSBase.CommitChanges()

Example
Listing 20.1 shows the application of the directory services commandlets,
applicable to a local Windows user database (tested on a Windows Server
2003 member server) or an Active Directory (tested on a Windows Server
2003 domain controller). Figure 20.1 shows a sample of the output.

Listing 20.1 Various Directory Service Operations via WinNT-Provider (available through
www.IT-Visions.de commandlets)

###

Test script for directory service access with

the www.IT-Visions.de PowerShell commandlets

Dr. Holger Schwichtenberg 2007

###

Add-PSSnapin ITVisions_PowerShell_extensions

--- Parameters

$Name = "cn=FoxMulder"

$Container = "LDAP://XFilesServer/OU=Agents,DC=FBI,DC=net"

--- Write

Write-Host "Access to Container" -ForegroundColor yellow

Get-DirectoryEntry $Container | select name

Write-Host "Create user" -ForegroundColor yellow

$u = Add-User -Name $Name -Container $Container -Password

➥"secret-123" -verbose

Using the www.IT-Visions.de Active Directory Extensions 363

20.
A

DDITIO
N

ALLIBRARIES

(continues)

www.IT-Visions.de
www.IT-VISIONS.DE

Listing 20.1 Various Directory Service Operations via WinNT-Provider (available through
www.IT-Visions.de commandlets) (continued)

Write-Host "Set attribute - Commandlet Style" -ForegroundColor yellow

Set-DirectoryValue -Path $u.psbase.path -Name "Description"

➥-Value "Agent"

Write-Host "Set attribute - Object Style" -ForegroundColor yellow

$u.l = "Washington DC"

$u.PSBase.CommitChanges()

--- Read

Write-Host "Read attribute - Object Style" -ForegroundColor yellow

$u = Get-DirectoryEntry $u.psbase.path

"Name: " + $u.Description

Write-Host "Read attribute - Commandlet style" -ForegroundColor yellow

Get-DirectoryValue -Path $u.psbase.path -Name "Description"

Write-Host "Delete user" -ForegroundColor yellow

Remove-DirectoryEntry $u.psbase.path

Write-Host "List container content" -ForegroundColor yellow

Get-DirectoryChildren $Container | Select name

364 Chapter 20 Libraries for AD Administration

Figure 20.1 Clipping from the output of Listing 20.1

www.IT-Visions.de

Using the Quest Active Directory Extensions

The company Quest provides commandlets for Active Directory adminis-
tration (for example, Get-QADComputer, Get-QADUser, New-QADObject,
Set-QADObject) and as an adapted PowerShell console (Quest
Management Shell for Active Directory); see Figure 20.2.

Getting information about the Active Directory Structure 365

20.
A

DDITIO
N

ALLIBRARIES

Figure 20.2 Quest Management Shell for Active Directory

Getting Information about the Active Directory Structure

In addition to the namespace System.Directoryservices, which con-
tains general classes for the programming of directory services, there is the
subnamespace System.Directoryservices.ActiveDirectory (also
called Active Directory Management Objects, ADMO) in .NET, starting
with version 2.0. This namespace contains some Active Directory–specific
functions that are not applicable to other directory services.

In particular, this namespace offers classes for the administration of the
complete structure of an Active Directory (for example Forest, Domain,
ActiveDirectoryPartition, DomainController, GlobalCatalog,
and ActiveDirectorySubnet). Some classes specially designed for the
Active Directory Application Mode (ADAM, a function-reduced version
of the Active Directory for use as data storage for some applications) are
supported with classes such as ADAMInstanceCollection and
ADAMInstance.

Example 1: Domains and Forests
Listing 20.2 gives information about the domain to which the computer
belongs and about the forest to which this domain belongs.

Listing 20.2 Information about the Domain and the Forest

Display current domain

$d = [System.Directoryservices.ActiveDirectory.Domain]

➥::GetCurrentDomain();

Information about current domain

"Name: " + $d.Name

"Domain Mode: " + $d.DomainMode

"Owner of InfrastructureRole: " + $d.InfrastructureRoleOwner.Name

"Owner of PdcRole: " + $d.PdcRoleOwner.Name

Information about forest of current domain

$f = $d.Forest;

"Name of forest: " + $f.Name

"Mode of forest: " + $f.ForestMode

Example 2: Domain Controllers and Roles
In Listing 20.3, all domain controllers (and their roles) of a special domain
are listed.

Listing 20.3 Information about the Domain Controllers and Their Roles

Display current domain

$d =

[System.Directoryservices.ActiveDirectory.Domain]::GetCurrentDomain()

$DCs = $d.DomainControllers

Loop over all domain controllers

foreach ($DC in $DCs)

{

"Name: " + $DC.Name

"IP: " + $DC.IPAddress.ToString()

"Time: " + $DC.CurrentTime.ToString()

366 Chapter 20 Libraries for AD Administration

"Roles:"

Loop over all roles of DC

foreach ($R in $DC.Roles)

{

"- " + $R.ToString()

}

}

Group Policies

Group policies cannot be accessed through ADSI or System.
DirectoryServices. Group policies can be managed by the COM com-
ponent GPMGMT, which is part of the Group Policy Management
Console (GPMC) [MS04].

WARNING Confirm that the GPMC is installed on your system before running
any of the scripts in this chapter.

Note that via the GPMGMT component you can attach and detach group
policies to Active Directory containers. However, it does not enable you to cre-
ate new group policies or change settings within an existing group policy.

Classes
Figure 20.3 shows the object model of the GPMGMT component. As the
root class, GPMGMT.GPM is the only instantiable class; all scripts start by cre-
ating an instance of this class.

Enumerating Policies
Listing 20.4 lists the display name and creation time for all group policies
in a specific domain. After instantiation of the root class, you have to access
the domain through the method GetDomain(). After that, you can use the
method SearchGPO() on the domain object to search for Group Policy
objects. In this case, no filters are used.

Group Policies 367

20.
A

DDITIO
N

ALLIBRARIES

Figure 20.3 Object model of the GPMGMT component for Group Policy
Management

Listing 20.4 Enumerate Group Policies

Parameters

$Domain = "fbi.net"

Create root object

$gpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain

$Domain = $GPM.GetDomain($Domain, "", $GPM.GetConstants().UseAnyDC)

Filter Object

$Filter = $gpm.CreateSearchCriteria()

Get GPOs

$GPOList = $Domain.SearchGPOs($Filter)

Display GPOs

$GPOList | Select Displayname, CreationTime

368 Chapter 20 Libraries for AD Administration

GPMBackupDir

GPMDomain

GPMGPO

GPMGPOCollection

GetDomain()

GetBackupDir(“PFAD”)

GetGPOLinks()

GetGPOLinks()

SearchGPO()

GetConstants()

GetGPO()

GetGPO()

GPMSOM

GPMGPOLink

GPMSOMCollection

GPMGPOLinks
Collection

GPMBackup

GPMBackupCollection

SearchSOMs()

GPM
“GPMgmt.GPM” GPMConstants

If you want to enumerate all group policies that are linked to a certain
organizational unit, you can use the script shown in Listing 20.5. GetSOM()
retrieves a container in the Active Directory, and GetGPOLinks()
retrieves a list of links. Each link contains the global unique identifier of
the linked group policy.

Listing 20.5 Enumerating All Group Policies Linked to a Container

Parameters

$Domain = "fbi.net"

$Container = "ou=agents, dc=fbi, dc=net"

Create root object

$gpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain

$Domain = $GPM.GetDomain($Domain, "", $GPM.GetConstants().UseAnyDC)

Container

$Container = $Domain.GetSOM($Container)

Get GPOs

$Links = $Container.GetGPOLinks()

Display GPOs

foreach ($link in $Links)

{

$GPO = $Domain.GetGPO($link.GPOID)

$GPO | Select Displayname, CreationTime

}

Create a New Group Policy Link
To link a group policy to a container, complete these steps (see Listing 20.6
and Figure 20.4):

1. Create an instance of the root object.
2. Access the domain through GetDomain().
3. Access the container through GetSOM().

Group Policies 369

20.
A

DDITIO
N

ALLIBRARIES

4. Get a reference to the Group Policy object using the GUID of the
group policy through GetGPO().

5. Call the method CreateGPOLink() on the container.

Listing 20.6 Create a GPO Link

trap {

Write-Error ("ERROR: " + $_.Exception.Message)

if ($_.Exception.InnerException -ne $null) { Write-Error

➥("ERROR: " + $_.Exception.InnerException.Message) }

exit

}

Parameters

$Domain = "fbi.net"

$Container = "ou=agents, dc=fbi, dc=net"

$GPOID = "{063751AF-8CBD-4F04-B889-196840B99D2E}"

Create root object

$gpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain

$Domain = $GPM.GetDomain($Domain, "", $GPM.GetConstants().UseAnyDC)

Container

$Container = $Domain.GetSOM($Container)

Get GPO Object

$GPO = $Domain.GetGPO($GPOID)

Create Link

$Link = $Container.CreateGPOLink(-1, $GPO)

"Link created!"

Delete a Group Policy Link
The script in Listing 20.7 deletes all Group Policy links for a given con-
tainer in the Active Directory. To delete a link, call the Delete() method
of the appropriate GPMGPOLink object.

370 Chapter 20 Libraries for AD Administration

Figure 20.4 A container can contain only one link to each policy.

NOTE Note that the script will delete only the links. The group policies will
remain, even if they are not linked to a container any more. If you want to
delete the group policy, call Delete() on the Group Policy object itself.

Listing 20.7 Delete GPO Links

Parameters

$Domain = "fbi.net"

$Container = "ou=agents, dc=fbi, dc=net"

Create root object

$gpm = New-Object -ComObject "GPMGMT.GPM"

Access Domain

$Domain = $GPM.GetDomain($Domain, "", $GPM.GetConstants().UseAnyDC)

Container

$Container = $Domain.GetSOM($Container)

Get GPOs

$Links = $Container.GetGPOLinks()

Display GPOs

foreach ($link in $Links)

Group Policies 371

20.
A

DDITIO
N

ALLIBRARIES

(continues)

Listing 20.7 Delete GPO Links (continued)

{

$GPO = $Domain.GetGPO($link.GPOID)

"Deleting Link..." + $GPO.Displayname

$link.Delete()

}

Summary

The first topic in this chapter concerned simplifications for Active
Directory handling that are provided in different PowerShell extension
libraries.

Second, you got to know the classes of the System.
Directoryservices.ActiveDirectory library that deliver informa-
tion about the Active Directory domain structure.

Third, you saw how to use the COM component GPMGMT to link and
unlink group policies to Active Directory containers.

372 Chapter 20 Libraries for AD Administration

373

C H A P T E R 2 1

DATABASES

In this chapter:
Introducing ADO.NET . 373
Example Database . 379
Data Access with PowerShell . 380

In this chapter, you learn how to access databases through ADO.NET,
which is a class library within the .NET Framework. You also learn to use
the commandlets from the www.IT-Visions.de PowerShell Extensions,
which encapsulate a lot of the complexity of ADO.NET.

NOTE Chapter 23, “Security Settings,” continues the topic data access, focus-
ing on some advanced features.

Introducing ADO.NET

Windows PowerShell (WPS) has no commandlets for database access and
no navigation provider either, although it would be convenient to include
databases in the concept of navigation providers. As far as database access
is concerned, you can use ADO.NET in WPS. After all, WPS supports the
access of single tables by offering column names as attributes of the table
object (in this case, an automatic figure occurs, similar to what happens
with WMI objects).

This chapter teaches some necessary basics about ADO.NET. Figure
21.1 shows the ADO.NET architecture.

Just like its predecessor concepts ODBC and OLEDB, ADO.NET
also uses database-specific drivers, which are called ADO.NET Data

www.IT-Visions.de

Provider, .NET Data Provider, and Managed Provider. Data Provider for
OLEDB and ODBC provide the backward compatibility of ADO.NET for
those data sources that don’t (yet) have a specific ADO.NET data provider.

374 Chapter 21 Databases

OLE DB (Object Linking and Embedding Database)

OLE DB (Open Database Connectivity)

www.IT-Visions.de Commandlets

ADO.NET (ActiveX Data Objects.NET)

SQLServer
.NET Data Provider

OLE DB
.NET Data Provider

ODBC
.NET Data Provider

OLE DB–
Provider
for SQL-
Server

JET
OLE DB-
Provider

OLE DB–
Provider

for ODBC

ODBC
Driver for
Access

ODBC-
Driver for
DBase

ODBC-
Driver
for…

OLE DB–
Provider

for…

DBase
Other

Database
Microsoft

SQL Server
Access

Network

PowerShell

Figure 21.1 ADO.NET driver architecture

www.IT-Visions.de

Data Providers
The .NET Framework 2.0, 3.0, and 3.5 are delivered with the following
data providers (.NET Data Provider or Managed Data Provider):

■ System.Data.SqlClient Special driver for Microsoft SQL
Server 7.0/2000 and 2005

■ System.Data.SqlServerCe Special driver for Microsoft SQL
Server CE

■ System.Data.OracleClient Special driver for Oracle
databases

■ System.Data.OLEDB Bridge to OLEDB providers
■ System.Data.Odbc Bridge to ODBC drivers

Additional providers (for example, for MySQL, DB2, Sybase, Informix,
and Ingres) are delivered from different producers, a list of which can be
found under www.dotnetframework.de/tools.aspx [DOTNET02].

Enumerating the Installed Providers
The ADO.NET data providers existing on a system can be enumerated via
the static method System.Data.Common.DbProviderFactories.
GetFactoryClasses().

Access to this method in WPS looks like this (see Figure 21.2):

[System.Data.Common.DbProviderFactories]::GetFactoryClasses()

NOTE The installed providers are not stored in the registry, but in the central
XML configuration file of .NET Framework (machine.config) in the section
<system.data> <DbProviderFactories>.

Introducing ADO.NET 375

21.
D

ATABASES

www.dotnetframework.de/tools.aspx

Figure 21.2 Enumeration of the installed ADO.NET drivers

List of Available SQL Servers
If you want to know which instances of Microsoft SQL Server are active in
your domain, you can use the .NET class SqlDataSourceEnumerator
(see Figure 21.3):

[System.Data.Sql.SqlDataSourceEnumerator]
➥::Instance.GetDataSources()

DataReader versus DataSet
Figure 21.4 shows different ways of receiving data from a data source in
ADO.NET. Data can be received by the data user via a provider-
independent DataReader object or via a provider-independent DataSet
object. The DataSet object needs a DataAdapter object (not to be con-
fused with a WPS object adapter) to get the data, which, in turn, has to be
implemented separately in each data provider.

376 Chapter 21 Databases

Introducing ADO.NET 377

21.
D

ATABASES

Figure 21.3 List of available SQL servers

Starting with .NET 2.0, .NET also provides so-called data source con-
trol elements, which make it easier for the developer to bind data to a con-
trol element. These data source control elements are part of the libraries
for graphic user interfaces (Windows Forms and ASP.NET) and are not
discussed in this book.

Data Store

Command
[Provider Specific,
Managed Provider]

Data Consumer
Controls (z.B. DataGrid, DropDownList)

Code

DataAdapter
[Provider Specific,
Managed Provider]

DataSet
[Common Class,

System.Data]

DataReader
[Provider Specific,
Managed Provider]

Data Source Objects
(DataSource/BindingSource)

Connection

Connection

Insert
Update
Delete
SP

Select
SP

Insert
Update
Delete
SP

Insert
Update
Delete

SP

Read() Read()

Load()

Fill() Update()

Read() [Implicit]

DataTableReader

Figure 21.4 Data paths in ADO.NET 2.0

TIP It is possible, although somewhat more difficult, to program the access to a
data source in such a way that the database can easily be exchanged.

In the description of the data paths, DataReader and DataSet were
mentioned. Table 21.1 and Figure 21.5 compare both data access method
in detail. As you can see from the table, the DataSet provides more
options, but also has a higher memory consumption. However, because
most scripting solutions do not use large sets of data, the DataSet is appro-
priate in most cases within WPS.

Table 21.1 DataReader versus DataSet

DataReader DataSet

Model Server Cursor Client Cursor
Implemented in Each ADO.NET System.Data

Data Provider
Basic classes DbDataReader MarshalByValueComponent

MarshalByRefObject Object
Object

Interfaces IDataReader, IListSource,
IDisposable, IXmlSerializable,
IDataRecord, ISupportInitialize,
IEnumerable ISerializable

Read data Yes Yes
Read data forward Yes Yes
Read data backward No Yes
Direct access to any row No Yes
Direct access to any
column of the record Yes Yes
Modify data No, only via separate Yes (via data adapter)

command objects
Command creation for Completely manually Partly automatic
data changes (CommandBuilder)
Data caching No Yes
Change history No Yes
Memory consumption Low High
Available for data
transport between levels No Yes

378 Chapter 21 Databases

Figure 21.5 Comparing DataReader and DataSet

Example Database

The example database is taken right out of the everyday life of system
administration. It contains a list of user accounts that was either exported
from a Windows system or that might serve to create a series of users per
script (see Figure 21.6).

Example Database 379

21.
D

ATABASES

Datareader

Database

Client

Table/View/SP

DataReader
Object

PowerShell
Script

Read()

Select

Update

Read()
Read()
Read()

Dataset

Database

Client

Table/View/SP

DataSet
Object

DataAdapter
Object

Table

Select

Update

PowerShell
Script

380 Chapter 21 Databases

Figure 21.6 Database with user accounts

Data Access with PowerShell

This section first discusses the creation of a connection. After that, access
is executed.

Connections
No matter which data access form is chosen, and no matter which action is
to be executed, communication with the database management system
always requires a connection.

Each data provider has its own implementation of the connection class:
SqlConnection, OracleConnection, OleDbConnection, and so on.
During the instantiating of theses objects, the connection string can be
transferred. After that, the call Open() is executed. A connection has to be
closed by Close().

Examples
Listings 21.1 through 21.3 show the creation and closing of a connection to
three different kinds of databases, respectively:

■ A dynamically loaded Microsoft Access database file (Listing 21.1)
■ A statically bound Microsoft SQL Server database (Listing 21.2)
■ A dynamically loaded Microsoft SQL Server database file (only

works with Microsoft SQL Server Express) (Listing 21.3)

Listing 21.1 Creating and Closing a Connection to a Microsoft Access Database

parameters

$Conn = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=H:\demo\WPS\B_Database\users.mdb;"

$SQL = "Select * from users order by UserSurname"

Open databses

"Open the database..."

$conn = New-Object System.Data.OleDb.OleDbConnection($Conn)

$conn.open()

"Status of database: " + $conn.State

Close database

$Conn.Close()

"Status of database: " + $conn.State

Listing 21.2 Creating and Closing a Connection of a Statically Bound Microsoft SQL
Server Database

parameters

$Connstring = "Data Source=.\SQLEXPRESS;Initial catalog=Users;Integrated

Security=True;"

$SQL = "Select * from users order by UserSurname"

Open database

"Open the database..."

$conn = New-Object System.Data.SqlClient.SqlConnection($Connstring)

$conn.open()

Data Access with PowerShell 381

21.
D

ATABASES

(continues)

Listing 21.2 Creating and Closing a Connection of a Statically Bound Microsoft SQL
Server Database (continued)

"Status of database: " + $conn.State

Close database

$Conn.Close()

"Status of database: " + $conn.State

Listing 21.3 Creating and Closing a Connection to a Dynamically Bound Microsoft SQL
Server Express Database File

Parameters

$Connstring = "Data Source=.\SQLEXPRESS;AttachDbFileName=

➥H:\demo\PowerShell\data bases\users.mdf;Integrated Security=True;"

$SQL = "Select * from users order by UserSurname"

Open database

"Open the database..."

$conn = New-Object System.Data.SqlClient.SqlConnection($Connstring)

$conn.open()

"Status of database: " + $conn.State

Close database

$Conn.Close()

"Status of database: " + $conn.State

Provider-Independent Data Access
In the previous examples, different classes were used, depending on which
database provider (Microsoft Access or Microsoft SQL Server) was used.
This is not ideal an ideal scenario (when you have to access different data-
bases or if you intend to change the database later). ADO.NET also sup-
ports the provider-independent data access (see Listing 21.4).

When you access data provider independence, you don’t instantiate
the connection class directly, but via a so-called provider factory. You get
the provider factory from the .NET class System.Data.Common.
DbProviderFactories by indicating the so-called provider invariant
name as a string, as follows:

382 Chapter 21 Databases

■ For Microsoft Access. "System.Data.OleDb"
■ For Microsoft SQL Server. "System.Data.SqlClient"
■ For Oracle. "System.Data.OracleClient"

WARNING Provider-independent data access is executed without the transla-
tion of SQL commands. If you use database-specific commands, you lose the
provider independence.

Listing 21.4 Provider-Independent Establishment of a Connection

Parameters

$PROVIDER = "System.Data.SqlClient"

$CONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=

➥H:\demo\WPS\B_Database\users.mdf;Integrated Security=True;"

$SQL = "Select * from FL_Flights"

Create factory

$provider =

[System.Data.Common.DbProviderFactories]::GetFactory($PROVIDER)

Create and fill connecting object

$conn = $provider.CreateConnection()

$conn.ConnectionString = $CONNSTRING;

Establish connection

$conn.Open();

"Status of database: " + $conn.State

Close database

$Conn.Close()

"Status of database: " + $conn.State

Executing Commands
Each database provider provides a provider-specific command object
(SqlCommand, OracleCommand, OleDbCommand, and so on). Moreover,
there also exists a provider-neutral command object of the type
DbCommand.

Data Access with PowerShell 383

21.
D

ATABASES

The command object offers the following functions:

■ ExecuteNonQuery() for the execution of DML (for example,
Insert, Update, Delete) and DDL (for example, Create Table)
commands, which do not retrieve data rows. As long as these com-
mands retrieve the number of the affected rows, this result is
received through the return value of the method. Otherwise, the
return value is –1.

■ ExecuteRow() delivers the first row of the result set in the form of
a SqlRecord object (only SQL Server).

■ ExecuteScalar() fetches the first column of the first row of the
result set.

■ ExecuteReader() delivers a DataReader object (see next para-
graph).

Provider factories also enable you to work provider independently with
the command object, as the next example demonstrates. In this case, the
command object has to be created by the provider factory via
CreateCommand().

Example
In Listing 21.5, first the number of users is counted, then a new user is cre-
ated, and then the number of users is counted again. In the end, the newly
created user is deleted, and another counting is executed. (Figure 21.7
shows the execution.)

Listing 21.5 Executing Commands with Provider-Independent Command Objects

Parameters

$PROVIDER = "System.Data.SqlClient"

$CONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=

➥H:\demo\WPS\B_Database\users.mdf;Integrated Security=True;"

$SQL1 = "Select count(*) from users"

$SQL2 = "insert into users (UserFirstName, UserSurname)

➥values ('Hans', 'Meier')"

$SQL3 = "delete from users where UserSurname='Meier'"

Create factory

$provider =

➥[System.Data.Common.DbProviderFactories]::GetFactory($PROVIDER)

384 Chapter 21 Databases

Create connection object

$conn = $provider.CreateConnection()

$conn.ConnectionString = $CONNSTRING

Open connection

$conn.Open();

"Status of database: " + $conn.State

create command #1

[System.Data.Common.DbCommand] $cmd1 = $provider.CreateCommand()

$cmd1.CommandText = $SQL1

$cmd1.Connection = $conn

execute command #1

$e = $counter = $cmd1.ExecuteScalar()

"Count before insert: " + $Counter

create command #2 (INSERT)

[System.Data.Common.DbCommand] $cmd2 = $provider.CreateCommand()

$cmd2.CommandText = $SQL2

$cmd2.Connection = $conn

execute command #2

$e = $cmd2.ExecuteNonQuery()

execute command #1

$counter = $cmd1.ExecuteScalar()

"Count after insert: " + $Counter

create command #3 (DELETE)

[System.Data.Common.DbCommand] $cmd3 = $provider.CreateCommand()

$cmd3.CommandText = $SQL3

$cmd3.Connection = $conn

execute command #2

$e = $cmd3.ExecuteNonQuery()

execute command #1

$counter = $cmd1.ExecuteScalar()

"Count after delete: " + $Counter

Close database

$Conn.Close()

"Status of database: " + $conn.State

Data Access with PowerShell 385

21.
D

ATABASES

Figure 21.7 Execution of the script Command.ps1

Data Access Using a Data Reader
A DataReader object is a server-side cursor that allows only unidirectional
reading access (only forward) to the result of a SELECT-application
(Resultset). A change of the data is not possible. In contrast to DataSet,
DataReader supports only a flat presentation of the data. Data retrieval is
executed only row-wise, and therefore you have to iterate via the result vol-
ume. Compared with the classic COM-based ActiveX Data Objects
(ADO), an ADO.NET DataReader is the equivalent to a “read-only/
forward-only Recordset.”

Each ADO.NET data provider contains its own DataReader imple-
mentation, so there are numerous different DataReader classes in .NET
Framework (for example, SqlDataReader, OLEDBDataReader, and
OracleDataReader). The DataReader classes derive from System.
Data.ProviderBase.DbDataReaderBase and implement System.
Data.IDataReader.

To fetch the data, a DataReader needs a command object that is just
as provider specific (for example, SqlCommand, OLEDBCommand, and
OracleCommand). The connection to the database itself requires a
provider-specific connection object (for example, SqlConnection or
OleDbConnection). Figure 21.8 demonstrates the connection of these
objects by the example of the data provider for SQL Server. The object
model is similar for OLEDB—just replace Sql in the class name with
OleDb. The provider for SQL Server (SqlClient) has, starting with .NET
2.0, an additional class, SqlRecord, which represents a single dataset as
result of a command.

386 Chapter 21 Databases

Figure 21.8 Connecting objects by the example of the data provider for
SQL Server

The DataReader can also be used provider independently via an
instance of the class System.Data.Common.DbDataReader, retrieved
from a provider-independent command object via ExecuteReader().

Example for Using a Data Reader
Listing 21.6 fetches all users from the user table.

Listing 21.6 Fetching of a Database Table with a Provider-Independent DataReader

Parameters

$PROVIDER = "System.Data.SqlClient"

$CONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=

➥H:\demo\WPS\B_Database\users.mdf;Integrated Security=True;"

$SQL = "Select * from users"

Create factory

$provider =

➥[System.Data.Common.DbProviderFactories]::GetFactory($PROVIDER)

Create and fill connection object

$conn = $provider.CreateConnection()

$conn.ConnectionString = $CONNSTRING

Data Access with PowerShell 387

21.
D

ATABASES

Provider specific classes (System.Data.SqlClient.*)

CreateCommand()

Connection

Begin()

BeginTransaction()

ExecuteScalar()

GetSchemaTable()

ExecuteReader()

ExecuteRow()

SelectCommand
DeleteCommand,
UpdateCommand,
InsertCommand

Common classes
(System.Data*.)

SqlCommand

SqlRecord

System.Object

DataSet

SqlDataAdapter

SqlDataReader
SqlTransaction

GetData()

Fill(DataSet)

SqlConnection

ItemItemItem

ItemItemItem

(continues)

Listing 21.6 Fetching of a Database Table with a Provider-Independent DataReader
(continued)

Create connection

$conn.Open();

"Status of database: " + $conn.State

Create command

$cmd = $provider.CreateCommand()

$cmd.CommandText = $SQL

$cmd.Connection = $conn

Execute command

$reader = $cmd.ExecuteReader()

Loop over all data rows

while($reader.Read())

{

$reader.Item("UserID").ToString() + ": " + $reader.Item("UserFirstName")

➥ + " " + $reader.Item("UserSurname")

}

Close database

$Conn.Close()

"Status of database: " + $conn.State

Summary

There are no commandlets for the access to databases in WPS 1.0. However,
you learned in this chapter all the necessary basics to use the ADO.NET
library from the .NET Framework. ADO.NET has a provider model with a
few providers included in the .NET Framework, and more providers are
available from third-party vendors. ADO.NET enables you to connect to a
database (classes such as SqlConnection or OleDbConnection), to exe-
cute commands (SqlCommand or OleDbCommand), and read data through
a data reader (OleDbDataReader or SqlDataReader). Don’t forget to
close a connection as soon as possible, at the latest at the end of your script.

The next chapter covers an important advanced feature: the DataSet.
In addition, the next chapter covers commandlets from the www.
IT-Visions.de PowerShell Extension Library that facilitate data access.

388 Chapter 21 Databases

www.IT-Visions.de
www.IT-Visions.de

389

C H A P T E R 2 2

ADVANCED DATABASE OPERATIONS

In this chapter:
Data Access Using a DataSet . 389
Data Access with the www.IT-Visions.de PowerShell Extensions 396

This chapter contains advanced database access techniques (specifically,
using an ADO.NET DataSet). This chapter provides examples on how to
read and change data and convert between tabular data and XML docu-
ments. You also learn that using the commandlets within the www.
IT-Visions.de Commandlet Library makes data access a lot easier.

Data Access Using a DataSet

A DataSet contains a collection of data tables that are presented by single
DataTable objects. The DataTable objects can be filled from any data
sources without a relation existing between object and data source;
the DataTable object does not know where the data comes from. The
DataTable objects can also be filled with data without a database in the
backend.

A DataSet offers, in contrast to the DataReader, all kinds of access
(that is, also adding, deleting, and changing DataSets). You can also view
hierarchic relations between single tables and store them in a DataSet.
This enables a processing of hierarchic data volumes. By the way, in the
background, DataSet uses a DataReader to fetch the data.

A DataSet is a client-side cache. A DataSet does not lock any rows in
the database, but uses the so-called optimistic locking (that is, conflicts
caused by concurrent changes arise only when you try to write the data).

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

WARNING A DataSet consumes much more memory than a self-defined
data structure. The fetching of data with a DataReader, the storing in a self-
defined data structure, and the saving of changes with SQL commands are more
work-intensive during developing, but they are much more efficient in the execu-
tion. This is especially important for server-based applications. It is not important
for most WPS applications.

DataSet Object Model
A DataSet object consists of a number of DataTable objects in the
DataTableCollection. Each DataTable object owns a link to the
DataSet to which it belongs via the attribute DataSet (see Figure 22.1).

The DataTable object also contains a DataColumnCollection
with DataColumn objects for each column of the table and a
DataRowCollection with DataRow objects for each row. Within a
DataRow object, you can call the contents of the cells via the indexed
attribute Item. Item alternatively expects the column name, the column
index, or a DataColumn object.

390 Chapter 22 Advanced Database Operations

ManagementScope

ObjectGetOptions

ManagementPath

MethodData

Management
BaseObject

MethodData
Collection

Property Data
Collection

Management
ObjectCollection

Path
ClassPath

Methods

GetInstances()
GetSubClasses()
GetRelatedClasses()

CreateInstance()
GetRelationships Properties

SystemProperties

Options

InParameters
OutParameters

Properties
SystemProperties

Scope

PropertyDataItemItem

ItemItem

Item

ItemItemItem

Item

Management
Class

Management
Object

Figure 22.1 Object model of the DataSet class

Data Adapter
To fetch data, a DataSet needs a data adapter. Reading data with a
DataSet is executed in the following steps:

1. Creation of a connection to the database with a Connection
object. During the instantiating of the object, the string can be
transferred.

2. Instantiating of the command class and connecting the object to
the Connection object via the attribute Connection.

3. Setting of a SQL command that displays data (for example,
SELECT or a stored procedure) in the OLEDBCommand object in the
attribute CommandText.

4. Instantiating of the data adapter based on the command object.
5. Instantiating of the DataSet object (without parameter).
6. The execution of the method Fill() in the DataSet object copies

the complete data in form of a DataTable objects in the DataSet.
You can set the alias name for the DataTable object as second
parameter when using Fill() within the DataSet. Without this
setting, the DataTable object is named Table.

7. Optionally, further tables can be fetched and connected with each
other in the DataSet.

Thereafter, the connection can be closed immediately.

Provider-Specific Example
Listing 22.1 retrieves all DataSets sorted from a Microsoft Access data-
base. In this case, the OLEDB provider for ADO.NET is used.
Implementation is provider specific. Figure 22.2 shows the result.

The script consists of the following steps:

1. Setting of the connection string and the SQL command to be
executed

2. Instantiating of a connecting object (OleDbConnection) with the
help of the connection string, and opening of the connection to the
database

3. Creation of a command object (OleDbCommand) by indicating the
connection object and the SQL command

Data Access Using a DataSet 391

22.
A

DVAN
CED

D
ATABASEO

PERATIO
N

S

4. Creation of a data adapter (OleDbDataAdapter) for the command
5. Instantiating of an empty data container (DataSet) to be filled

with data
6. Filling of the data container by the data adapter with help of the

method Fill()
7. Access to the first table in the data container (counting starts

with 0)
8. Output of the data through pipelining of the table

NOTE It is not possible to access the contents of the table with $Table.
Columnname, analogical to XML documents. According to the ADO.NET object
model, the DataTable object does not contain the columns directly, but
DataRow objects instead. WPS, however, can split DataTable objects in rows
and columns when pipelining them. With single DataRow objects, access to the
columns via their names can be executed by the automatic mapping, as follows:

$Table | % { $_.UserSurname }

You can also use two other syntax forms if the column name contains a
blank:

$Table | % { $_["User Surname"] }
$Table | % { $_."User Surname" }

Listing 22.1 Database Access with a DataSet via a Provider-Specific Data Adapter to an
Access Database

Parameters

$CONNSTRING = "Provider=Microsoft.Jet.OLEDB.4.0;

➥Data Source=H:\demo\WPS\B_Database\users.mdb;"

$SQL = "Select * from users order by UserSurname"

Open database

"Open the database..."

$conn = New-Object System.Data.OLEDB.OLEDBConnection($CONNSTRING)

$conn.open()

"Status of database: " + $conn.State

392 Chapter 22 Advanced Database Operations

Execute SQL command

"Execute command: " + $SQL

$cmd = New-Object System.Data.OLEDB.OLEDBCommand($sql,$conn)

$ada = New-Object System.Data.OLEDB.OLEDBDataAdapter($cmd)

$ds = New-Object System.Data.DataSet

$ada.Fill($ds, "user") | Out-null

"Number of tables in dataset: " + $ds.Tables.Count

"Number of datasets in table 1: " + $ds.Tables[0].Rows.Count

Access to table

$Table = $ds.Tables["user"]

Output

"Output of the data:"

$Table | Select UserFirstName, UserSurname, userid

Data Access Using a DataSet 393

22.
A

DVAN
CED

D
ATABASEO

PERATIO
N

S

Figure 22.2 Output of the script

Provider-Independent Example
In Listing 22.2, the database adapter is created by the provider factory.

Listing 22.2 Database Access with a DataSet via a Provider-Neutral Data Adapter
to a Microsoft SQL Server Database

Parameters

$PROVIDER = "System.Data.SqlClient"

$CONNSTRING = "Data Source=.\SQLEXPRESS;AttachDbFileName=

➥H:\demo\wps\b_database\users.mdf;Integrated Security=True;"

$SQL = "Select * from users"

Create Factory

$provider =

[System.Data.Common.DbProviderFactories]::GetFactory($PROVIDER)

Create Connection

$conn = $provider.CreateConnection()

$conn.ConnectionString = $CONNSTRING

Open Connection

$conn.Open();

"Status of database: " + $conn.State

Create Command

$cmd = $provider.CreateCommand()

$cmd.CommandText = $SQL

$cmd.Connection = $conn

Create Adapter

[System.Data.Common.DbDataAdapter] $ada =

➥$provider.CreateDataAdapter()

$ada.SelectCommand = $cmd

Create Dataset

$ds = New-Object System.Data.DataSet

394 Chapter 22 Advanced Database Operations

Retrieve data

$e = $ada.Fill($ds, "User")

Close database

$Conn.Close()

"Status of database: " + $conn.State

Output

"Number of Tables: " + $ds.Tables.Count

"Number of Rows in Table 1: " + $ds.Tables[0].Rows.Count

Access table

$Table = $ds.Tables[0]

Print all rows

"Rows:"

$Table | Select UserFirstName, UserSurname, userid

XML Export and Import
Single data tables or whole DataSets with multiple tables can be exported
to XML files:

...

Export to XML

$Table.WriteXml("H:\demo\WPS\B_Database\users.xml")

$Table.WriteXmlSchema("H:\demo\WPS\B_Database\users.xsd")

The export of the XML Schema (XSD) is useful for the later re-import
of the XML document to a DataSet:

Import DataSet XML

$Table = New-Object System.Data.DataTable

$Table.ReadXmlSchema("H:\demo\WPS\B_Database\users.xsd")

$Table.ReadXml("H:\demo\WPS\B_Database\users.xml")

$Table | ft

Data Access Using a DataSet 395

22.
A

DVAN
CED

D
ATABASEO

PERATIO
N

S

Data Access with the www.IT-Visions.de PowerShell
Extensions

Data access through ADO.NET classes is somewhat “gossip” because of
the necessary handling of connections, commands, and adapters. However,
in most cases, only standard options are required.

The www.IT-Visions.de PowerShell extensions provide the following
commandlets to facilitate data access:

■ Test-DbConnection Shows (True/False), if a connection can
be created.

■ Invoke-DbCommand Executes an SQL command on the data
source. The return value is a number indicating how many rows
were affected.

■ Get-DataTable Displays a data volume according to an SQL
command from a data source in form of a volume of DataRow
objects (see Figure 22.3).

■ Get-DataRow Delivers a row from a data source in the form of an
ADO.NET DataRow object. If the indicated SQL command
retrieves more than one row, only the first row is displayed (see
Figure 22.4).

■ Set-DataTable Saves changes in a DataTable object in the data
source.

■ Set-DataRow Saves changes in a DataRow object in the data
source.

All commandlets are based on provider-neutral programming. As long
as commandlets expect a connecting string, they also allow the setting of a
provider (parameter –Provider). The setting of a provider is the optional,
standard setting "MSSQL". Other possible values are "OLEDB", "ODBC",
"ORACLE", and "ACCESS". Note that these short forms are expected, not
the full provider-invariant name.

396 Chapter 22 Advanced Database Operations

www.IT-Visions.de
www.IT-Visions.de

Figure 22.3 Use of Get-DataTable to access a Microsoft SQL Server table
containing flight data

Data Access with the www.IT-Visions.de PowerShell Extensions 397

22.
A

DVAN
CED

D
ATABASEO

PERATIO
N

S

Figure 22.4 Use of Get-DataRow to access the first dataset in an Access table

www.IT-VISIONS.DE

Example
The script in Listing 22.3 shows the previously discussed commandlets in
action. The script executes all jobs of the prior scripts, but much more con-
cisely! (Figure 22.5 shows the output.)

Listing 22.3 Database Access with the PowerShell Extensions of www.IT-Visions.de

Requirements: www.IT-Visions.de Commandlet Extension Library

http://www.PowerShell doctor.de

Parameters

$SQL = "Select * from users order by UserSurname"

$Conn = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=H:\demo\PowerShell\B_Databases\users.mdb;"

$Provider = "ACCESS"

"----------Test database connections:"

test-dbconnection -connection $Conn -provider $Provider

"---------- Execute Commands:"

$SQL1 = "Select count(*) from users"

$SQL2 = "insert into users (UserFirstName,

➥UserSurname) values ('Hans', 'Meier')"

$SQL3 = "delete from users where UserSurname='Meier'"

invoke-ScalarDbCommand -connection $Conn

➥-sql $SQL1 -provider $Provider

invoke-DbCommand -connection $Conn

➥-sql $SQL2 -provider $Provider

invoke-ScalarDbCommand -connection $Conn

➥-sql $SQL1 -provider $Provider

invoke-DbCommand -connection $Conn

➥-sql $SQL3 -provider $Provider

invoke-ScalarDbCommand -connection $Conn

➥-sql $SQL1 -provider $Provider

"---------- Get Data "

$table = Get-DbTable -connection $Conn

➥-sql $SQL -provider $Provider

$table | ft

398 Chapter 22 Advanced Database Operations

www.IT-Visions.de

"---------- Select Row "

$row = $table | where { $_.usersurname -eq "Pfister" }

$Row

"---------- Change Row "

$row.UsercreateDate = [DateTime] "11/11/2005"

$Row

"---------- Update Data "

$table | Set-DbTable -connection $Conn -sql $sql

➥-provider $Provider -verbose

"---------- Get Row"

$SQL = "Select * from users where usersurname = 'Pfister'"

$row = Get-DbRow $Conn $SQL $Provider

$row

Data Access with the www.IT-Visions.de PowerShell Extensions 399

22.
A

DVAN
CED

D
ATABASEO

PERATIO
N

S

Figure 22.5 Output of the script in Listing 22.3

www.IT-VISIONS.DE

Summary

In this chapter, you learned how to use the DataSet as a disconnected
offline cache for data. This use, in contrast to the DataReader, allows
changing data and writing the changes back to the database through the
use of a data adapter.

However, you saw that a few steps are necessary each time you work
with a DataSet. This can be shortened a lot by the use of the www.
IT-Visions.de PowerShell Extension Library, which provides easy-to-use
commandlets such as the following:

Test-DbConnection

Invoke-DbCommand

Get-DataTable

Get-DataRow

Set-DataTable

Set-DataRow

400 Chapter 22 Advanced Database Operations

www.IT-Visions.de
www.IT-Visions.de

401

C H A P T E R 2 3

SECURITY SETTINGS

In this chapter:
Windows Security Basics . 402
Classes . 406
Reading ACLs . 408
Reading ACEs . 410

This chapter covers the management of access control lists for files, direc-
tories, and registry keys. The access control list is a crucial concept of
Windows that controls access to resources. Resources such as file system
objects and registry entries are protected by access control lists (ACLs).
Windows PowerShell (WPS) offers two built-in commandlets for working
with ACLs:

■ Get-Acl Read the ACL of a resource
■ Set-Acl Write the ACL of a resource

They include the basic functions of downloading and saving an ACL,
depending on the displayed resource path. With WPS 1.0, however, only
the file system and the registry are supported.

NOTE Besides the previously named commandlets, you need some knowledge
from the .NET namespace System.Security.AccessControl for the
manipulation of ACLs.

Windows Security Basics

For a better understanding using and changing security settings, the basics
of Windows security are presented here.

Accounts
User and groups are entities that can have rights on resources. There are
three different ways to describe an account:

■ Account name (for example, \\itv\hs)
■ Security identifier, SID (for example, S-1-5-32-544)
■ SDDL security identifier (for example, “BA”)

A SID is a number array in variable length. In text form, the SID is indi-
cated with a starting S.

Security Descriptors
Each resource (for example, a file, a folder, an entry in the Active Direc-
tory, a registry key) possesses a so-called security descriptor (SD) for the
saving of the access controls. An SD consists of three parts:

■ The owner’s security identifier (SID) of the account
■ The discretionary ACL (DACL), which describes the access control
■ The system ACL (SACL), which contains the auditing settings

Access Control Lists
An access control list (ACL) (DACL and SACL) consists of access control
entries (ACEs). In turn, an ACE contains the following information:

■ Identity (trustee). The SID of the user or the group of users.
■ Access mask. The access mask defines the rights for the trustee.

For each object type (for example, file system entry, registry entry,
Active Directory entry), there are different possible rights a trustee
can receive. Each right is a bit of a combination of bits with a 32-bit
integer value. As a rule, an access mask consists of an addition of
several single access rights.

402 Chapter 23 Security Settings

■ Access control type. The type is either ALLOW or DENY.
■ Inheritance flags. Inheritance of rights is controlled via the inher-

itance flags. ObjectInherit means that subordinated leaf objects
(for example, files in the file system) derive their setting from the
ACE. ContainerInherit means that subordinated container
objects derive their setting from the ACE (for example, folder in the
file system). ObjectInherit and ContainerInherit can be com-
bined. Alternatively, you can define that no inheritance takes place
(NONE).

■ Propagation flags. Inheritance is further controlled via the propa-
gation flags. InheritOnly means that the ACE is derived only, but
does not work on the current object itself. NoPropagateInherit
means that the ACE is derived but cannot be derived again by the
deriving objects.

Access Masks
Table 23.1 contains the possible rights for entries in the file system.

NOTE The following table is quoted unchanged from the MSDN documentation
[MSDN01]. The author of the table is Microsoft.

Table 23.1 Access Rights on the Windows File System

Right Description

AppendData Specifies the right to append data to the end of
a file.

ChangePermissions Specifies the right to change the security and
audit rules associated with a file or folder.

CreateDirectories Specifies the right to create a folder.
This right requires the Synchronize value.
Note that if you do not explicitly set the
Synchronize value when creating a file or
folder, the Synchronize value will be set
automatically for you.

Windows Security Basics 403

23.
SECURITY

SETTIN
GS

(continues)

Table 23.1 Access Rights on the Windows File System (continued)

Right Description

CreateFiles Specifies the right to create a file.
This right requires the Synchronize value.
Note that if you do not explicitly set the
Synchronize value when creating a file or
folder, the Synchronize value will be set
automatically for you.

Delete Specifies the right to delete a folder or file.
DeleteSubdirectoriesAndFiles Specifies the right to delete a folder and any

files contained within that folder.
ExecuteFile Specifies the right to run an application file.
FullControl Specifies the right to exert full control over a

folder or file, and to modify access control and
audit rules. This value represents the right to
do anything with a file and is the combination
of all rights in this enumeration.

ListDirectory Specifies the right to read the contents of a
directory.

Modify Specifies the right to read, write, list folder
contents, delete folders and files, and run
application files. This right includes the
ReadAndExecute right, the Write right, and
the Delete right.

Read Specifies the right to open and copy folders or
files as read-only. This right includes the
ReadData right, ReadExtendedAttributes
right, ReadAttributes right, and
ReadPermissions right.

ReadAndExecute Specifies the right to open and copy folders or
files as read-only, and to run application files.
This right includes the Read right and the
ExecuteFile right.

ReadAttributes Specifies the right to open and copy file system
attributes from a folder or file. For example,
this value specifies the right to view the file
creation or modified date. This does not
include the right to read data, extended file
system attributes, or access and audit rules.

404 Chapter 23 Security Settings

Right Description

ReadData Specifies the right to open and copy a file or folder.
This does not include the right to read file system
attributes, extended file system attributes, or access
and audit rules.

ReadExtendedAttributes Specifies the right to open and copy extended file
system attributes from a folder or file. For example,
this value specifies the right to view author and content
information. This does not include the right to read
data, file system attributes, or access and audit rules.

ReadPermissions Specifies the right to open and copy access and audit
rules from a folder or file. This does not include the
right to read data, file system attributes, and extended
file system attributes.

Synchronize Specifies whether the application can wait for a file
handle to synchronize with the completion of an I/O
operation.
The Synchronize value is automatically set when
allowing access, and automatically excluded when
denying access.
The right to create a file or folder requires this value.
Note that if you do not explicitly set this value when
creating a file, the value will be set automatically
for you.

TakeOwnership Specifies the right to change the owner of a folder or
file. Note that owners of a resource have full access to
that resource.

Traverse Specifies the right to list the contents of a folder and to
run applications contained within that folder.

Write Specifies the right to create folders and files, and to
add or remove data from files. This right includes the
WriteData right, AppendData right,
WriteExtendedAttributes right, and
WriteAttributes right.

WriteAttributes Specifies the right to open and write file system
attributes to a folder or file. This does not include the
ability to write data, extended attributes, or access and
audit rules.

Windows Security Basics 405

23.
SECURITY

SETTIN
GS

(continues)

Table 23.1 Access Rights on the Windows File System (continued)

Right Description

WriteData Specifies the right to open and write to a file or
folder. This does not include the right to open and
write file system attributes, extended file system
attributes, or access and audit rules.

WriteExtendedAttributes Specifies the right to open and write extended file
system attributes to a folder or file. This does not
include the ability to write data, attributes, or
access and audit rules.

Classes

The namespace System.Security.AccessControl contains numerous
classes for the administration of rights (ACLs). For each kind of resource
whose ACLs can be administered, the namespace AccessControl offers
one class derived from System.Security.AccessControl.Object-
Security. For example, System.Security.AccessControl.
FileSecurity is used to read and process the ACLs of a file in the file
system.

Figure 23.1 shows these classes in the inheritance tree of the .NET
class library. The other resources indicated there (for example, Active
Directory) cannot yet be called via Get-Acl. A direct call via the .NET
class library, however, is possible.

Members of the Class Object Security
The basic class ObjectSecurity derives, among others, the following
members, so that they are provided in all subordinate classes:

■ GetOwner() Displays the owner of the resource.
■ SetOwner() Sets the owner of the resource.
■ GetAccessRules() Displays a list of ACEs. The return value

has the type AuthorizationRuleCollection. The contained
objects are dependent on the resource type (for example,
FileSystemAccessRule or RegistryAccessRule).

406 Chapter 23 Security Settings

■ GetAuditRules() Displays the entries of the system ACL
(SACL).

■ IsSddlConversionSupported Indicates, whether the ACL can
be expressed in SDDL.

■ GetSecurityDescriptorSddlForm() Delivers the ACL as an
SDDL string.

Classes 407

23.
SECURITY

SETTIN
GS

Figure 23.1 Inheritance hierarchy of the classes used for the saving of the ACL

Resource Classes
Throughout the whole .NET class library, you will find classes that possess
a method GetAccessControl() and display an object derived from the
class ObjectSecurity (see Table 23.2).

Table 23.2 Security Classes for Different Resources

Enumeration

Resource Class Class for ACL Class for ACE for Rights

System.IO. FileSystemSecurity FileSystemAccessRule FileSystemRights

File

System.IO. DirectorySecurity FileSystemAccessRule FileSystemRights

Directory

System.IO. FileSystemSecurity FileSystemAccessRule FileSystemRights

FileInfo

System.IO. DirectorySecurity FileSystemAccessRule FileSystemRights

DirectoryInfo

Microsoft.Win32. RegistrySecurity RegistryAccessRule RegistryRights

RegistryKey

User Accounts and SIDs
The namespace System.Security.AccessControl uses classes from
System.Security.Principal to present control holders (users and
groups). System.Security.Principal supports the two indicators
known for control holders in Windows:

■ Account name (for example, ITVisions\hs) via the class
System.Security.Principal.NTAccount

■ Security Identifier (for example, S-1-5-21-565061207-3232948068-
1095265983-500) via the class System.Security.Principal.
SecurityIdentifier

Reading ACLs

Get-Acl provides instances of the following .NET classes, depending on
the resource type:

■ System.Security.AccessControl.DirectorySecurity (for
directories)

■ System.Security.AccessControl.FileSecurity (for files)

408 Chapter 23 Security Settings

■ System.Security.AccessControl.RegistrySecurity (for
registry keys)

Get-Acl expects as a parameter the path of the resource whose ACL
will be displayed, as follows:

Get-Acl hklm:/software/www.IT-visions.de

Get-Acl j:\projects

Get-Acl j:\projects\content.csv

Standard output is executed with Format-Table. The output with
Format-List is obvious, and the output is thus easier to read.

Figure 23.2 demonstrates the application of Get-Acl to a directory in
the file system. Figure 23.3 shows the same ACL in Windows Explorer.

NOTE Note that Access is not an attribute of the .NET class
ObjectSecurity; instead it is a PowerShell code property that calls
GetAccessRules() internally. The return value is in both cases an
AuthorizationRuleCollection.

Reading ACLs 409

23.
SECURITY

SETTIN
GS

Figure 23.2 Fetching an ACL

Figure 23.3 Actual settings

Reading ACEs

If you want to take a closer look at the single ACEs of a system module,
you should iterate via the ACL yourself. The list of the type
AuthorizationRuleCollection displayed by Access or
GetAccessRules() contains, as far as the file system is concerned,
objects of the type FileSystemAccessRule. These objects, in turn, con-
tain the following attributes:

■ IdentityReference Subject (user or group) holding access
control

■ FileSystemRights Rights
■ AccessControlType Control type (allowed or denied)
■ IsInherited Indicates, whether the rule is inherited
■ InheritanceFlags Indicates the kind of downward derivation

410 Chapter 23 Security Settings

User accounts can be expressed in two ways: in clear text or via SIDs.
When you use GetAccessRules(), you have to indicate how you want to
view the user: [System.Security.Principal.NTAccount] (clear text)
or [System.Security.Principal.SecurityIdentifier] (SID).
Before this, the method has two parameters that enable you to control
which rules you want to look at: the rules set explicitly on the object (first
parameter) and the inherited rules (second parameter). Explicit ACEs
always hold the first place in the list.

Code property access is equivalent to GetAccessRules($true,
$true, [System.Security.Principal.NTAccount]). If you want to
get other information, you have to use GetAccessRules() explicitly. In
Listing 23.1, the second output of the list (see Figure 23.4) shows only the
inherited rules in SID form.

Listing 23.1 Display Details from the ACEs

$a = Get-Acl "j:\projects\"

$aces =$a.access

or: $aces =$a.GetAccessRules($true, $true,

➥[System.Security.Principal.NTAccount])

Write-Host "All ACEs, account name form:" -F yellow

foreach ($ace in $aces)

{

write-host $ace.IdentityReference.ToString() " has "

➥$ACE.FileSystemRights $ACE.AccessControlType " Inherited?"

➥$ACE.IsInherited

}

$a = Get-Acl j:\projects

$aces =$a.GetAccessRules($true, $false,

[System.Security.Principal.SecurityIdentifier])

Write-Host "Only explicit rules, SID form:" -F yellow

foreach ($ace in $aces)

{

write-host $ace.IdentityReference.ToString() " has "

➥$ACE.FileSystemRights $ACE.AccessControlType " Inherited?"

➥$ACE.IsInherited

}

Reading ACEs 411

23.
SECURITY

SETTIN
GS

Figure 23.4 Output of the script in Listing 23.1

Summary

The programmatic access to security settings is one of the most difficult
areas of system administration. In this chapter, you learned about the use
of the commandlets Get-Acl and Set-Acl in connection with the .NET
classes from the System.Security.AccessControl library. You learned
how to display ACLs and how to access each ACE within the list.

412 Chapter 23 Security Settings

413

C H A P T E R 2 4

ADVANCED SECURITY
ADMINISTRATION

In this chapter:
Account Identifier Translation . 413
Reading the Owner . 417
Adding a New ACE to an ACL . 418
Removing an ACE from an ACL . 421
Transferring ACLs . 424
Setting ACLs Using SDDL . 425

This last chapter covers all the write operations that can be performed on
access control lists (ACLs) and access control entries (ACEs). Examples in
this chapter include

■ Reading the owner of a resource
■ Adding a new access control entry to access control lists
■ Removing an access control entry from an access control list
■ Transferring access control lists from one resource to another
■ Setting access control lists using the Security Descriptor Definition

Language (SDDL)

Account Identifier Translation

As we prepare to modify ACLs, you learn in this section three different
ways of representing accounts and about the conversion between them.

Converting between Username and Security
Identifier
If you want to display the security identifier (SID) of any user (see Listing
24.1), you can also create an instance of System.Security.Principal.
NtAccount by indicating the username in text form and calling
Translate() afterward.

Listing 24.1 Displaying the SID

Translate account name to SID

$Account = new-object system.security.principal.ntaccount("itv\hs")

$SID =

➥$Account.Translate([system.security.principal.securityidentifier]).value

➥$SID

Translate SID to account name

$Account = new-object system.security.principal.securityidentifier

➥("S-1-5-32-544")

$Name = $Account.Translate([system.security.principal.ntaccount]).value

$Name

Using Well-Known SIDs
Besides users and groups, Windows also knows pseudo-groups such as
Everybody, Interactive User, and System. These groups are called well-
known security principals. To change the security settings, you need the
SIDs shown in Table 24.1. (Listing 24.2 shows access via an SID.) In the
Active Directory, the well-known security principals are saved in the
ConfigurationNamingContext in the container cn=Well Known
Security Principals. However, you will not find these users in the
DefaultNamingContext.

WARNING Do not confuse the well-known security principals with the built-in
accounts (for example, Guests, Administrators, Users). You will find the latter in
the Active Directory in the DefaultNamingContext in cn=BuiltIn.

414 Chapter 24 Advanced Security Administration

Table 24.1 SIDs of the Well-Known Security Principals

Well-Known Security Principal SID

Anonymous logon 1;1;0;0;0;0;0;5;7;0;0;0
Authenticated users 1;1;0;0;0;0;0;5;11;0;0;0
Batch 1;1;0;0;0;0;0;5;3;0;0;0
Creator group 1;1;0;0;0;0;0;3;1;0;0;0
Creator owner 1;1;0;0;0;0;0;3;0;0;0;0
Dialup 1;1;0;0;0;0;0;5;1;0;0;0
Enterprise domain controllers 1;1;0;0;0;0;0;5;9;0;0;0
Everyone 1;1;0;0;0;0;0;1;0;0;0;0
Interactive 1;1;0;0;0;0;0;5;4;0;0;0
Network 1;1;0;0;0;0;0;5;2;0;0;0
Proxy 1;1;0;0;0;0;0;5;8;0;0;0
Restricted 1;1;0;0;0;0;0;5;12;0;0;0
Self 1;1;0;0;0;0;0;5;10;0;0;0
Service 1;1;0;0;0;0;0;5;6;0;0;0
System 1;1;0;0;0;0;0;5;18;0;0;0
Terminal server user 1;1;0;0;0;0;0;5;13;0;0;0

The .NET class library provides an enumeration System.Security.
Principal.WellKnownSidType that you can use for the instancing of the
class SecurityIdentifier. You can thus avoid the language-specific dif-
ferences of the operating system (for example, the English Guests is
named Gäste on German operating systems).

Listing 24.2 Access to an Account via the SID

Well-Known Security Identifier

$SID = [System.Security.Principal.WellKnownSidType]::

➥BuiltinAdministratorsSid

$Account = new-object system.security.principal.securityidentifier

➥($SID, $zero)

$Name = $Account.Translate([system.security.principal.ntaccount]).value

$Name

Account Identifier Translation 415

24.
A

DVAN
CED

SECURITY
A

DM
IN

ISTRATIO
N

Some built-in users and groups contain the SID of the domain within
their own SID. In this case, when an instancing of the class
SecurityIdentifier is executed, the domain SID has also to be indi-
cated. Unfortunately, the documentation remains silent with regard to how
the domain SID can be fetched with .NET methods. Even on the World
Wide Web, there is not yet an example for this.

SDDL Names
Another possibility for an access to built-in users and groups is the use of
the abbreviations for built-in users and groups (see Table 24.2 and Listing
24.3) as defined in the Security Descriptor Definition Language (SDDL).

Listing 24.3 Displaying a SID from an SDDL Abbreviation

SDDL name

$Account = new-object System.Security.Principal.SecurityIdentifier("BA")

$Account.Value

Table 24.2 SDDL Abbreviations for Built-In Users and Groups

SDDL Abbreviation Meaning

"AO" Account operators
"AN" Anonymous logon
"AU" Authenticated users
"BA" Built-in administrators
"BG" Built-in guests
"BO" Backup operators
"BU" Built-in users
"CA" Certificate server administrators
"CG" Creator group
"CO" Creator owner
"DA" Domain administrators
"DC" Domain computers
"DD" Domain controllers
"DG" Domain guests

416 Chapter 24 Advanced Security Administration

SDDL Abbreviation Meaning

"DU" Domain users
"EA" Enterprise administrators
"ED" Enterprise domain controllers
"WD" Everyone
"PA" Group Policy administrators
"IU" Interactively logged-on user
"LA" Local administrator
"LG" Local guest
"LS" Local service account
"SY" Local system
"NU" Network logon user
"NO" Network configuration operators
"NS" Network service account
"PO" Printer operators
"PS" Personal self
"PU" Power users
"RS" RAS servers group
"RD" Terminal server users
"RE" Replicator
"RC" Restricted code
"SA" Schema administrators
"SO" Server operators
"SU" Service logon user

Reading the Owner

You can read the owner of a system module via the code property Owner
from the object derived from ObjectSecurity and extended by Windows
PowerShell (WPS), which Get-Acl retrieves. Alternatively, you can use
GetOwner() and choose again which form is to be used (see Listing 24.4).
Conversion between the two forms of the user presentation is also possible
with the method Translate().

Reading the Owner 417

24.
A

DVAN
CED

SECURITY
A

DM
IN

ISTRATIO
N

Listing 24.4 Read User Information

"owner information:"

$a = Get-Acl j:\projects

$a.Owner

$a.GetOwner([System.Security.Principal.NTAccount]).Value

$a.GetOwner([System.Security.Principal.SecurityIdentifier]).Value

Converting between account name and SID

$account = $a.GetOwner([System.Security.Principal.NTAccount])

$account.Translate([system.security.principal.securityidentifier]).value

Converting between SID and account name

$account = $a.GetOwner([System.Security.Principal.SecurityIdentifier])

$account.Translate([system.security.principal.NTAccount]).value

Adding a New ACE to an ACL

Listing 24.5 demonstrates the adding of an ACE to an ACL of a file in the
file system. New ACEs of the type FileSystemAccessRule need five
indications:

■ Account object (NTAccount object or SecurityIdentifier
object)

■ Access control rights to be granted (values from the
FileSystemRights enumeration)

■ Targets of the inheritance (values from the InheritanceFlags
enumeration)

■ Type of inheritance (values from the PropagationFlags
enumeration)

■ Type of rule: Allow or deny (values from the AccessControlType
enumeration)

418 Chapter 24 Advanced Security Administration

The following script grants a user reading rights to a directory (see
Figures 24.1 and 24.2).

Listing 24.5 Add an ACE

Adding an ACE to an ACL: Set read permissions for a user

Parameters

$DIR = "j:\projects"

$USER = "HS"

Get ACL

$ACL = Get-Acl $DIR

"ACL before:"

$acl | format-list

Define ACE

$Rights = [System.Security.AccessControl.FileSystemRights]

➥"ReadData, ReadExtendedAttributes, ReadAttributes, ReadPermissions"

$Access=[System.Security.AccessControl.AccessControlType]::Allow

$Inherit=[System.Security.AccessControl.InheritanceFlags]::

➥ContainerInherit `

-bor [System.Security.AccessControl.InheritanceFlags]::

➥ObjectInherit

$Prop=[System.Security.AccessControl.PropagationFlags]::InheritOnly

$AccessRule =

➥new-object System.Security.AccessControl.FileSystemAccessRule `

($USER,$Rights,$Inherit,$Prop,$Access)

Add ACL to ACE

$ACL.AddAccessRule($AccessRule)

Save ACL

Set-Acl -AclObject $ACL -Path $DIR

Controle

$ACL = Get-Acl $DIR

"ACL afterwards:"

$acl | format-list

Adding a New ACE to an ACL 419

24.
A

DVAN
CED

SECURITY
A

DM
IN

ISTRATIO
N

420 Chapter 24 Advanced Security Administration

TIP When several flags have to be set in a parameter, they have to be linked
together through an OR (operator -bor in WPS language):

$Rights= [System.Security.AccessControl.FileSystemRights]::
➥Read `
-bor [System.Security.AccessControl.FileSystemRights]::
➥ReadExtendedAttributes `
-bor [System.Security.AccessControl.FileSystemRights]::
➥ReadAttributes `
-bor [System.Security.AccessControl.FileSystemRights]::
➥ReadPermissions

To be more concise, you can also write the enumeration values in a string, sepa-
rated by commas:

$Rights = [System.Security.AccessControl.FileSystemRights]
➥"ReadData, ReadExtendedAttributes, ReadAttributes,
➥ReadPermissions"

Figure 24.1 Execution of a script that grants reading rights to a user

Removing an ACE from an ACL 421

24.
A

DVAN
CED

SECURITY
A

DM
IN

ISTRATIO
N

Figure 24.2 View of the rights in Windows Explorer

Removing an ACE from an ACL

To remove an ACE from the ACL, you can use the method
RemoveAccessRule(), which is inherited from NativeObjectSecurity
by all access control classes. The method expects an object of the type
AccessContolEntry as a parameter.

In case you want to remove all entries belonging to a user, you can use
PurgeAccessRules() and indicate a user account object (not the account
name).

Example 1
The script in Listing 24.6 deletes all ACEs belonging to a certain user from
the ACL.

Listing 24.6 Write ACL: Delete All ACEs of a User

Parameters

$DIR = "j:\projects"

$USER = "itv\HS"

$Count = 0

Control output

$acl = Get-Acl $DIR

"ACL previously:"

$acl | format-list

Get ACL

$acl = Get-Acl j:\projects

$Account = new-object system.security.principal.ntaccount("itv\hs")

$acl.PurgeAccessRules($Account)

set-acl -AclObject $ACL -Path $DIR

Save ACL

set-acl -AclObject $ACL -Path $DIR

Check output

$acl = Get-Acl $DIR

"ACL afterwards:"

$acl | format-list

Example 2
The script in Listing 24.7 deletes all ACEs from the ACL in which the right
to read and write has been granted ("ReadAndExecute"). Figure 24.3
shows the result.

Listing 24.7 Deleting ACEs from an ACL

Write ACL: Delete all access control entries from an access control

➥list, which contain the right to read and execute ("ReadAndExecute")

Parameters

$DIR = "j:\projects"

422 Chapter 24 Advanced Security Administration

$USER = "itv\HS"

$Count = 0

Control output

$acl = Get-Acl $DIR

"ACL previously:"

$acl | format-list

Get ACL

$acl = Get-Acl j:\projects

Access to ACEs

$aces =$acl.GetAccessRules($true, $true,

➥[System.Security.Principal.NTAccount])

Loop over all ACEs

foreach ($ace in $aces)

{

Write-host $ace.IdentityReference.ToString() " has right "

➥$ACE.FileSystemRights $ACE.AccessControlType " Inherited?"

➥$ACE.IsInherited

Selectively deleting

if ($ace.FileSystemRights.ToString() -match "ReadAndExecute")

{

"...will be removed..."

$Result = $acl.RemoveAccessRule($ace)

if ($REsult) { echo "Has been removed!"; $Count++ }

}

}

Save ACL

set-acl -AclObject $ACL -Path $DIR

echo ($Count.ToString() + " ACEs have been removed!")

Control output

$acl = Get-Acl $DIR

"ACL afterwards:"

$acl | format-list

Removing an ACE from an ACL 423

24.
A

DVAN
CED

SECURITY
A

DM
IN

ISTRATIO
N

424 Chapter 24 Advanced Security Administration

Figure 24.3 Three ACEs have been removed.

Transferring ACLs

The combination of Get-Acl and Set-Acl enables an easy transfer of an
ACL from one file system object to another:

Listing 24.8 File System_ACL_transfer.ps1

Transfer an ACL from one folder to another

Get-Acl j:\projects | Set-Acl j:\customers

Transfer an ACL from one file to a volume of files

$acl = Get-Acl j:\projects

Get-ChildItem g:\data | foreach-object { Set-Acl $_.Fullname $acl;

➥"transfer to $_" }

Setting ACLs Using SDDL

The Security Descriptor Definition Language (SDDL) is a text format for
the description of ACLs with single ACEs in Windows (introduced with
Windows 2000).

An example for a SDDL string is as follows:

O:BAG:DUD:PAI(A;;FA;;;BA)(A;OICI;0x1600a9;;;S-1-5-21-

➥1973890784-140174113-2732654181-1188)

➥(A;OICI;0x1200a9;;;S-1-5-21-1973890784-

➥140174113-2732654181-1189)

Example
The script in Listing 24.9 uses SDDL to transfer an ACL from one direc-
tory to another. In the meantime, the ACL is stored in the file system
(acl.txt) so that reading and setting are independent from each other, as
regards timing (see Figures 24.4 and 24.5).

Listing 24.9 Transfer of Permissions Using SDDL

Transferring an ACL via SDDL

$SOURCE = "j:\projects"

$TARGET = "j:\software"

function replace-acl

{

Param (

$Object,

$SDDL

)

$acl = Get-Acl $Object

$acl.SetSecurityDescriptorSddlForm($SDDL)

Set-Acl -aclObject $acl $Object

}

Read and save SDDL in a text file

Setting ACLs Using SDDL 425

24.
A

DVAN
CED

SECURITY
A

DM
IN

ISTRATIO
N

(continues)

Listing 24.9 Transfer of Permissions Using SDDL (continued)

(Get-Acl $SOURCE).SDDL > h:\demo\wps\b_security\acl.txt

Read SDDL from text file

$sddl = Get-Content h:\demo\wps\b_security\acl.txt

replace-acl $TARGET $sddl

"The following rights have been transferred: " + $sddl

426 Chapter 24 Advanced Security Administration

Figure 24.4 Successful export and import of rights using SDDL

Figure 24.5 Saved ACL in SSDL form

Summary

In this last chapter of this book, you learned how to work with different
security account identifiers (account name, SID, well-known security iden-
tifiers), how to read ACEs, and how to remove them from an ACL.

Also, this chapter covered the transfer of an ACL from one resource to
another. The SDDL is a text representation of an ACL. This enables you
to save an ACL to a file and later write the ACL back to the same or
another resource.

P A R T I I I

APPENDICES

Appendix A PowerShell Commandlet Reference 429

Appendix B PowerShell 2.0 Preview . 445

Appendix C Bibliography . 449

This page intentionally left blank

429

A P P E N D I X A

POWERSHELL COMMANDLET
REFERENCE

This appendix contains a list of all commandlets that are part of Windows
PowerShell (WPS) 1.0, PowerShell Community Extensions Version 1.1.1
(PSCX), and www.IT-Visions.de PowerShell Extensions Version 2.0.

Commandlet Description Product/Version

Add-Content Adds content to the specified item(s). WPS 1.0
Add-DirectoryEntry Adds a directory entry to a container. www.IT-Visions.de

PowerShell
Extensions 2.0

Add-History Appends entries to the session history. WPS 1.0
Add-Member Adds a user-defined custom member WPS 1.0

to an instance of a WPS object.
Add-PSSnapin Adds one or more WPS snap-ins WPS 1.0

to the current console.
Add-User Adds a new user to a directory service. www.IT-Visions.de

PowerShell
Extensions 2.0

Clear-Content Deletes the contents of an item, such WPS 1.0
as deleting the text from a file, but
does not delete the item.

Clear-Item Deletes the contents of an item, but WPS 1.0
does not delete the item.

Clear-ItemProperty Deletes the value of a property, but WPS 1.0
it does not delete the property.

Clear-Variable Deletes the value of a variable. WPS 1.0

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

Close-DBConnection Closes an ADO.NET database www.IT-Visions.de
connection. PowerShell

Extensions 2.0
Compare-Object Compares two sets of objects. WPS 1.0
ConvertFrom-Base64 Converts base64 encoded string to PSCX 1.1.1

byte array.
ConvertFrom- Converts a secure string into an WPS 1.0
SecureString encrypted standard string.
Convert-Path Converts a path from a WPS path WPS 1.0

to a WPS provider path.
ConvertTo-Base64 Converts byte array or specified file PSCX 1.1.1

contents to base64 string.
ConvertTo-Html Creates an HTML page that repre- WPS 1.0

sents an object or a set of objects.
ConvertTo- Converts the line endings in the PSCX 1.1.1
MacOs9LineEnding specified file to Mac OS9 and

earlier style line endings \r.
ConvertTo- Converts encrypted standard strings WPS 1.0
SecureString to secure strings. It can also convert

plain text to secure strings. It is used
with ConvertFrom-SecureString

and Read-Host.
ConvertTo- Converts the line endings in the PSCX 1.1.1
UnixLineEnding specified file to UNIX line endings \n.
ConvertTo- Converts the line endings in the PSCX 1.1.1
WindowsLineEnding specified file to Windows line

endings \r\n.
Convert-Xml Performs XSLT transforms on the PSCX 1.1.1

specified XML file or XmlDocument.
Copy-Item Copies an item from one location WPS 1.0

to another within a namespace.
Copy-ItemProperty Copies a property and value from a WPS 1.0

specified location to another location.
Disconnect- Disconnects a specific remote desktop PSCX 1.1.1
TerminalSession session on a system running Terminal

Services/Remote Desktop.

430 Appendix A PowerShell Commandlet Reference

www.IT-Visions.de

Commandlet Description Product/Version

Export-Alias Exports information about currently WPS 1.0
defined aliases to a file.

Export-Bitmap Exports bitmap objects to various PSCX 1.1.1
formats.

Export-Clixml Creates an XML-based represen- WPS 1.0
tation of an object or objects and
stores it in a file.

Export-Console Exports the configuration of the WPS 1.0
current console to a file so that you
can reuse or share it.

Export-Csv Creates a comma-separated values WPS 1.0
(CSV) file that represents the input
objects.

ForEach-Object Performs an operation against each WPS 1.0
of a set of input objects.

Format-Byte Displays numbers in multiples of PSCX 1.1.1
byte units.

Format-Custom Uses a customized view to format WPS 1.0
the output.

Format-Hex Displays the contents of files or PSCX 1.1.1
byte streams in hex format and
optionally ASCII.

Format-List Formats the output as a list of WPS 1.0
properties in which each property
appears on a new line.

Format-Table Formats the output as a table. WPS 1.0
Format-Wide Formats objects as a wide table WPS 1.0

that displays only one property
of each object.

Format-Xml Pretty print for XML files and PSCX 1.1.1
XmlDocument objects.

Get-Acl Gets the security descriptor for a WPS 1.0
resource, such as a file or registry key.

Get-ADObject Search for objects in the Active PSCX 1.1.1
Directory/Global Catalog.

Appendix A PowerShell Commandlet Reference 431

A.
P

O
W

ERSHELLCO
M

M
AN

DLET
R

EFEREN
CE

Commandlet Description Product/Version

Get-Alias Gets the aliases for the current session. WPS 1.0
Get-

AuthenticodeSignature Gets information about the Authenti- WPS 1.0
code signature in a file.

Get-BIOS Gets information about the BIOS on www.IT-Visions.de
a local or remote computer PowerShell

Extensions 2.0
Get-CDRomdrive Gets information about the CD-ROM www.IT-Visions.de

drives on a local or remote computer PowerShell
Extensions 2.0

Get-ChildItem Gets the items and child items in one WPS 1.0
or more specified locations.

Get-Clipboard Gets data from the clipboard. PSCX 1.1.1
Get-Command Gets basic information about cmdlets WPS 1.0

and about other elements of WPS
commands.

Get-ComputerInfo Gets information about the local www.IT-Visions.de
computer. PowerShell

Extensions 2.0
Get-Computername Gets the name of the local computer. www.IT-Visions.de

PowerShell
Extensions 2.0

Get-Content Gets the content of the item at the WPS 1.0
specified location.

Get-Credential Gets a credential object based on a WPS 1.0
username and password.

Get-Culture Gets information about the regional WPS 1.0
settings on a computer.

Get-CurrentUser Gets information about the current www.IT-Visions.de
user. PowerShell

Extensions 2.0
Get-Date Gets the current date and time. WPS 1.0
Get-DbConnection Opes a database connection. www.IT-Visions.de

PowerShell
Extensions 2.0

432 Appendix A PowerShell Commandlet Reference

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

Get-DbRow Gets a single row from a database www.IT-Visions.de
table. PowerShell

Extensions 2.0
Get-DbTable Gets a database table. www.IT-Visions.de

PowerShell
Extensions 2.0

Get-DhcpServer Gets a list of authorized DHCP PSCX 1.1.1
servers.

Get-DirectoryChildren Gets the child items of a directory www.IT-Visions.de
service container. PowerShell

Extensions 2.0
Get-DirectoryEntry Gets a single entry in a directory www.IT-Visions.de

service. PowerShell
Extensions 2.0

Get-DirectoryValue Gets a value from an entry in a www.IT-Visions.de
directory service. PowerShell

Extensions 2.0
Get-Disk Gets objects about all disks on a www.IT-Visions.de

local or remote computer. PowerShell
Extensions 2.0

Get-DomainController Gets a list of available domain PSCX 1.1.1
controllers in the current forest/
domain.

Get-EventLog Gets information about local WPS 1.0
event logs or the entries stored in
those event logs.

Get-ExecutionPolicy Gets the current execution policy WPS 1.0
for the shell.

Get-ExportedType Displays public types for a given PSCX 1.1.1
AssemblyName by loading the
associated assembly into a
reflection-only context and
dumping all publicly accessible
Type objects to the pipeline.

Get-FileVersionInfo Gets a FileVersionInfo object PSCX 1.1.1
for the specified path.

Appendix A PowerShell Commandlet Reference 433

A.
P

O
W

ERSHELLCO
M

M
AN

DLET
R

EFEREN
CE

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

Get-ForegroundWindow Returns the hWnd or handle of the PSCX 1.1.1
window in the foreground on the
current desktop. See also Set-
ForegroundWindow.

Get-Hash Gets the hash value for the specified PSCX 1.1.1
file or byte array via the pipeline.

Get-Help Displays information about WPS WPS 1.0
cmdlets and concepts.

Get-History Gets a list of the commands entered WPS 1.0
during the current session.

Get-Host Gets a reference to the current WPS 1.0
console host object. Displays WPS
version and regional information by
default.

Get-Item Gets the item at the specified WPS 1.0
location.

Get-ItemProperty Retrieves the properties of a WPS 1.0
specified item.

Get-ITVisions Displays information about www.IT-
this extension and checks for Visions.de
updates using a web service. PowerShell

Extensions 2.0
Get-Keyboard Gets information about the key- www.IT-

board on a local or remote computer. Visions.de
PowerShell
Extensions 2.0

Get-Location Gets information about the current WPS 1.0
working location.

Get-Member Gets information about objects or WPS 1.0
collections of objects.

Get-MemoryDevice Gets information about the RAM on www.IT-
a local or remote computer. Visions.de

PowerShell
Extensions 2.0

434 Appendix A PowerShell Commandlet Reference

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

Get-Metadata Gets metadata about the objects www.IT-Visions.de
in the pipeline. PowerShell

Extensions 2.0
Get-MountPoint Returns all mount points defined for PSCX 1.1.1

a specific root path.
Get-Networkadapter Gets objects about all network adapters www.IT-Visions.de

on a local or remote computer. PowerShell
Extensions 2.0

Get-PEHeader Gets the Portable Header information PSCX 1.1.1
from an executable file.

Get-PfxCertificate Gets information about PFX certificate WPS 1.0
files on the computer.

Get-PipelineInfo Gets type information about the objects www.IT-Visions.de
in the pipeline. PowerShell

Extensions 2.0
Get-PointingDevice Gets objects about mouse devices on a www.IT-Visions.de

local or remote computer. PowerShell
Extensions 2.0

Get-Privilege Lists privileges held by the session and PSCX 1.1.1
their current status.

Get-Process Gets the processes that are running on WPS 1.0
the local computer.

Get-Processor Gets objects about all processors on a www.IT-Visions.de
local or remote computer PowerShell

Extensions 2.0
Get-PSDrive Gets information about WPS drives. WPS 1.0
Get-PSProvider Gets information about the specified WPS 1.0

WPS provider.
Get-PSSnapin Gets the WPS snap-ins on the computer. WPS 1.0
Get-PSSnapinHelp Generates an XML file containing all PSCX 1.1.1

documentation data.
Get-Random Returns a random number or a byte PSCX 1.1.1

array.
Get-ReparsePoint Gets NTFS reparse point data. PSCX 1.1.1
Get-Service Gets the services on the local WPS 1.0

computer.

Appendix A PowerShell Commandlet Reference 435

A.
P

O
W

ERSHELLCO
M

M
AN

DLET
R

EFEREN
CE

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

Get-ShortPath Gets the short, 8.3 name for the PSCX 1.1.1
given path.

Get-SoundDevice Gets objects about all sound devices on www.IT-Visions.de
a local or remote computer. PowerShell

Extensions 2.0
Get-TabExpansion Gets matching tab expansions. PSCX 1.1.1
Get-Tapedrive Gets objects about all tape drives www.IT-Visions.de

on a local or remote computer. PowerShell
Extensions 2.0

Get-TerminalSession Gets information on terminal services PSCX 1.1.1
sessions.

Get-TraceSource Gets the WPS components that are WPS 1.0
instrumented for tracing.

Get-UICulture Gets information about the current WPS 1.0
user interface culture for WPS.

Get-Unique Returns the unique items from a WPS 1.0
sorted list.

Get-USBController Gets objects about all USB controllers www.IT-Visions.de
on a local or remote computer. PowerShell

Extensions 2.0
Get-Variable Gets the variables in the current WPS 1.0

console.
Get-Videocontroller Gets objects about all video controllers www.IT-Visions.de

on a local or remote computer. PowerShell
Extensions 2.0

Get-WmiObject Gets instances of WMI classes or WPS 1.0
information about available classes.

Group-Object Groups objects that contain the same WPS 1.0
value for specified properties.

Import-Alias Imports an alias list from a file. WPS 1.0
Import-Bitmap Loads bitmap files. PSCX 1.1.1
Import-Clixml Imports a CLIXML file and creates WPS 1.0

corresponding objects within WPS.
Import-Csv Imports CSV files in the format WPS 1.0

produced by the Export-CSV cmdlet
and returns objects that correspond
to the objects represented in that CSV file.

436 Appendix A PowerShell Commandlet Reference

www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

Invoke-DbCommand Invokes a command in a database. www.IT-Visions.de
PowerShell
Extensions 2.0

Invoke- Runs a WPS expression that is WPS 1.0
Expression provided in the form of a string.
Invoke-History Runs commands from the session WPS 1.0

history.
Invoke-Item Invokes the provider-specific default WPS 1.0

action on the specified item.
Invoke- Invokes a command in a database that
ScalarDbCommand returns a single value. www.IT-Visions.de

PowerShell
Extensions 2.0

Join-Path Combines a path and child path into WPS 1.0
a single path. The provider supplies
the path delimiters.

Join-String Joins an array of strings into a single PSCX 1.1.1
string.

Measure-Command Measures the time it takes to run script WPS 1.0
blocks and cmdlets.

Measure-Object Measures characteristics of objects and WPS 1.0
their properties.

Move-Item Moves an item from one location to WPS 1.0
another.

Move- Moves a property from one location to WPS 1.0
ItemProperty another.
New-Alias Creates a new alias. WPS 1.0
New-Hardlink Creates file system hard links. The PSCX 1.1.1

hardlink and the target must reside on
the same NTFS volume.

New-Item Creates a new item in a namespace. WPS 1.0
New- Sets a new property of an item at a WPS 1.0
ItemProperty location.
New-Junction Creates NTFS directory junctions. PSCX 1.1.1
New-Object Creates an instance of a .NET or WPS 1.0

COM object.

Appendix A PowerShell Commandlet Reference 437

A.
P

O
W

ERSHELLCO
M

M
AN

DLET
R

EFEREN
CE

www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

New-PSDrive Installs a new WPS drive. WPS 1.0
New-Service Creates a new entry for a Windows service WPS 1.0

in the registry and the service database.
New-Shortcut Creates shell shortcuts. PSCX 1.1.1
New-Symlink Creates file system symbolic links. Requires PSCX 1.1.1

Microsoft Windows Vista or later.
New-TimeSpan Creates a TimeSpan object. WPS 1.0
New-Variable Creates a new variable. WPS 1.0
Out-Clipboard Formats text via Out-String before placing PSCX 1.1.1

in the clipboard.
Out-Default Sends the output to the default formatter and WPS 1.0

the default output cmdlet. This cmdlet has no
effect on the formatting or output. It is a
placeholder that lets you write your own
Out-Default function or cmdlet.

Out-File Sends output to a file. WPS 1.0
Out-Host Sends output to the command line. WPS 1.0
Out-Null Deletes output instead of sending it to WPS 1.0

the console.
Out-Printer Sends output to a printer. WPS 1.0
Out-String Sends objects to the host as a series of strings. WPS 1.0
Ping-Host Sends ICMP echo requests to network hosts. PSCX 1.1.1
Pop-Location Changes the current location to the location WPS 1.0

most recently pushed onto the stack. You can
pop the location from the default stack or
from a stack that you create by using
Push-Location.

Push-Location Pushes the current location onto the stack. WPS 1.0
Read-Host Reads a line of input from the console. WPS 1.0
Remove- Removes a directory entry from a www.IT-Visions.de
DirectoryEntry directory service. PowerShell

Extensions 2.0
Remove-Item Deletes the specified items. WPS 1.0
Remove- Deletes the property and its value from WPS 1.0
ItemProperty an item.

438 Appendix A PowerShell Commandlet Reference

www.IT-Visions.de

Commandlet Description Product/Version

Remove-MountPoint Removes a mount point, dismounting PSCX 1.1.1
the current media if any. If used against
the root of a fixed drive, removes the
drive letter assignment.

Remove-PSDrive Removes a WPS drive from its location. WPS 1.0
Remove-PSSnapin Removes WPS snap-ins from the WPS 1.0

current console.
Remove- Removes NTFS reparse junctions and PSCX 1.1.1
ReparsePoint symbolic links.
Remove-Variable Deletes a variable and its value. WPS 1.0
Rename-Item Renames an item in a WPS provider WPS 1.0

namespace.
Rename- Renames a property of an item. WPS 1.0
ItemProperty

Resize-Bitmap Resizes bitmaps. PSCX 1.1.1
Resolve-Assembly Resolves and optionally imports assemblies PSCX 1.1.1

by partial name with optional version.
Resolve-Host Resolves host names to IP addresses. PSCX 1.1.1
Resolve-Path Resolves the wildcard characters in a WPS 1.0

path and displays the path contents.
Restart-Service Stops and then starts one or more WPS 1.0

services.
Resume-Service Resumes one or more suspended WPS 1.0

(paused) services.
Select-Object Selects specified properties of an object WPS 1.0

or set of objects. It can also select unique
objects from an array of objects or it can
select a specified number of objects from
the beginning or end of an array of
objects.

Select-String Identifies patterns in strings. WPS 1.0
Select-Xml Selects elements in XML files and PSCX 1.1.1

XmlDocument objects with XPath
expressions.

Send-SmtpMail Sends e-mail via specified SMTP server PSCX 1.1.1
to specified recipients.

Appendix A PowerShell Commandlet Reference 439

A.
P

O
W

ERSHELLCO
M

M
AN

DLET
R

EFEREN
CE

Commandlet Description Product/Version

Set-Acl Changes the security descriptor WPS 1.0
of a specified resource, such as a
file or a registry key.

Set-Alias Creates or changes an alias WPS 1.0
(alternate name) for a cmdlet or
other command element in the
current WPS session.

Set- Uses an Authenticode signature to WPS 1.0
AuthenticodeSignature sign a WPS script or other file.

Set-Clipboard Puts the specified object into the PSCX 1.1.1
system clipboard.

Set-Content Writes or replaces the content in WPS 1.0
an item with new content.

Set-Date Changes the system time on the WPS 1.0
computer to a time that you specify.

Set-DbTable Saves the updated data of a data www.IT-Visions.de
table. PowerShell

Extensions 2.0
Set-DirectoryValue Sets a value in a directory entry. www.IT-Visions.de

PowerShell
Extensions 2.0

Set- Changes the user preference for WPS 1.0
ExecutionPolicy the execution policy of the shell.
Set-FileTime Sets a file or folder’s created and PSCX 1.1.1

last accessed/write times.
Set-ForegroundWindow Given an hWnd or window handle, PSCX 1.1.1

brings that window to the fore-
ground. Useful for restoring a
window to uppermost after an
application that seizes the fore-
ground is invoked. See also
Get-ForegroundWindow.

Set-Item Changes the value of an item to WPS 1.0
the value specified in the command.

Set-ItemProperty Sets the value of a property at the WPS 1.0
specified location.

440 Appendix A PowerShell Commandlet Reference

www.IT-Visions.de
www.IT-Visions.de

Commandlet Description Product/Version

Set-Location Sets the current working location WPS 1.0
to a specified location.

Set-Privilege Adjusts privileges held by the PSCX 1.1.1
session.

Set-PSDebug Turns script debugging features on WPS 1.0
and off, sets the trace level and
toggles strict mode.

Set-Service Changes the display name, descrip- WPS 1.0
tion, or starting mode of a service.

Set-TraceSource Configures, starts, and stops a trace WPS 1.0
of WPS components.

Set-Variable Sets the value of a variable. Creates WPS 1.0
the variable if one with the requested
name does not exist.

Set-VolumeLabel Modifies the label shown in Windows PSCX 1.1.1
Explorer for a particular disk volume.

Sort-Object Sorts objects by property values. WPS 1.0
Split-Path Returns the specified part of a path. WPS 1.0
Split-String Splits a single string into an array PSCX 1.1.1

of strings.
Start-Process Starts a new process. PSCX 1.1.1
Start-Service Starts one or more stopped services. WPS 1.0
Start-Sleep Suspends shell, script, or runspace WPS 1.0

activity for the specified period of
time.

Start-TabExpansion Initializes the tab expansion caches. PSCX 1.1.1
Start-Transcript Creates a record of all or part of a WPS 1.0

WPS session in a text file.
Stop-Process Stops one or more running processes. WPS 1.0
Stop-Service Stops one or more running services. WPS 1.0
Stop-TerminalSession Logs off a specific remote desktop PSCX 1.1.1

session on a system running Terminal
Services/Remote Desktop.

Stop-Transcript Stops a transcript. WPS 1.0

Appendix A PowerShell Commandlet Reference 441

A.
P

O
W

ERSHELLCO
M

M
AN

DLET
R

EFEREN
CE

Commandlet Description Product/Version

Suspend-Service Suspends (pauses) one or more WPS 1.0
running services.

Tee-Object Pipes object input to a file or variable, WPS 1.0
and then passes the input along the
pipeline.

Test-Assembly Tests whether the specified file is a PSCX 1.1.1
.NET assembly.

Test-DbConnection Tests the availability of a database. www.IT-Visions.de
PowerShell
Extensions 2.0

Test-Path Determines whether all elements of a WPS 1.0
path exist.

Test-Xml Tests for well formedness and optionally PSCX 1.1.1
validates against XML Schema.

Trace-Command Configures and starts a trace of the WPS 1.0
specified expression or command.

Update-FormatData Updates and appends format data files. WPS 1.0
Update-TypeData Updates the current extended type WPS 1.0

configuration by reloading the *.types.
ps1xml files into memory.

Where-Object Creates a filter that controls which WPS 1.0
objects will be passed along a command
pipeline.

Write-BZip2 Creates BZIP2 format archive files from PSCX 1.1.1
pipeline or parameter input.

Write-Clipboard Writes objects to the clipboard using PSCX 1.1.1
their string representation, bypassing
the default WPS formatting.

Write-Debug Writes a debug message to the host WPS 1.0
display.

Write-Error Writes an object to the error pipeline. WPS 1.0
Write-GZip Creates GNU Zip (Gzip) format files PSCX 1.1.1

from pipeline or parameter input.
Write-Host Displays objects by using the host WPS 1.0

user interface.

442 Appendix A PowerShell Commandlet Reference

www.IT-Visions.de

Commandlet Description Product/Version

Write-Output Writes objects to the success pipeline. WPS 1.0
Write-Progress Displays a progress bar within a WPS WPS 1.0

command window.
Write-Tar Creates Tape Archive (TAR) format files PSCX 1.1.1

from pipeline or parameter input.
Write-Verbose Writes a string to the verbose display of WPS 1.0

the host.
Write-Warning Writes a warning message. WPS 1.0
Write-Zip Creates Zip format archive files from PSCX 1.1.1

pipeline or parameter input.

Appendix A PowerShell Commandlet Reference 443

A.
P

O
W

ERSHELLCO
M

M
AN

DLET
R

EFEREN
CE

This page intentionally left blank

445

A P P E N D I X B

POWERSHELL 2.0 PREVIEW

At their TechEd Europe 2007 conference, Microsoft announced Windows
PowerShell 2.0 and made available a very early prerelease version. WPS
2.0 will be compatible with WPS 1.0 and will include some major advances
and a lot of minor advances.

Major advances in WPS 2.0 include the following:

■ A graphical user environment for WPS, including a script editor
with syntax highlighting and IntelliSense (see Figure B.1).

■ Remote execution of commands and scripts (on a remote computer
or a few remote computers at the same time)

■ Asynchronous operations (background execution in a different
thread)

■ Script debugging (console based, not graphical)
■ Constrained runspaces (shells restricted to certain commands)
■ An event system that informs about any changes in objects (for

example, start of a process)
■ Packaging of scripts and additional files

446 Appendix B PowerShell 2.0 Preview

Figure B.1 The “Graphical WPS” is still basic at this early stage in the WPS 2.0
product development.

At this point, only a few of the minor advances that will be available in
WPS 2.0 are public:

■ Enhancements to Get-Member (display of intrinsic members such
as PSBase)

■ New operators for string splitting and joining
■ New syntax for data declarations, including internationalization
■ Script commandlets now as powerful as .NET-based commandlets

(including –confirm, -whatif, -debug, and –verbose)
■ Improvements to the ADSI object adapter (members of the
DirectoryEntry class such as Parent, Path, Children,
SchemaClassName, and SchemaEntry no longer hidden)

■ Additional commandlets for WMI (Invoke-WmiMethod, Remove-
WmiObject)

■ Support for WMI authentication in Get-WmiObject
■ New data type [ADSISearcher] for the definition of LDAP

queries
■ Hash tables that can be used as parameter lists for commandlets (a

feature called splatting)
■ New commandlet Out-GridView for viewing pipeline content in a

table, including grouping and search support (see Figure B.2)

Appendix B PowerShell 2.0 Preview 447

B.
P

O
W

ERSHELL2.0 P
REVIEW

Figure B.2 The WPS 2.0 CTP has some problems with Add-PsSnapIn. The
Out-GridView commandlet, however, is already quite nice.

WARNING Most features of WPS 2.0 are based on .NET Framework 2.0, but
some (for example, the editor and the commandlet Out-GridView) will require
.NET Framework 3.0 or later.

This page intentionally left blank

449

A P P E N D I X C

BIBLIOGRAPHY

[CODEPLEX01] PowerShell Community www.codeplex.com/PowerShellCX/
Extensions

[CODEPLEX02] PowerShell SharePoint www.codeplex.com/PSSharePoint
Provider

[DOTNET01] .NET Framework www.dotnetframework.de
Community Website

[DOTNET02] .NET Tools and Software www.dotnetframework.de/tools.aspx
Components Reference

[FAY01] PowerShell Help Editor www.wassimfayed.com/PowerShell/
CmdletHelpEditor.zip

[Gotdotnet01] PowerShell remoting www.codeplex.com/powershellremoting

[Kumaravel01] AD Access Change/ groups.google.de/group/microsoft.
Break in RC2 public.windows.powershell/browse_thread/

thread/7cf4b1bb774dfb90/17ad75cae89a34
1d?lnk=st&q=%22Folks%2C+I+know+
that+many+of%22&rnum=6&hl=
de#17ad75cae89a341d

[MS01] PowerShell download www.microsoft.com/windowsserver2003/
technologies/management/powershell/
download.mspx

[MS02] PowerShell www.microsoft.com/downloads/
Documentation details.aspx?familyid=B4720B00-

9A66-430F-BD56-
EC48BFCA154F&displaylang=en

[MS03] Windows PowerShell www.microsoft.com/downloads/
Graphical Help File details.aspx?familyid=3b3f7ce4-43ea-4a21-

90cc-966a7fc6c6e8&displaylang=en

www.codeplex.com/PowerShellCX/
www.codeplex.com/PSSharePoint
www.dotnetframework.de
www.dotnetframework.de/tools.aspx
www.wassimfayed.com/PowerShell/CmdletHelpEditor.zip
www.wassimfayed.com/PowerShell/CmdletHelpEditor.zip
www.codeplex.com/powershellremoting
www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
www.microsoft.com/windowsserver2003/technologies/management/powershell/download.mspx
www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=3b3f7ce4-43ea-4a21-90cc-966a7fc6c6e8&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=B4720B00-9A66-430F-BD56-EC48BFCA154F&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=3b3f7ce4-43ea-4a21-90cc-966a7fc6c6e8&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=3b3f7ce4-43ea-4a21-90cc-966a7fc6c6e8&displaylang=en

[MS04] Group Policy Management www.microsoft.com/downloads/
Console with Service Pack 1 details.aspx?familyid=0a6d4c24-8cbd-

4b35-9272-dd3cbfc81887&
displaylang=en

[MSDN01] .NET Framework Class msdn2.microsoft.com/library/
Library documentation for system.security.accesscontrol.
FileSystemRights- filesystemrights(VS.80).aspx
Enumeration

[MSDN02] How to Write Cmdlet Help msdn2.microsoft.com/en-us/l
ibrary/aa965353.aspx

[MSDN03] PowerShell Software msdn2.microsoft.com/en-us/
Development Kit (SDK) library/aa139691.aspx

[MSDN04] Windows PowerShell msdn2.microsoft.com/en-us/
Extended Type System (ETS) library/ms714419.aspx

[MSDN05] WMI Schema Class Reference msdn2.microsoft.com/en-us/
library/Aa394554.aspx

[MSDN06] Documentation for the msdn2.microsoft.com/en-us/
.NET Namespace System. library/system.management.aspx
Management

[MSDN07] Cmdlet Development msdn2.microsoft.com/en-us/
Guidelines library/ms714657.aspx

[MSDN08] .NET Framework Regular msdn2.microsoft.com/en-us/
Expressions library/hs600312(VS.80).aspx

[MSDN09] Active Directory-Schema msdn.microsoft.com/library/en-us/
adschema/adschema/active_directory_
schema.asp

[MSDN10] User Object User Interface msdn.microsoft.com/library/
Mapping default.asp?url=/library/en-us/ad/ad/

user_object_user_interface_mapping.asp
[MSSec01] Malicious Software www.microsoft.com/security/encyclopedia/

Encyclopedia: Worm:MSH/ details.aspx?name=Worm:MSH/Cibyz.A
Cibyz.A

[NSOFT] NetCmdlets from nsoftware www.nsoftware.com/powershell/

[RFC1960] A String Representation of www.ietf.org/rfc/rfc1960.txt
LDAP Search Filters

[RFC2254] The String Representation of www.rfc-editor.org/rfc/rfc2254.txt
LDAP Search Filters

450 Appendix C Bibliography

www.microsoft.com/downloads/details.aspx?familyid=0a6d4c24-8cbd-4b35-9272-dd3cbfc81887&displaylang=en
www.microsoft.com/security/encyclopedia/details.aspx?name=Worm:MSH/Cibyz.A
www.nsoftware.com/powershell/
www.ietf.org/rfc/rfc1960.txt
www.rfc-editor.org/rfc/rfc2254.txt
www.microsoft.com/downloads/details.aspx?familyid=0a6d4c24-8cbd-4b35-9272-dd3cbfc81887&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=0a6d4c24-8cbd-4b35-9272-dd3cbfc81887&displaylang=en
www.microsoft.com/downloads/details.aspx?familyid=0a6d4c24-8cbd-4b35-9272-dd3cbfc81887&displaylang=en
www.microsoft.com/security/encyclopedia/details.aspx?name=Worm:MSH/Cibyz.A

[TNET01] Documentation for the technet.microsoft.com/en-us/library/
Exchange Management Shell bb124413.aspx

[TNET02] Exchange Server Scripts for www.microsoft.com/technet/
the PowerShell scriptcenter/scripts/message/exch2007/

default.mspx?mfr=true
[TNET03] Converting VBScript www.microsoft.com/technet/

Commands to Windows scriptcenter/topics/winpsh/
PowerShell Commands convert/default.mspx

[W3C01] XML Path Language www.w3.org/TR/xpath
(XPath) Version 1.0
W3C Recommendation
16 November 1999

[WPE01] Definition of “trial and error” en.wikipedia.org/wiki/
Trial_and_error

[WS01] Companion website for www.windows-scripting.com
this book

Appendix C Bibliography 451

C.
B

IBLIO
GRAPHY

www.microsoft.com/technet/scriptcenter/scripts/message/exch2007/default.mspx?mfr=true
www.microsoft.com/technet/scriptcenter/topics/winpsh/convert/default.mspx
www.w3.org/TR/xpath
www.windows-scripting.com
www.microsoft.com/technet/scriptcenter/topics/winpsh/convert/default.mspx
www.microsoft.com/technet/scriptcenter/topics/winpsh/convert/default.mspx
www.microsoft.com/technet/scriptcenter/scripts/message/exch2007/default.mspx?mfr=true
www.microsoft.com/technet/scriptcenter/scripts/message/exch2007/default.mspx?mfr=true

This page intentionally left blank

INDEX

453

Symbols
& (ampersand) operator,

109
@ (at symbol) in hash

tables, 107
= (equals sign), 109
() (parentheses) in

methods, 64
+ (plus sign operator),

54, 108
“” (quotation marks) in

parameters, 26
; (semicolons) in

commands, 90
* (star operator), 108, 356
| (vertical line) for

pipelines, 43

A
access control entries.

See ACEs
access control lists.

See ACLs
access rights, 403-406
accessing

databases
commands, 383-385
connections, 380-382
data readers, 386-388
DataSets. See

DataSets

provider-independent,
382-383

www.IT-Visions.de
extensions, 396-399

directory services, 313
file shares, 221
hash tables, 107
WMI

collections, 146
members, 142-144
objects, 137-138

ACEs (access control
entries), 225, 402

adding to ACLs, 418-419
contents, 402
deleting from ACLs,

421-423
reading, 410-411

ACLs (access control lists),
225, 401-402

ACEs
adding, 418-419
contents, 402
deleting, 421-423
reading, 410-411

classes, 406
control holders, 408
inheritance

hierarchy, 406
ObjectSecurity, 406
reading ACLs, 408-409
resources, 407

commandlets, 401
configuring, 425-426
reading, 408-409
transferring, 424

Active Directory
extensions

PSCX, 361
Quest, 365
www.IT-Visions.de,

362-364
group members

assignments, 345
creating/filling, 345
deleting, 346
listing, 343-344

organizational units,
346-347

schema
documentation, 338
website, 450

searching, 314
indexed attributes, 354
multivalued attributes,

355-356
result restrictions, 357
star operator, 356

structure, 365-367
user accounts

authentication, 341
creating, 339-340
deleting, 342
moving, 343

www.IT-Visions.de
www.IT-Visions.de

passwords, 340
renaming, 342

user class, attributes,
335-338

Active Directory Service
Interfaces. See ADSI

Active Directory
Management Objects
(ADMO), 365

AD Access Change/Break
in RC2 website, 449

ADAM (Active Directory
Application
Mode), 365

add-content commandlet,
429

binary files, 238
text files, writing, 236

add-directoryentry
commandlet,
362, 429

add-history commandlet,
429

add-member commandlet,
429

Add-PSSnapin
commandlet,
175-176, 429

add-user commandlet,
362, 429

adding
ACEs to ACLs, 418-419
snap-ins, 175
users to groups, 345
virtual web servers,

308-311
AddPrinterConnection()

method
(Win32_Printer
class), 287

ADMO (Active Directory
Management
Objects), 365

454 Index

ADO.NET, 373
architecture, 374
data providers, 375
data source control

elements, 377
DataReader object,

376-378
DataSet object, 376-378
SQL Servers, listing

available, 376
ADSI (Active Directory

Service Interfaces),
314

architecture, 316
deficiencies, 321-323
directory services,

compared, 320
DirectoryEntry class,

318-319
integration, 316
object model, 318
property cache, 329
search queries, 319

aliases, 29
creating, 30-31
enumerating, 29
properties, 68

ambiguous commandlets,
180

ampersand (&) operator,
109

Analyzer, 164
analyzing pipeline

content, 59
alias properties, 68
code properties, 68
ETS, 69-70
get-member command-

let, 62, 66-69
get-pipelineinfo

commandlet, 60
methods, 64

note properties, 67
properties, 65
property sets, 66
script properties, 67

AppendChild()
method, 246

AppendData right, 403
architecture

Active Directory,
365-367

ADO.NET, 374
ADSI, 316

arrays, 105-106
associative, 106-108
declaring, 105
defining, 105
joining, 105
listing, 105
multidimensional, 106

at symbol (@) in hash
tables, 107

attributes, 213
directory entries

reading, 328
writing, 329

FileSystemAccessRule
objects, 410

indexed, 354
mailboxes, 304
multivalued, 355-356
Property, 318
services, 278
user class (Active

Directory), 335-338
authentication, 58, 341
autostart applications, 263

B–C
binary files, 238
BIOS settings, 282
boot configuration

settings, 282

calculated parameters,
27-28

calculations (pipelines), 76
calling methods, 64
castrating objects, 73-74
Change() method

(Win32_Service
class), 278

ChangePermission
right, 403

checking XML files,
242-243

classes
attributes, 213
CmdletInfo, 179
COM

COM objects, 135
creating instances, 133
existing instances, 134

DateTime, 102
DbProviderFactories, 382
DirectoryEntries, 319
DirectoryEntry, 318-319
DriveInfo, 208
FileInfo, 214
group policies, 367
Hashtable, 107
IIsApplicationPool, 305
IIsComputer, 305
IIsWebServer, 305
IIsWebService, 305
IIsWebVirtualDir, 305
MailMessage, 302
ManagementDateTime-

Converter, 145
.NET, 129

assemblies, loading, 131
constructor

parameters, 130
enumerations, 132
help, 38-40
instances, creating, 130

Index 455

object analysis, 132
static members, 130

ObjectSecurity, 406
security, 406

control holders, 408
inheritance

hierarchy, 406
ObjectSecurity, 406
reading ACLs, 408-409
resources, 407

SmtpClient, 302
String, 99
TimeSpan, 103
user (Active Directory),

335-338
WebClient, 300
Win32_Computersystem,

281
Win32_Desktop, 315
Win32_LogicalDisk,

207-210
Win32_NetworkAdapter

Configuration, 296
Win32_NTLogEvent, 291
Win32_Operating

System, 281
Win32_PerfRawData, 292
Win32_Product, 259
Win32_Service, 277
Win32_Share, 221
Win32_StartupCommand,

263
Win32_Trustee, 226
WMI, 135

available, listing, 148
collections,

accessing, 146
instances, creating, 149
object access, 137-138
object adapter, 139
object analysis, 140
object filtering/

selecting, 146-147

properties/methods,
142-144

queries, 147
static class

members, 144
System.Management

object model, 135
type indicators, 139
WPS support, 136

XMLDocument,
229, 244

clear-content commandlet,
429

clear-item commandlet,
206, 429

clear-itemproperty
commandlet, 429

clear-variable commandlet,
429

clipboard, 200
close-dbconnection

commandlet, 430
cmdlet development

guidelines
website, 450

Cmdlet help website, 450
CmdletInfo class, 179
code properties, 68
COM classes

COM objects, 135
instances

creating, 133
existing, 134

command mode, 33, 154
command-processing

modes, 33
commandlets

add-content, 429
binary files, 238
text files, writing, 236

add-directoryentry,
362, 429

add-history, 429
add-member, 429
add-pssnapin, 175, 429
add-user, 362, 429
ambiguous, 180
case sensitivity, 29
clear-content, 429
clear-item, 206, 429
clear-itemproperty, 429
clear-variable, 429
close-dbconnection, 430
compare-object, 78, 430
convert-html, 251
convert-path, 430
convert-xml, 249, 430
convertfrom-base64, 430
convertfrom-secure-

string, 430
convertto-base64, 430
convertto-html, 430
convertto-macos9line-

ending, 430
convertto-securestring,

430
convertto-unixline-

ending, 430
convertto-windowsline-

ending, 430
copy-item, 212, 254, 430
copy-itemproperty, 430
data access, 396
debugging parameters,

171
definition, 25
disable-mailbox, 304
disconnect-terminal-

session, 430
Exchange Server 2007,

184-185
export-alias, 431
export-bitmap, 431
export-clixml, 248, 431
export-console, 431

456 Index

export-csv, 239, 431
expression integration, 33
extensions, 174-175, 181
external, 33-34
file system administra-

tion, 205-206
foreach-object, 105,

235, 431
format-byte, 431
format-custom, 431
format-hex, 431
format-list, 431
format-table, 431
format-wide, 431
format-xml, 244, 431
get-, 35
get-acl, 401, 431
get-adobject, 314,

358, 431
get-alias, 30, 432
get-authenticode-

signature, 432
get-bios, 432
get-cdromdrive, 432
get-childitem, 432

directory content, 210
Filter parameter, 211
include parameter, 211
registry keys, 253

get-clipboard, 200, 432
get-command, 432
get-computerinfo, 432
get-computername, 432
get-content, 206, 432

binary files, 238
files, reading, 229, 235

get-credential, 58, 432
get-culture, 188, 432
get-currentuser, 432
get-datarow, 396
get-datatable, 396
get-date, 102, 432
get-dbconnection, 432

get-dbrow, 433
get-dbtable, 433
get-dhcpserver, 433
get-directory, 362
get-directorychildren, 433
get-directoryentry,

362, 433
get-directoryvalue,

362, 433
get-disk, 206, 433
get-domaincontroller,

324, 433
get-eventlog, 290, 433
get-executionpolicy, 433
get-exportedtype, 433
get-fileversioninfo, 433
get-foregroundwindow,

434
get-hash, 434
get-help, 35, 434
get-history, 186, 434
get-host, 187, 434
get-item, 434

file properties, 213
registry keys, 254

get-itemproperty,
255, 434

get-ITVisions, 434
get-keyboard, 434
get-location, 206, 434
get-mailbox, 303
get-mailboxdatabase, 303
get-member, 62,

66-68, 434
alias properties, 68
code properties, 68
methods, 64
note properties, 67
output, reducing, 69
properties, 65
property sets, 66
script properties, 67

get-memorydevice, 434

get-metadata, 435
get-mountpoint, 435
get-networkadapter, 435
get-PEheader, 435
get-pfxcertificate, 435
get-pipelineinfo, 60, 435
get-pointingdevice, 435
get-privilege, 435
get-process, 11, 435

processes, enumerat-
ing, 267-268

processes, filtering, 268
get-process | out file, 55
get-process | out-printer,

55
get-processor, 435
get-psdrive, 83, 206, 435
get-psprovider, 84, 435
get-pssnapin, 435
get-pssnapinhelp, 435
get-random, 435
get-reparsepoint, 435
get-service, 272, 435
get-service i, 13
get-shortpath, 436
get-sounddevice, 436
get-storagegroup, 303
get-tabexpansion, 436
get-tapedrive, 436
get-terminalsession, 436
get-tracesource, 173, 436
get-uiculture, 188, 436
get-unique, 436
get-usbcontroller, 436
get-variable, 436
get-videocontroller, 436
get-wmiobject, 135,

144, 436
hardware information,

284
list parameter, 148

group-object, 74, 436
help, 35, 38

Index 457

import-alias, 436
import-bitmap, 436
import-clixml, 436
import-csv, 240, 436
import-dbcommand, 437
invoke-dbcommand, 396
invoke-expression,

109, 437
invoke-history, 437
invoke-item, 437
invoke-scalardb-

command, 437
join-path, 437
join-string, 102, 437
listing of, 35
measure-command,

173, 437
measure-object, 76, 437
move-item, 206,

212, 437
move-itemproperty, 437
navigation, 84
new-alias, 30, 437
new-hardlink, 218, 437
new-item, 206, 437

registry keys, 254
text files, creating, 236

new-itemproperty,
256, 437

new-junction, 218, 437
new-mailboxdatabase,

303
new-object, 437
new-psdrive, 438
new-service, 278, 438
new-shortcut, 217, 438
new-storagegroup, 303
new-symlink, 220, 438
new-timespan, 103, 438
new-variable, 438
nouns, 29
out-clipboard, 438
out-default, 51, 438

out-file, 55, 236, 438
out-host, 51, 438
out-null, 438
out-printer, 55, 287, 438
out-string, 438
output, 49

printing, 55
single values, 53-54
standard, 51-53
suppressing, 55
text files, 55

parameters, 26-27
calculated, 27-28
case sensitivity, 29
filtering output, 28
placeholders, 29
quotation marks, 26
sequence, 27

ping-host, 296, 438
pipelines

calculations, 76
castrating objects,

73-74
classic commands, 46
comparing objects, 78
content, analyzing. See

pipelines, content
analyzing

creating, 43
filtering objects, 70-72
grouping objects,

74-75
intermediate steps,

viewing, 76
objects, 44-46
output, 49-55
Pipeline Processor,

47-49
ramifications, 78
sorting objects, 74
user input, 56-58

placeholders, 29
pop-location, 438

PSCX, 181-182, 214
push-location, 438
Quest, 183-184
read-host, 56, 438
remove-directoryentry,

362, 438
remove-item, 206, 212,

254, 438
remove-itemproperty,

257, 438
remove-mountpoint, 439
remove-psdrive, 439
remove-pssnapin, 439
remove-reparsepoint,

439
remove-variable, 439
rename-item, 206,

212, 439
rename-itemproperty,

439
resize-bitmap, 439
resolve-assembly,

215, 439
resolve-host, 299, 439
resolve-path, 439
restart-service, 277, 439
resume-service, 439
SCVMM, 185
select-object, 70, 73, 439
select-string, 237, 439
select-xml, 244-246, 439
send-smtpmail, 302, 439
set-acl, 401, 440
set-alias, 30, 440
set-authenticodesigna-

ture, 120, 440
set-clipboard, 200, 440
set-content, 206, 440

binary files, 238
text files, writing, 236

set-datarow, 396
set-datatable, 396

458 Index

set-date, 104, 440
set-dbtable, 440
set-directoryvalue,

362, 440
set-distributiongroup,

304
set-executionpolicy,

119, 440
set-filetime, 214, 440
set-foregroundwindow,

440
set-item, 206, 440
set-itemproperty,

214, 440
set-location, 206,

254, 441
set-privilege, 441
set-psdebug, 173, 441
set-service, 278, 441
set-tracesource, 173, 441
set-variable, 441
set-volumelabel,

210, 441
snap-ins, 179
sort-object, 74, 441
split-path, 441
split-string, 101, 441
start-process,

269-270, 441
start-service, 277, 441
start-sleep, 122, 441
start-tabexpansion, 441
start-transcript, 441
stop-process, 270, 441
stop-service, 277, 441
stop-terminalsession,

441
stop-transcript, 441
suspend-service, 442
syntax, 26
test-assembly, 442
test-dbconnection,

396, 442

test-path, 442
test-xml, 243, 442
trace-command, 442
tree-object, 78, 442
update-formatdata, 442
update-typedata, 442
verbose parameter, 172
where-object, 70, 442
write-bzip2, 442
write-clipboard, 200, 442
write-debug, 442
write-error, 53, 442
write-gzip, 442
write-host, 53, 442
write-output, 443
write-progress, 443
write-tar, 443
write-verbose, 443
write-warn, 53
write-warning, 443
write-zip, 220, 443

commands
database access, 383-385
history, 186-187
separating, 90

comments, 90
CommitChanges()

method, 329
compare-object

commandlet, 78, 430
comparing objects, 78
complex pipelines, 48-49
compression (files),

220-221
computers

BIOS, 282
boot configurations, 282
event logs, 290

entries, 290-291
names, 290
remote access, 291

hardware
information, viewing,

284-285
printers, 286-289

performance counters,
292-293

pinging, 295
product aviation

settings, 282
recovery settings, 283
serial numbers, 282
settings, viewing,

281-283
software versions, 282

configuring
ACLs, 425-426
date and time, 104
files

date and time, 214
share permissions,

225-228
networking, 296-298

confirm parameter, 171
connections

databases, 380-382
printers, 287

consoles
interactive mode, 11
WPS, 151

command history,
186-187

command mode, 154
functions, 152
interpreter mode, 154
PowerTab, 156
snap-ins, loading,

175-176
tab completion, 153
Vista user account

control, 155

Index 459

constant values
(variables), 95

constructors (.NET
classes), 130

control structures, 110-112
convert-html commandlet,

251
convert-path commandlet,

430
convert-xml commandlet,

249, 430
convertfrom-base64

commandlet, 430
convertfrom-securestring

commandlet, 430
convertto-base64

commandlet, 430
convertto-html

commandlet, 430
convertto-macos9lineend-

ing commandlet, 430
convertto-securestring

commandlet, 430
convertto-unixlineending

commandlet, 430
convertto-windowslineend-

ing commandlet, 430
ConvertToDateTime()

method, 145
copy-item commandlet,

212, 254,430
copy-itemproperty

commandlet, 430
copying

files/folders, 212
registry keys, 254

CreateDirectories
right, 403

CreateElement()
method, 246

CreateFiles right, 404

creating
CSV files, 239
directory entries, 332
Explorer links, 217
file shares, 223-224,

229-232
groups

Active Directory, 345
policy links, 369-370

hardlinks, 218
junction points, 218
mailboxes, 303
organizational units,

346-347
public folders, 305
registry keys, 254-257
symbolic links, 220
user accounts, 339-340
websites from CSV files,

309-311
CSV files, 239

creating, 239
exporting, 239
importing, 240
websites, creating,

309-311
customizing

file properties, 214
service configuration,

278-279
strings, 100
XML documents, 246

D
data

adapters, 391
providers, 375
readers, 386-388
types, 92

listing of, 92
registry, 257
variables, 91-93

databases
access

commands, 383-385
connections, 380-382
data readers, 386-388
DataSets. See

DataSets
provider-independent,

382-383
www.IT-Visions.de

extensions, 396-399
ADO.NET, 373

architecture, 374
data providers, 375
data source control

elements, 377
DataReader object,

376-378
DataSet object,

376-378
enumerating data

providers, 375
SQL Servers, listing

available, 376
example, 379
mailboxes, 303

DataReader object,
376-378

DataSets, 389
data adapter, 391
object model,

376-378, 390
provider-independent

example, 394-395
provider-specific

example, 391-393
XML exports/

imports, 395
DataTable objects, 390
date and time, 102-103, 145

files, 214
periods of time, 103

460 Index

remote computers, 104
setting, 104
WMI date format con-

versions, 145
DateTime class, 102
DbProviderFactories

class, 382
deactivating mailboxes, 304
debug parameter, 171
debugging

commandlet parameters
for, 171

PowerShellPlus, 21
PowerShellPlus

Editor, 163
step-by-step, 173
verbose parameter, 172

declaring
arrays, 105
variables, 91

default naming
context, 324

Delete right, 404
DeleteSubdirectoriesAnd-

Files right, 404
DeleteTree() method, 342
deleting

ACEs to ACLs, 421-423
directory entries, 332
files/folders, 212
group policy links,

370-372
junction points, 219
print jobs, 288
registry keys, 254, 257
text file content, 236
users

Active Directory, 342
groups, 346

virtual web servers, 311
dependent services,

274-276

dialog boxes
authentication, 58
user input, 57

digital signatures, 120-121
directory content

files/folders operations,
212-213

viewing, 210-212
directory services

access, 313
ADSI

compared, 320
deficiencies, 321-323

paths, 323-325
programming, 325

ADSI property
cache, 329

binding meta objects
to directory entries,
325-326

container objects, 331
directory entries, 332
directory entry

attributes, 328-329
directory entry exis-

tence, checking, 327
impersonation, 327
object properties, 330

www.IT-Visions.de com-
mandlets, 362-364

DirectoryEntries class, 319
DirectoryEntry class,

318-319
disable-mailbox

commandlet, 304
disconnect-terminalsession

commandlet, 430
DLL registration, 175
DNs (distinguished

names), 323

www.IT-Visions.de
www.IT-Visions.de

documents
binary files, 238
CSV files, 239

creating, 239
exporting, 239
importing, 240

HTML, 251
text files

content, deleting, 236
reading, 235-236
searching, 237
writing to, 236-237

XML, 241
checking, 242-243
converting to XHTML

files, 249
customizing, 246
formatting, 244
object pipeline, 248
reading, 241
searching with

XPath, 244
domain controllers (Active

Directory), 366-367
domains (Active

Directory), 366
dot sourcing, 118
downloading

PSCX, 17
RSS feeds, 301
WPS, 8

DownloadString()
method, 300

DriveInfo class, 208
drives

defining, 87-88, 255
free space, viewing,

208-210
listing all, 206-207
names, 210
network, 210
providers, 83-84

Index 461

E
e-mail, sending, 302
ending processes, 270
enumerating

aliases, 29
data providers, 375
file shares, 223
group policies, 367-369
.NET classes, 132
processes, 267-268
services, 272-273

environment variables,
viewing, 283

equals sign (=), 109
ErrorAction parameter,

125-127
errors (scripts), 122

creating, 128
handling, 125-127
history, 128
standard reactions, 127
trap blocks, 128
trapping example,

123-125
ETS (Extended Type

System), 44
pipeline content,

analyzing, 69-70
website, 450

event logs, 290
entries, 290-291
filtering, 14
names, 290
remote access, 291

Exchange Management
Shell website, 451

Exchange Server 2007, 302
basic operations, 302
databases, listing, 303
functionality, testing, 303
mailboxes, 303-304

management shell,
184-185

public folder
management, 305

scripts website, 451
storage groups, 303

executable files
PE header information,

215
PSCX commandlets, 214
viewing, 215

ExecuteFile right, 404
execution policies, 119
execution time,

measuring, 173
Exists() method, 327
Explorer links, 216-217
export-alias commandlet,

431
export-bitmap

commandlet, 431
export-clixml commandlet,

248, 431
export-console

commandlet, 431
export-csv commandlet,

239, 431
exporting

CSV files, 239
DataSets, 395

expressions, 32-33
Extended Reflection, 44
Extended Type System.

See ETS
extensions

commandlets,
174-175, 181

PSCX
Active Directory, 361
commandlets, 181-182
LDAP filters, 358

Quest, 365
www.IT-Visions.de, 183

Active Directory,
362-364

database access,
396-399

external commandlets,
33-34

F
file system administration

access rights, 403-406
commandlets, 205-206
directory content,

viewing, 210-212
drives

free space, displaying,
208-210

listing all, 206-207
names, 210
network, 210

executable files
PE header

information, 215
PSCX commandlets,

214
viewing, 215

file compression,
220-221

file properties
customizing, 214
date/time information,

214
viewing, 213

file shares
accessing, 221
creating, 223-224
enumerating, 223
mass creation, 229-232
permissions, 225-228

files/folders operations,
212-213

462 Index

links, 216
Explorer, 216-217
hardlinks, 217-218
junction points,

218-219
symbolic, 220

FileInfo class, 214
files

binary, 238
compression, 220-221
copying, 212
CSV, 239

creating, 239
exporting, 239
importing, 240
websites, creating,

309-311
deleting, 212
executable

PE header
information, 215

PSCX commandlets,
214

viewing, 215
HTML, 251
moving, 212
names, 34
properties

customizing, 214
date/time information,

214
viewing, 213

renaming, 212
retrieving from HTTP

servers, 300-301
shares

accessing, 221
creating, 223-224
enumerating, 223
mass creation, 229-232
permissions, 225-228

text
content, deleting, 236
reading, 235-236
searching, 237
writing to, 236-237

XML, 241
checking, 242-243
converting to XHTML

files, 249
customizing, 246
DataSet

exports/imports, 395
formatting, 244
object pipeline, 248
reading, 241
searching with

XPath, 244
FileSystemAccessRule

objects, 410
filling groups, 345
Filter parameter

(get-childitem
commandlet), 211

filtering
event logs, 14
LDAP queries, 358
objects, 70-72

conditions, 70
heterogeneous

pipeline content, 72
parameter output, 28
processes, 268
RSS feeds, 301
WMI objects, 146-147

flags (parameters), 420
folders

copying, 212
deleting, 212
moving, 212
public, 305
renaming, 212

www.IT-Visions.de

foreach-object commandlet,
105, 235, 431

forests (Active Directory),
366

format-byte commandlet,
431

format-custom
commandlet, 431

format-hex commandlet,
431

format-list commandlet,
431

format-table commandlet,
431

format-wide commandlet,
431

format-xml commandlet,
244, 431

formatting XML files, 244
free space (drives),

208-210
FullControl right, 404

G
get-acl commandlet,

401, 431
get-adobject commandlet,

314, 358, 431
get-alias commandlet,

30, 432
get-authenticodesignature

commandlet, 432
get-bios commandlet, 432
get-cdromdrive

commandlet, 432
get-childitem commandlet,

432
directory content, 210
Filter parameter, 211
include parameter, 211
registry keys, 253

Index 463

get-clipboard commandlet,
200, 432

get-command
commandlet, 432

get-commandlet, 35
get-computerinfo

commandlet, 432
get-computername

commandlet, 432
get-content commandlet,

206, 432
binary files, 238
files, reading, 229, 235

get-credential
commandlet, 58, 432

get-culture commandlet,
188, 432

get-currentuser
commandlet, 432

get-datarow commandlet,
396

get-datatable commandlet,
396

get-date commandlet,
102, 432

get-dbconnection
commandlet, 432

get-dbrow commandlet,
433

get-dbtable commandlet,
433

get-dhcpserver
commandlet, 433

get-directorychildren
commandlet,
362, 433

get-directoryentry
commandlet,
362, 433

get-directoryvalue
commandlet,
362, 433

get-disk commandlet,
206, 433

get-domaincontroller
commandlet,
324, 433

get-eventlog commandlet,
290, 433

get-executionpolicy
commandlet, 433

get-exportedtype
commandlet,
215, 433

get-fileversioninfo
commandlet,
215, 433

get-foregroundwindow
commandlet, 434

get-hash commandlet, 434
get-help commandlet,

35, 434
get-history commandlet,

186, 434
get-host commandlet,

187, 434
get-item commandlet, 434

file properties, 213
registry keys, 254

get-itemproperty
commandlet,
255, 434

get-ITVisions commandlet,
434

get-keyboard commandlet,
434

get-location commandlet,
206, 434

get-mailbox commandlet,
303

get-mailboxdatabase
commandlet, 303

get-member commandlet,
62, 66-68, 434

alias properties, 68
code properties, 68
methods, 64
note properties, 67
output, reducing, 69
properties, 65
property sets, 66
script properties, 67

get-memorydevice
commandlet, 434

get-metadata commandlet,
435

get-mountpoint
commandlet, 435

get-networkadapter
commandlet, 435

get-peheader commandlet,
215, 435

get-pfxcertificate
commandlet, 435

get-pipelineinfo
commandlet, 60, 435

get-pointingdevice
commandlet, 435

get-privilege commandlet,
435

get-process commandlet,
11, 267-268, 435

get-process | out file
commandlet, 55

get-process | out-printer
commandlet, 55

get-processor commandlet,
435

get-psdrive commandlet,
83, 206, 435

get-psprovider
commandlet, 84, 435

get-pssnapin commandlet,
435

464 Index

get-pssnapinhelp
commandlet, 435

get-random commandlet,
435

get-reparsepoint
commandlet, 435

get-service commandlet,
272, 435

get-service i commandlet,
13

get-shortpath commandlet,
436

get-sounddevice
commandlet, 436

get-storagegroup
commandlet, 303

get-tabexpansion
commandlet, 436

get-tapedrive commandlet,
436

get-terminalsession
commandlet, 436

get-tracesource
commandlet,
173, 436

get-uiculture commandlet,
188, 436

get-unique commandlet,
436

get-usbcontroller
commandlet, 436

get-variable commandlet,
436

get-videocontroller
commandlet, 436

get-wmiobject
commandlet, 135,
144, 436

hardware information,
284

list parameter, 148

GetAccessRules()
method, 411

GetDrives() method, 206
GetFactoryClasses()

method, 375
GetOwner() method, 417
GetType() method, 93
GPMC (Group Policy

Management
Console), 367, 450

GPMGMT component,
367

graphical user interfaces,
196

clipboard, 200
input window, 196-198
objects, displaying,

198-200
group-object commandlet,

74, 436
Group Policy Management

Console (GPMC),
367, 450

grouping objects, 74-75
groups

Active Directory
creating/filling, 345
deleting users, 346
members, 343-345

policies, 367
classes, 367
enumerating, 367, 369
links, 369-372

WMI management,
314-315

H
handling script errors,

125-127
hardlinks, 217-218

hardware
information, viewing,

284-285
printers

connections, 287
listing all, 286
print jobs, 287-289
status, 286

hash tables, 106-108
Hashtable class, 107
help

commandlets, 35, 38
get-commandlet, 35
.NET classes, 38-40
PSL, 90
tool, 169

Help Editor website, 449
heterogeneous pipeline

content, 72
hexadecimal numbers, 96
history

commands, 186-187
WPS, 4-5

host information, 187-188
HTML files, 251

I
IADs interface, 317
IDE, 156-157
IEnumerable interface, 319
IIS (Internet Information

Services), 305
classes, 305
virtual web servers

adding, 308-311
deleting, 311
listing, 307

IIsApplicationPool
class, 305

IIsComputer class, 305
IIsWebServer class, 305
IIsWebService class, 305

Index 465

IIsWebVirtualDir
class, 305

import-alias commandlet,
436

import-bitmap
commandlet, 436

import-clixml
commandlet, 436

import-csv commandlet,
240, 436

import-dbcommand
commandlet, 437

importing
CSV files, 240
DataSets, 395

include parameter
(get-childitem
commandlet), 211

indexed attributes
(Active Directory
searches), 354

input boxes, 56
input windows, 196-198
InputBox() method, 56
Install() method

(Win32_Product()
class), 263

installed services,
viewing, 13

installing
PowerShellPlus, 19
printers, 287
PSCX, 17
services, 278
software, 263
WPS, 8-10

installutil.exe, 175
IntelliSense

PowerShellPlus
commandlet

names, 159
commandlet

parameters, 160

.NET classes, 161
path names, 160
variables, 162

PrimalScript
class names, 169
commandlets, 168
parameters, 168

interactive mode, 11, 14
console window, 11
event logs, filtering, 14
IDE, 156
installed services,

viewing, 13
pipeline features, 13
running processes,

viewing, 11
tab completion, 13

interfaces
ADSI

architecture, 316
deficiencies, 321-323
directory services,

compared, 320
DirectoryEntry class,

318-319
integration, 316
object model, 318
property cache, 329
search queries, 319

graphical user
interfaces, 196

clipboard, 200
input window, 196-198
objects, displaying,

198-200
IADs, 317
IEnumerable, 319

intermediate steps
(pipelines),
viewing, 76

Internet Information
Services. See IIS

interpreter mode (WPS
console), 154

inventory (software)
script, 260-261
searching, 260
viewing, 259

invoke-dbcommand
commandlet, 396

invoke-expression
commandlet,
109, 437

invoke-history
commandlet, 437

invoke-item commandlet,
437

invoke-scalardbcommand
commandlet, 437

J–K
Join() method, 102
join-path commandlet, 437
join-string commandlet,

102, 437
joining

arrays, 105
hash tables, 108
strings, 102

junction points, 218-219

keys (registry)
copying, 254
creating, 254
deleting, 254
entries, 255-257
hierarchy script, 115-117
reading, 253-254

Kill() method (Process
class), 270

L
LDAP queries

example, 350
executing, 351
filters, 358

466 Index

search example, 352
search filters

website, 450
syntax, 349-350
user login name

searches, 353-354
links

file system, 216
Explorer, 216-217
hardlinks, 217-218
junction points,

218-219
symbolic, 220

group policies
creating, 369-370
deleting, 370-372

parameter flags, 420
list parameter

get-eventlog
commandlet, 290

get-wmiobject
commandlet, 148

ListDirectory right, 404
listings

ACEs
adding, 419
deleting, 422-423
details, 411

ACL transfers, 424-426
Active Directory

domain controllers, 366
domains/forests, 366
search result

restrictions, 357
user accounts,

passwords, 341
Active Directory groups

creating, 345
deleting members, 346
listing members, 344
member assignments,

346

Active Directory user
accounts

authentication, 341
creating, 340
deleting, 342
moving, 343
renaming, 342

binary files, 238
COM classes

existing instances, 134
instantiating, 133

database access
data readers, 387-388
provider-independent

command objects,
384

www.IT-Visions.de
extensions, 398-399

database connections
Microsoft Access, 381
Microsoft SQL Server,

381-382
Microsoft SQL Server

Express, 382
provider-independent,

383
DataSets

provider-independent
example, 394-395

provider-specific
example, 392-393

dialog box user input
example, 57

directory container
objects, 331

directory entries, 332
directory objects

customizing, 330
fetching, 328
properties, 331

www.IT-Visions.de

directory service
operations via
www.IT-Visions.de
commandlets,
363-364

downloading files via
HTTP, 300

downloading/filtering
RSS feeds, 301

drive free space, viewing
DriveInfo class, 208
Win32_LogicalDisk

class, 209-210
drive names, 210
e-mail, sending, 302
executable files,

viewing, 215
files

date and time,
configuring, 214

share permissions,
creating, 226-228

shares, creating, 224,
230-232

formatted output, 55
get-wmiobject

commandlet, 144
group policies

enumerating, 368-369
links, 370-372

input windows, 196-198
LDAP

searches, executing, 352
user login name

search, 354
networks, configuring,

297-298
objects, displaying,

198-200
organizational units,

creating, 347
print jobs, canceling, 288

Index 467

protocol entries,
fetching, 291

registry example, 258
scripts

dot sourcing, 118
error testing example,

123-125
registry key hierarchy,

115-117
services

configuration,
customizing, 278

enumerating, 272
SIDs

displaying, 414
SDDL names, 416
well-known, 415

software
installations, testing,

265-266
installing, 264
inventory script,

260-261
inventory solution with

WPS, 8
inventory solution with

WSH, 5-7
searching inventory,

260
uninstalling, 264

strings
customizing, 100
joining, 102
splitting, 101

subroutines, 112
system owners,

reading, 418
text files

reading, 235
writing to, 236

user accounts,
creating, 14

user input, 56
user profiles

PSCX, 190-195
script, 188

variable resolution
within a string, 99

virtual web servers
information,
viewing, 308

waiting for process
ending, 271

websites, creating from
CSV files, 309-311

WMI
classes, instantiating,

149
date format

conversions, 145
XML files

customizing, 247
fetching, 242

loading
assemblies, .NET

classes, 131
snap-ins, WPS console,

175-176
locking variables, 95
logical operators, 72

M
mailboxes (Exchange

Server)
attributes, 304
creating, 303
deactivating, 304
listing, 303
managing, 303-304
moving, 304

MailMessage class, 302
ManagementBaseObject

class, 135

www.IT-Visions.de

ManagementClass
class, 135

ManagementDateTime-
Converter class, 145

ManagementObject
class, 135

mass creation, file shares,
229-232

measure-command
commandlet,
173, 437

measure-object
commandlet, 76, 437

measuring execution
time, 173

methods, 64
AddPrinterConnection(),

287
AppendChild(), 246
calling, 64
Change(), 278
CommitChanges(), 329
ConvertToDateTime(),

145
CreateElement(), 246
DeleteTree(), 342
DownloadString(), 300
Exists(), 327
GetAccessRules(), 411
GetDrives(), 206
GetFactoryClasses(), 375
GetOwner(), 417
GetType(), 93
InputBox(), 56
Install(), 263
Join(), 102
Kill(), 270
object pipelines, 45-46
PurgeAccessRules(), 421
RefreshCache(), 329

468 Index

RemoveAccessRule(),
421

SelectNodes(), 229, 244
SelectSingleNode(), 244
SetInfo(), 317
Slit(), 101
String class, 99
Subtract(), 103
ToDateTime(), 145
ToString(), 60
Uninstall(), 264
WM classes, 142, 144

Modify right, 404
move-item commandlet,

206, 212, 437
move-itemproperty

commandlet, 437
moving

files/folders, 212
mailboxes, 304
user accounts, 343

multidimensional
arrays, 106

multivalued attributes
(Active Directory
searches), 355-356

N
name resolution, 299
names

drives, 210
event logs, 290
files/folders, 212
SDDL, 416-417

navigating
Active Directory, 361
commandlets, 84
drives, defining, 87-88
paths, 85-86
registry, 83-84

.NET
3.0 Redistributable

package website, 10
classes, 129

assemblies, loading, 131
constructor

parameters, 130
enumerations, 132
help, 38-40
instances, creating, 130
library documentation

for FileSystemRights
enumeration
website, 450

object analysis, 132
static members, 130

Community website, 449
regular expressions

website, 450
tools and software

components refer-
ence website, 449

NetCmdlets from
nsoftware website,
450

networking
configuring, 296-298
drives, 210
e-mail, sending, 302
Exchange Server 2007,

302
basic operations, 302
databases, listing, 303
functionality,

testing, 303
mailboxes, 303-304
public folder

management, 305
storage groups, 303

file retrieval from HTTP
servers, 300-301

IIS, 305
classes, 305
virtual web servers,

307-311
name resolution, 299
pinging computers, 295

new-alias commandlet,
30, 437

new-hardlink commandlet,
218, 437

new-item commandlet,
206, 437

registry keys, 254
text files, creating, 236

new-itemproperty
commandlet,
256, 437

new-junction commandlet,
218, 437

new-mailboxdatabase
commandlet, 303

new-object commandlet,
437

new-psdrive commandlet,
438

new-service commandlet,
278, 438

new-shortcut commandlet,
217, 438

new-storagegroup
commandlet, 303

new-symlink commandlet,
220, 438

new-timespan
commandlet,
103, 438

new-variable commandlet,
438

nonterminating errors, 122
note properties, 67
nouns (commandlets), 29

Index 469

numbers, 96-98
assigning to untyped

variables, 96
hexadecimal, 96
random, 98

O
object model (DataSets),

390
objects

castrating, 73-74
comparing, 78
displaying, 198-200
filtering, 70-72

conditions, 70
heterogeneous

pipeline content, 72
grouping, 74-75
.NET classes, 132
orientation, pipelining,

44
pipelines, 44

HTML files, 251
methods, 45-46
parameters, 46
XML documents, 248

sorting, 74
WMI

accessing, 137-138
adapter, 139
analysis, 140
filtering/selecting,

146-147
ObjectSecurity class, 406
operators, 72, 108-109
organizational units,

creating, 346-347
out-clipboard

commandlet, 438
out-default commandlet,

51, 438

out-file commandlet, 55,
236, 438

out-host commandlet,
51, 438

out-null commandlet, 438
out-printer commandlet,

55, 287, 438
out-string commandlet,

438
output, 49

get-member
commandlet

alias properties, 68
code properties, 68
methods, 64
note properties, 67
properties, 65
property sets, 66
reducing, 69
script properties, 67

mixing literals and
variables, 54

printing, 55
single values, 53-54
standard, 51-53

pagewise, 51
restricting, 52

suppressing, 55
text files, 55

P
p parameter (out-host

commandlet), 51
pagewise output, 51
parameters, 26-27

calculated, 27-28
case sensitivity, 29
debugging, 171
ErrorAction, 125-127
Filter, 211
filtering output, 28

flags, linking, 420
include, 211
LDAP queries, 349
list

get-eventlog
commandlet, 290

get-wmiobject
commandlet, 148

.NET class constructors,
130

object pipelines, 46
p, 51
placeholders, 29
quotation marks, 26
sequence, 27
start-process

commandlet, 270
parentheses () in

methods, 64
passwords (user

accounts), 340
paths, 85-86, 323-325
pausing

print jobs, 288
scripts, 122

performance counters,
292-293

periods of time, 103
permissions (file shares),

225-228
ping-host commandlet,

296, 438
pinging computers, 295
Pipeline Processor, 47-49
pipelines

| (vertical line), 43
calculations, 76
classic commands, 46
complex, 48-49
content, analyzing, 59

alias properties, 68
code properties, 68

470 Index

ETS, 69-70
get-member

commandlet, 62,
66-69

get-pipelineinfo
commandlet, 60

methods, 64
note properties, 67
properties, 65
property sets, 66
script properties, 67

creating, 43
features, 13
heterogeneous

content, 72
intermediate steps, view-

ing, 76
objects, 44

castrating, 73-74
comparing, 78
filtering objects, 70-72
grouping, 74-75
HTML files, 251
methods, 45-46
orientation, 44
parameters, 46
sorting, 74
XML, 248

output, 49
printing, 55
single values, 53-54
standard, 51-53
suppressing, 55
text files, 55

Pipeline Processor,
47-49

ramifications, 78
user input, 56

authentication dialog
boxes, 58

dialog boxes, 57
input box, 56

placeholders, 29
plus sign (+) operator,

54, 108
policies

execution, 119
group, 367

classes, 367
creating links, 369-370
deleting links, 370-372
enumerating, 367-369

pop-location commandlet,
438

PowerShell
Analyzer, 164
Community Extensions.

See PSCX
documentation

website, 449
download website, 449
Help, 169
IDE, 156-157
Pipeline Processor,

47-49
remoting website, 449
Script Language.

See PSL
PowerShell

2.0, 445-447
PowerShellPlus, 19, 158

debugging, 21, 163
functions, 158
installing, 19
IntelliSense

commandlets, 159-160
.NET classes, 161
path names, 160
variables, 162

PrimalScript,
compared, 166

testing, 20
variables, viewing all, 164
website, 19

PowerShellPlus Editor, 22
PowerTab, 156
predefined variables, 93
PrimalScript, 165

IntelliSense
class names, 169
commandlets, 168
parameters, 168

PowerShellPlus,
compared, 166

website, 166
WPS script output, 167

printers
connections, 287
jobs, 287-289
listing all, 286
output, 55
print jobs, 287-289
status, 286

priority parameter
(start-process
commandlet), 270

processes, 267
ending, 270
enumerating, 267-268
filtering, 268
running, 11
starting, 269-270
waiting for ending, 271

product activation
settings, 282

profiles, 189-195
programming directory

services, 325
ADSI property cache, 329
binding meta objects to

directory entries,
325-326

container objects, 331
directory entries

attributes, 328-329
creating, 332

Index 471

deleting, 332
existence, checking, 327

impersonation, 327
object properties, 330

properties, 65
alias, 68
code, 68
directory objects, 330
files

customizing, 214
date/time information,

214
viewing, 213

note, 67
PSSnapIn, 179
script, 67
WMI classes, 142-144

Property attribute
(DirectoryEntry
class), 318

property sets, 66
Prosser, Karl, 164
provider factories, 384
providers, 83-84

independent data access,
382-383

listing of, 84
viewing, 84

PSCX (PowerShell
Community
Extensions), 17, 181

Active Directory
navigation, 361

commandlets, 181-182
downloading, 17
executable files

commandlets, 214
installing, 17
LDAP filters, 358
testing, 18
website, 181, 449

PSL (PowerShell Script
Language), 89

arrays, 105-106
associative, 106-108
declaring, 105
defining, 105
joining, 105
listing, 105
multidimensional, 106

command separation, 90
comments, 90
control structures,

110-112
data types, 92
date and time, 102-103

periods of time, 103
remote computers, 104
setting, 104

hash tables, 106-108
accessing, 107
defining, 107
joining, 108

help, 90
numbers, 96-98

assigning to untyped
variables, 96

hexadecimal, 96
random, 98

operators, 108-109
strings, 99

customizing, 100
joining, 102
splitting, 101

variables, 91
constant values, 95
data types, 91-93
declaring, 91
example, 94
predefined, 93
resolution, 95

PSSnapIn property
(CmdletInfo
class), 179

public folders,
managing, 305

PurgeAccessRules()
method, 421

push-location
commandlet, 438

Q
queries

LDAP
example, 350
executing, 351
filters, 358
search example, 352
syntax, 349-350
user login name

searches, 353-354
WQL, 147

Quest
extensions (Active

Directory), 365
Management Shell for

Active Directory,
183-184

quotation marks (“ ”) in
parameters, 26

R
ramifications (pipelines), 78
random numbers, 98
Read right, 404
read-host commandlet,

56, 438
ReadAndExecute right, 404
ReadAttributes right, 404
ReadData right, 405
ReadExtendedAttributes

right, 405

472 Index

reading
ACEs, 410-411
ACLs, 408-409
binary files, 238
directory entry

attributes, 328
registry keys, 253-255
system owners, 417
text files, 235-236
XML files, 241

ReadPermissions right, 405
recovery settings, 283
reflection mechanism, 44
RefreshCache()

method, 329
registry, 253

data types, 257
drives, defining, 255
example, 257-258
keys

copying, 254
creating, 254
deleting, 254
entries, 255-257
hierarchy script,

115-117
reading, 253-254

navigating, 81
commandlets, 84
drives, 83-84
providers, 83-84

regular expressions, 71
relational operators, 72
remote computers, date

and time, 104
remove-directoryentry

commandlet,
362, 438

remove-item commandlet,
206, 212, 254, 438

remove-itemproperty
commandlet,
257, 438

remove-mountpoint
commandlet, 439

remove-psdrive
commandlet, 439

remove-pssnapin
commandlet, 439

remove-reparsepoint
commandlet, 439

remove-variable
commandlet, 439

RemoveAccessRule()
method, 421

rename-item commandlet,
206, 212, 439

rename-itemproperty
commandlet, 439

renaming
files/folders, 212
users, 342

resize-bitmap
commandlet, 439

resolution (variables), 95
resolve-assembly

commandlet,
215, 439

resolve-host commandlet,
299, 439

resolve-path commandlet,
439

resources (security
classes), 407

restart-service
commandlet,
277, 439

restricting output, 52
resume-service

commandlet, 439
retrieving files from HTTP

servers, 300-301
rights (access), 403-406
RSS feeds, 301
running processes,

viewing, 11

S
schemas (Active

Directory), 338
script mode, 14-15, 156
scripts

DataSet providers
independent example,

394-395
specific example,

391-393
debugging, 21
digital signatures,

120-121
dot sourcing, 118
errors, 122

creating, 128
handling, 125-127
history, 128
standard reactions, 127
trap blocks, 128
trapping example,

123-125
Exchange Server scripts

website, 451
pausing, 122
properties, 67
registry key hierarchy,

115-117
security, 118-119
software inventory,

260-261
starting, 117
user accounts,

creating, 14
SCVMM (System Center

Virtual Machine
Manager), 185

SDDL (Security Descriptor
Definition
Language), 416

ACLs, configuring,
425-426

names, 416-417

Index 473

SDK website, 450
SDs (security descriptors),

225, 402
search queries (ADSI), 319
searching

Active Directory, 314
indexed attributes, 354
multivalued attributes,

355-356
result restrictions, 357
star operator, 356

software inventory, 260
text files, 237
XML files, 244

security, 402
access rights, 403-406
ACLs, 402

ACEs, 402
adding ACEs, 418-419
configuring, 425-426
deleting ACEs,

421-423
reading ACEs,

410-411
transferring, 424

classes, 406
control holders, 408
inheritance

hierarchy, 406
ObjectSecurity, 406
reading ACLs, 408-409
resources, 407

descriptors (SDs),
225, 402

owners, reading, 417
scripts, 118-119
SIDs

displaying, 414
SDDL names, 416-417
well-known, 414-416

user accounts, 402
Security Descriptor

Definition Language.
See SDDL

security descriptor (SDs),
225, 402

security identifiers.
See SIDs

select-object commandlet,
70, 73, 439

select-string commandlet,
237, 439

select-xml commandlet,
244-246, 439

selecting WMI
objects, 146

SelectNodes() method
(XMLDocument
class), 229, 244

SelectSingleNode()
method
(XmlDocument
class), 244

semicolons (;) in
commands, 90

send-smtpmail
commandlet,
302, 439

sending e-mail, 302
sequence (parameters), 27
serial numbers

(computers), 282
servers

HTTP, 300-301
SQL, 376
virtual web servers

adding, 308-311
deleting, 311
listing, 307

services
attributes, 278
configuration,

customizing, 278-279
dependent, 274-276
directory, 325

access, 313
ADSI. See ADSI

binding meta objects
to directory entries,
325-326

container objects, 331
directory entries, 332
directory entry

attributes, 328-329
directory entry exis-

tence, checking, 327
impersonation, 327
object properties, 330
paths, 323-325
www.IT-Visions.de

commandlets,
362-364

enumerating, 272-273
installed, viewing, 13
installing, 278
starting, 276-277
stopping, 277

set-acl commandlet,
401, 440

set-alias commandlet,
30, 440

set-authenticodesignature
commandlet,
120, 440

set-clipboard commandlet,
200, 440

set-content commandlet,
206, 440

binary files, 238
text files, writing, 236

set-datarow commandlet,
396

set-datatable commandlet,
396

set-date commandlet,
104, 440

set-dbtable commandlet,
440

set-directoryvalue
commandlet,
362, 440

474 Index

set-distributiongroup
commandlet, 304

set-executionpolicy
commandlet,
119, 440

set-filetime commandlet,
214, 440

set-foregroundwindow
commandlet, 440

set-item commandlet,
206, 440

set-itemproperty com-
mandlet, 214, 440

set-location commandlet,
206, 254, 441

set-privilege commandlet,
441

set-psdebug commandlet,
173, 441

set-service commandlet,
278, 441

set-tracesource
commandlet,
173, 441

set-variable commandlet,
441

set-volumelabel
commandlet,
210, 441

SetInfo() method, 317
settings (computers),

281-283
SharePoint Provider

website, 449
SIDs (security

identifiers), 402
displaying, 414
SDDL names, 416-417
well-known, 414-416

signing scripts, 120-121
single value output, 53-54
SMTP (Simple Mail Transfer

Protocol), 302

SmtpClient class, 302
snap-ins

adding, 175
commandlets, 179
listing, 178
loading in WPS console,

175-176
Snover, Jeffrey, 117
software, 259

autostart, 263
installed list of, 262
installing, 263
inventory

script, 260-261
searching, 260
solution with WPS, 8
solution with WSH,

5-7
viewing, 259

not installed with
Windows Installer,
262

uninstalling, 264
versions, viewing, 282

sort-object commandlet,
74, 441

sorting objects, 74
Split() method, 101
split-path commandlet,

441
split-string commandlet,

101, 441
splitting strings, 101
SQL Servers, listing avail-

able, 376
standard output, 51-53

pagewise, 51
restricting, 52

star operator (*), 108, 356
start-process commandlet,

269-270, 441
start-service commandlet,

277, 441

www.IT-Visions.de

start-sleep commandlet,
122, 441

start-tabexpansion
commandlet, 441

start-transcript
commandlet, 441

starting
processes, 269-270
scripts, 117
services, 276-277

static members
.NET classes, 130
WMI classes, 144

step-by-step debugging,
173

stop-process commandlet,
270, 441

stop-service commandlet,
277, 441

stop-terminalsession
commandlet, 441

stop-transcript
commandlet, 441

stopping services, 277
storage limitations (public

folders), 305
String class, 99
strings, 99

customizing, 100
joining, 102
representation, 60
splitting, 101

subroutines, 112
Subtract() method, 103
suspend-service

commandlet, 442
symbolic links, 220
Synchronize right, 405
syntax

commandlets, 26
LDAP queries, 349-350

Index 475

logical operators, 72
regular expressions, 71
relational operators, 72

System Center Virtual
Machine Manager
(SCVMM), 185

system information,
187-188

system owners,
reading, 417

System.Management
object model, 135

System.Management
namespace
documentation
website, 450

T
tab completion, 13, 153
TakeOwnership right, 405
targets (junction

points), 219
terminating errors, 122
test-assembly commandlet,

214, 442
test-dbconnection

commandlet,
396, 442

test-path commandlet, 442
test-xml commandlet,

243, 442
testing

Exchange Server 2007
functionality, 303

PowerShellPlus, 20-22
PSCX, 18

text files
content, deleting, 236
reading, 235-236
searching, 237
writing to, 236-237

time and date, 102-103
periods of time, 103
remote computers, 104
setting, 104

TimeSpan class, 103
ToDateTime()

method, 145
ToString() method, 60
trace-command

commandlet, 442
tracing, 173
transferring ACLs, 424
Traverse right, 405
tree-object commandlet,

78, 442
trial and error website, 451
type indicators (WMI

classes), 139

U
Uninstall() method

(Win32_Product
class), 264

uninstalling
software, 264
WPS, 10

update-formatdata
commandlet, 442

update-typedata
commandlet, 442

user accounts
Active Directory,

335-338
authentication, 341
creating, 339-340
deleting, 342
moving, 343
passwords, 340
renaming, 342

creating, 14
security, 402

user administration
Active Directory

authentication, 341
deleting users, 342
moving users, 343
renaming users, 342
user accounts, 339-340
user class attributes,

335-338
WMI, 314-315

users
adding to groups, 345
deleting from

groups, 346
input, 56

authentication dialog
boxes, 58

dialog boxes, 57
input box, 56

object user interface
mapping website, 450

profile script, 188

V
variables, 91

constant values, 95
data types, 91-93
declaring, 91
example, 94
predefined, 93
resolution, 95

VBScript command con-
versions website, 451

verbose parameter,
171-172

vertical line (|) for
pipelines, 43

viewing
commandlets list, 35
computer settings,

281-283
directory content,

210-212

476 Index

drive free space (file
system), 208, 210

drives list, 206-207
environment

variables, 283
executable files, 215
file properties, 213
hardware information,

284-285
installed services, 13
objects, 198-200
pipeline intermediate

steps, 76
providers, 84
running processes, 11
SIDs, 414
software inventory,

259, 262
virtual web servers

adding, 308-311
deleting, 311
listing, 307

Vista user account
control, 155

W
waiting for process

ending, 271
WebClient class, 300
websites

Active Directory
schema, 450

AD Access
Change/Break in
RC2, 449

Cmdlet development
guidelines, 450

Cmdlet help, 450
data providers, 375
ETS, 450
Exchange Management

Shell, 451

Exchange Server
scripts, 451

Group Policy
Management
Console with Service
Pack 1, 450

Help Editor, 449
LDAP search filters, 450
.NET Framework

3.0 Redistributable
package, 10

class library
documentation for
FileSystemRights
enumeration, 450

Community, 449
Framework regular

expressions, 450
tools and software

components
reference, 449

NetCmdlets from
nsoftware, 450

PowerShell
Analyzer, 165
documentation, 449
download, 449
Help, 169
remoting, 449

PowerShellPlus, 19
PrimalScript, 166
PSCX, 17, 181, 449
SDK, 450
SharePoint Provider, 449
System.Management

documentation, 450
trial and error, 451
user object user

mapping, 450
VBScript command

conversions, 451
Windows PowerShell

graphical help
file, 449

WMI schema class
reference, 450

WPS download, 9
www.IT-Vision.de WPS

extensions, 183
well-known security

principals, 414-416
WhatIf parameter, 171
where-object commandlet,

70, 442
wildcards, 29
Win32_Computersystem

class, 281
Win32_Desktop class, 315
Win32_LogicalDisk class

drive free space,
viewing, 209-210

drives, viewing, 207
Win32_NetworkAdapter-

Configuration
class, 296

Win32_NTLogEvent
class, 291

Win32_Operating System
class, 281

Win32_PerfRawData
class, 292

Win32_Product class, 259
Win32_Service class, 277
Win32_Share class, 221
Win32_StartupCommand

class, 263
Win32_Trustee class, 226
windows

console, 11
input, 196, 198

Windows Forms
PropertyGrid
control, 198

Windows PowerShell.
See WPS

Index 477

WMI (Windows
Management
Instrumentation), 135

classes, 135
available, listing, 148
collections,

accessing, 146
IIsApplicationPool,

305
IIsComputer, 305
IIsWebServer, 305
IIsWebService, 305
IIsWebVirtualDir, 305
instances, creating, 149
object access, 137-138
object adapter, 139
object analysis, 140
object filtering/

selecting, 146-147
properties/methods,

142-144
queries, 147
static class

members, 144
System.Management

object model, 135
type indicators, 139
Win32_Computer-

system, 281
Win32_Desktop, 315
Win32_LogicalDisk,

207-210
Win32_NetworkAdapter

Configuration, 296
Win32_NTLogEvent,

291
Win32_Operating-

System, 281
Win32_PerfRawData,

292
Win32_Product, 259
Win32_Service, 277

Win32_Share, 221
Win32_Startup-

Command, 263
Win32_Trustee, 226
WPS support, 136

date format
conversions, 145

groups, managing,
314-315

objects
accessing, 137-138
adapter, 139
analysis, 140

schema class reference
website, 450

users, managing, 314-315
WMI Query Language

(WQL), 147
WorkingDirectory parame-

ter (start-process
commandlet), 270

WPS (Windows PowerShell).
See also scripts

definition, 3
benefits, 5
console, 151

command history,
186-187

command mode, 154
functions, 152
interpreter mode, 154
PowerTab, 156
snap-ins, loading,

175-176
tab completion, 153
Vista user account

control, 155
downloading, 8
graphical help file

website, 449
history, 4-5
installing, 8-10

www.IT-Vision.de

interactive mode, 11-14
console window, 11
event logs, filtering, 14
installed services,

viewing, 13
pipeline features, 13
running processes,

viewing, 11
tab completion, 13

script mode, 14-15
software inventory

solution, 8
uninstalling, 10
WMI support, 136

WQL (WMI Query
Language), 147

Write right, 405
write-bzip2 commandlet,

442
write-clipboard

commandlet,
200, 442

write-debug commandlet,
442

write-error commandlet,
53, 442

write-gzip commandlet,
442

write-host commandlet,
53, 442

write-output commandlet,
443

write-progress
commandlet, 443

write-tar commandlet, 443
write-verbose

commandlet, 443
write-warn commandlet,

53
write-warning

commandlet, 443

478 Index

write-zip commandlet,
220, 443

WriteAttributes right, 405
WriteData right, 406
WriteExtendedAttributes

right, 406
writing

binary files, 238
directory entry

attributes, 329
text files, 236-237

WSH software inventory
solution, 5, 7

www.IT-Visions.de
extensions, 183

Active Directory,
362-364

database access, 396-399

X–Z
XML files, 241

checking, 242-243
converting to XHTML

files, 249
customizing, 246
DataSet exports/

imports, 395
formatting, 244
object pipeline, 248
reading, 241
searching with XPath,

244
XMLDocument class,

229, 244
XPath, 244

www.IT-Visions.de

	ESSENTIAL POWERSHELL
	Contents
	Preface
	Acknowledgments
	About the Author
	PART I: GETTING STARTED WITH POWERSHELL
	Chapter 1: First Steps with Windows PowerShell
	What Is Windows PowerShell?
	Downloading and Installing PowerShell Community Extensions
	Testing the PowerShell Extensions
	Downloading and Installing the PowerShellPlus
	Testing the PowerShell Editor
	Summary

	Chapter 2: Commandlets
	Introducing Commandlets
	Aliases
	Expressions
	External Commands
	Getting Help
	Summary

	Chapter 3: Pipelining
	Pipelining Basics
	Pipeline Processor
	Complex Pipelines
	Output
	Getting User Input
	Summary

	Chapter 4: Advanced Pipelining
	Analyzing Pipeline Content
	Filtering Objects
	Castrating Objects
	Sorting Objects
	Grouping Objects
	Calculations
	Intermediate Steps in the Pipeline
	Comparing Objects
	Ramifications
	Summary

	Chapter 5: The PowerShell Navigation Model
	Navigation through the Registry
	Providers and Drives
	Navigation Commandlets
	Paths
	Defining Drives
	Summary

	Chapter 6: The PowerShell Script Language
	Getting Help
	Command Separation
	Comments
	Variables
	Available Types
	Numbers
	Random Numbers
	Strings
	Date and Time
	Arrays
	Associative Arrays (Hash Tables)
	Operators
	Control Structures
	Summary

	Chapter 7: PowerShell Scripts
	A First PowerShell Script Example
	Start a PowerShell Script
	Including Scripts
	Scripting Security
	Signing of Scripts
	Letting a Script Sleep
	Errors and Error Treatment
	Summary

	Chapter 8: Using Class Libraries
	Using .NET Classes
	Using COM Classes
	Using WMI Classes
	Date and Time
	Summary

	Chapter 9: PowerShell Tools
	PowerShell Console
	PowerTab
	PowerShell IDE
	Windows PowerShellPlus
	PowerShell Analyzer
	PrimalScript
	PowerShell Help
	Summary

	Chapter 10: Tips, Tricks, and Troubleshooting
	Debugging and Tracing
	Command History
	System and Host Information
	PowerShell Profiles
	Graphical User Interfaces
	Summary

	PART II: WINDOWS POWERSHELL IN ACTION
	Chapter 11: File Systems
	Available Commandlets for File System Administration
	Drives
	Directory Content
	Reading and Writing File Properties
	Properties of Executables
	File System Links
	Compression
	File Shares
	Summary

	Chapter 12: Managing Documents
	Text Files
	Binary Files
	CSV Files
	XML Files
	HTML Files
	Summary

	Chapter 13: Registry and Software
	Registry
	Software Administration
	Summary

	Chapter 14: Processes and Services
	Processes
	Windows Services
	Summary

	Chapter 15: Computers and Hardware
	Computer Settings
	Hardware
	Event Logs
	Performance Counters
	Summary

	Chapter 16: Networking
	Pinging Computers
	Network Configuration
	Name Resolution
	Retrieving Files from an HTTP Server
	E-Mail
	Microsoft Exchange Server 2007
	Internet Information Services
	Summary

	Chapter 17: Directory Services
	Overview of Directory Services Access
	Managing Users and Groups Using WMI
	System.DirectoryServices and the ADSI Adapter
	Deficiencies in the ADSI Adapter
	Object Identification in Directory Services (Directory Services Paths)
	Overview of the Common Programming Tasks
	Summary

	Chapter 18: User and Group Management in the Active Directory
	Directory Class User
	Creating a User Account
	Authentication
	Deleting Users
	Renaming User Accounts
	Moving User Accounts
	Group Management
	Organizational Units
	Summary

	Chapter 19: Searching in the Active Directory
	LDAP Query Syntax
	LDAP Queries in PowerShell
	Search Tips and Tricks
	LDAP Query Examples
	Using the Commandlet Get-ADObject
	Summary

	Chapter 20: Additional Libraries for Active Directory Administration
	Navigating the Active Directory Using the PowerShell Community Extensions
	Using the www.IT-Visions.de Active Directory Extensions
	Using the Quest Active Directory Extensions
	Getting Information about the Active Directory Structure
	Group Policies
	Summary

	Chapter 21: Databases
	Introducing ADO.NET
	Example Database
	Data Access with PowerShell
	Summary

	Chapter 22: Advanced Database Operations
	Data Access Using a DataSet
	Data Access with the www.IT-Visions.de PowerShell Extensions
	Summary

	Chapter 23: Security Settings
	Windows Security Basics
	Classes
	Reading ACLs
	Reading ACEs
	Summary

	Chapter 24: Advanced Security Administration
	Account Identifier Translation
	Reading the Owner
	Adding a New ACE to an ACL
	Removing an ACE from an ACL
	Transferring ACLs
	Setting ACLs Using SDDL
	Summary

	PART III: APPENDICES
	Appendix A: PowerShell Commandlet Reference
	Appendix B: PowerShell 2.0 Preview
	Appendix C: Bibliography

	Index
	A
	B–C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

